Potassium deficiency symptoms in corn and soybean: What can we do about them?

Antonio P. Mallarino
Iowa State University, apmallar@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation
http://lib.dr.iastate.edu/cropnews/2380

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Potassium deficiency symptoms in corn and soybean: What can we do about them?

Abstract
Potassium (K) deficiency symptoms are beginning to be observed on many corn fields and in some soybean fields. The symptom for both crops is yellowing of the leaf margins of the older leaves that usually begins at the leaf tip and extends down the margins toward the leaf base. With severe deficiency the leaf edges may become brown (the tissue dies) and affected plants will appear stunted, although the newest leaves may be normal. For further information of symptoms, see ICM 7/1/2002 (“Corn leaf potassium deficiency symptoms”) and ICM 7/1/2002 (“Is it iron or potassium deficiency?”). Questions usually arise at this time about reasons for a deficiency and what can be done to alleviate yield loss.

Disciplines
Agriculture | Agronomy and Crop Sciences

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/2380
Potassium deficiency symptoms are beginning to be observed on many corn fields and in some soybean fields. The symptom for both crops is yellowing of the leaf margins of the older leaves that usually begins at the leaf tip and extends down the margins toward the leaf base. With severe deficiency the leaf edges may become brown (the tissue dies) and affected plants will appear stunted, although the newest leaves may be normal. For further information of symptoms, see ICM 7/1/2002 (“Corn leaf potassium deficiency symptoms”) and ICM 7/1/2002 (“Is it iron or potassium deficiency?”). Questions usually arise at this time about reasons for a deficiency and what can be done to alleviate yield loss.

Potassium deficiency symptoms develop because plants cannot extract K from the surface soil. The most common reason is that soil-test K is lower than optimum for vegetative growth. Depending on its severity, yields may be reduced. Dense soil sampling and spotty deficiencies in many Iowa fields have indicated large soil-test K variability. However, K deficiency on soils with apparently adequate K levels can be induced by other factors. Symptoms can occur after a prolonged dry spell and usually are observed first in corn fields managed with ridge-tillage and no-tillage. When normal rainfall resumes, plants often recover with little or no yield loss.

Any soil or weather factor that stresses or limits root growth, such as soil-test K stratification, compacted soil, root pruning, dry and loose soil, seed furrow sidewall compaction, can limit plant K uptake. As growth continues during the season, K uptake may be increased or remain reduced depending on the subsoil K supply and moisture content. Plant pathogens and herbicide damage sometimes affect corn or soybean plants and can induce leaf K deficiency symptoms even in high-testing soils.

Unfortunately, because symptoms usually appear relatively late in the season, there is no certain economically effective corrective treatment for this year’s crop. Iowa research has shown that foliar fertilization with a low-salt fluid fertilizer containing K can increase soybean yield only in some conditions and insufficient data is available for corn. The fact that deficiencies usually occur in small and isolated field areas limits the cost effectiveness of this treatment. If you see deficiency symptoms, the best practical thing to do is to prevent deficiency for future crops. Observation of plant roots, physical soil conditions, and soil sampling and testing for K in adjacent areas with or without symptoms can provide clues about the reason for the deficiency and possible action.
Insects and Mites

Soybean aphid counts highest in northeastern Iowa

by Marlin E. Rice, Department of Entomology

Scouting reports indicate that soybean aphid numbers are increasing in a few Iowa locations—most notably in northeastern Iowa. Brian Lang, extension field specialist, Decorah, notes that a field near Waukon averaged 30 to 40 aphids per plant with some plants more than 200 aphids per plant, but less than 50 percent of the plants were infested.

Brian notes that he has observed two general patterns so far. First, earlier emerged fields have a higher percent aphid infestation. Observations that help support this thought is that since the first week in June, he hasn’t found any winged aphids on any soybeans, which suggests the aphids moved to the fields early. Second, fields in Allamakee and Winneshiek counties have a higher incidence of aphids then fields in counties south and west.

In central Iowa, John D. Holmes, extension field specialist, Clarion, has scouted soybean fields in Greene, Hamilton, Hardin, Humboldt, Marshall, Tama, Webster, and Wright counties. He has not found soybean aphids in any of these counties. However, soybean aphids have been found at the Field Extension Education Laboratory in Boone County, so they do occur in central Iowa. In eastern Iowa, Virgil Schmitt, extension field specialist, Muscatine, also reports finding aphids in Muscatine County.

Field scouting for soybean aphids should begin either this week or the next. Information on scouting for soybean aphids can be found at www.soybeanaphid.info.

Marlin E. Rice is a professor of entomology with extension and research responsibilities in field and forage crops.