Characterization of Materials Using Grain Backscattered Ultrasonic Signals

Thumbnail Image
Date
1992
Authors
Yoon, Myung-Hyun
Ramabadran, Tenkasi
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Ultrasonic techniques are widely employed in the nondestructive characterization of materials. For example, the use of grain backscattered ultrasonic signals for the estimation of grain size has been studied extensively [1,2,3,4]. Several techniques to process the grain backscattered signals and extract information related to grain size have been reported in [4]. In this paper, we describe a new technique to process these signals and extract features that can be used for material characterization. The technique consists of the following three steps: i) deconvolution of the backscattered signal to remove the effect of the measurement system, ii) estimation of the spectrum of the resulting reflection coefficient sequence, and iii) extraction of features from the spectrum related to the average scattered energy and the rate of change of scattered energy with frequency, both computed within the bandwidth of the ultrasonic transducer. The spectral features so extracted are influenced by the microstructural properties of a material pertaining to scattering, e.g., average grain diameter, and can be used in the characterization of these properties.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Wed Jan 01 00:00:00 UTC 1992