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INTRODUCTION 

Fixed point theorems in Banach spaces have, in the recent 

past, proved quite effective in the study of ordinary differ­

ential equations. G. Hufford (4) applied Schauder1 s fixed 

point theorem (7) to obtain results concerning the periodic 

perturbed system of differential equations 

(1) x = X(x) + €R( e , t, x), 

where R(€ , t, x) = R(€ , t + T, x), ^id the related autono­

mous system 

• (2) x = X(x) 

has a periodic solution x = u(t) = u(t + T). 3. P. Diliberto 

and G. Hufford (3) investigated the systems (1) and (2) when 

R has period different from u and applied the Oacciopoli fixed 

point theorem (2), more recently referred to as the Contrac­

tion Mapping Principle (5), to determine conditions under 

which (1) has almost periodic solutions "near" u(t). 

W. T. Kyner (6) proves a fixed point theorem from which 

the results of S. P. Diliberto and G. Hufford, indicated above, 

follow. His theorem is based on the Schauder theorem. 

In this thesis we consider the system of differential 

equations 

(3) x = X(t, x) 

where x is an n-vector and X(t, x) = X(t + T, x). Because of 

this last periodicity condition, the solutions 0(t, a) of (3), 
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where 0(tQ, a) = a, define a natural mapping of n-space into 

n-space 

F(a) = 0(tQ + T, a). 

L. Amerio (1) proves, using geometrical arguments, that under 

certain conditions there is an analytic initial manifold 
k. 

which is fixed under F; that is, there is a set of points M 

in the plane t = tQ of n+l-dimensional x * t space such that 

F(M) = M. Solutions of (3) which pass through this initial 4 

manifold are almost periodic and form a periodic integral 

surface for (3). His results, however, leave two important 

difficulties unresolved. How the points of the fixed initial 

manifold are rearranged under the mapping F is not evident, 

and the fixed initial manifold may be trivial, that is, a 

single point. We apply the Schauder fixed point theorem to 

show the existence of a non-trivial Initial curve a = f(u) 

and a scalar rearrangement function 0(u) such that 

F(f(0(u))) = f(u). 

We obtain our results in two cases : first, when (3) has two 

distinct periodic solutions and an initial curve connecting 

their initial points which is fixed under F, and second, when 

(3) has a simple closed initial curve which is fixed under F. 
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TYPE I 

We consider the system of differential equations 

(3) x = X(t, x) 

n 
where x is an n-vector, ixl = 77 I x1l , and the following 

i=l 

conditions are satisfied : 

(i) there is some open set in n-space and a constant 

t_, such""that the matrix ^X(t, x) exists and is continuous 
v o X 

for t - tQ and x in 

(il) X(t + T, x) = X(t, x) for t - t and x in U. 
«.  V 

(ill) there is a constant A > 0 such that solutions 

0(t, a) of (3), such that 0(tQ, a) = a and |0(tQ, a)I £ A, 

exist and are continuous for t - tQ and la I - A. 

(iv) the matrix exists, is continuous for 

t0 - t - tQ + T, and its elements are non-negative for 

t = tQ + T and la I 4 A. 

(v) there is a constant p > 0 and positive integers k 

*0M(*O 
+ T

> 
a> x 

and X such that —r > P. 
4ak 

(vl) I 0(to + I, a)I i A for loi i A. 

(vii) there are solutions 0(t, a*) and 0(t, a), a* £ a, 

such that 0(t + T, a*) = 0(t, a*) and 0(t + T, a) = 0(t, a) 

for t - tQ, la#l - A, la/ - A. 

Theorem 1: There exists a periodic integral surface of (3) 



wi"ca penoa x; "cnax is, "Caere is a continuous vector function 

f mapping a closed interval [a, b] into n-space and a scalar 

function Y mapping [a, b3 onto [a, b] such that 

0(tQ + T, f(Y(u))) = 0(tQ, f(u)) = f(u) and If(u)| - A for u 

in [a, b3 , and f(a) = a, f(b) = a*, Y(a) = a, Y(b) = b. 

Proof. Without loss of generality we assume that â = 0, 

that > 0, i = 1, 2, •••, n, and that tQ = 0. We consider 

the set S of all continuous vector functions f mapping the 

closed interval fa, bJ into n-space. With the usual defi­

nitions of addition and scalar multiplication, and with II f II 

= max 1f(u) l  , S is a Banach space over the real number field. 
u 

Let 0 < Bj_ - fc ^ a I &*f - Bg and let Sg be the set of 

all functions f in S such that II f II - A, f1 (u) exists and is 

continuous, f^(u) - 0, i = 1, 2, •••, n, B^~ |f1(u)| - B2 

for u in [a, b], f(a) = 0, and f(b) = a*. Sg is convex since 

if 0 - P - 1, and if f and g are in Sg, then 

II pf + (1 - p)g // * p II f II + (1 - P) Il g II 

- pA + (1 - p ) A = A, 

IPf'(u) + (1 - p)g'(u)I = pf'(u) + (1 - P)g'(u) 

— PBg + (1 — P)Bg ~ Bg, 

and | pf (u) + (1 - p)g' (u) l  * PB]_ + (1 - P)BX = B1. 

We next show that the closure of S-g, which we denote by 

S3, is compact. If f is in S3, then 

If(ug) - f(îI - B2/U2 - uxl 

for all u-j_ and u2 in [a, bJ . Therefore, the functions of 
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Sg are equicontinuous. It follows that the functions of Sg 

are also equicontinuous. Since the functions of Sg are in 

norm less than or equal to A, from Ascoli's lemma we have 

that Sg is compact. 

From (3)(iv) and (3)(v) 

i=i j=i «3  

, È 
a\ j=l J 

- P I f (u)/ ±  P 3 1 >  0 

for all f in Sg and for u in C a, bJ. 

We next show that for every f in Sg there is a differen­

tiate function Y mapping [ a, b ] onto [a, b] such that 

Y(a) = a, Y(b) = b, V (u) > 0, and ^|a*| 

for u in [ a, b]  . Since | ) )  |  > o r  we may de­

fine for each f in Sg 

f c C  f ( S > >  £ •  
v_ i=l j=l daj 3 

f'(s)ds 

u(Y) = a + —0- (b - a). 
n n 

i  fa £ ^ £ i ( s ) d s  
e: r. ^i(T'f(s)) f. 

Then u(a) = a, u(b) = b, and 

|^'V(T)1I - a) 
u'(Y) = 

53 S d^i(T' f(s)) 
1=1 a 
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l * < y ( T ) ) |  ( b - . ,  
\0(T, f(bj) - 0 (?, f(a)))| 

im&JLMll (b - a) 
1 dY I 

|f(b) - f(a)| 

= |M(&_ f(Y))| b - a > 0 
dY I | a*| 

so we may solve for Y in terms of u, and it follows that 

d0(T, f(Y(u))) 

du 

d0(T, f (Y(u) ) 

dY 

dY(u) = | a*j 

du b - a 

for u in [ a, bJ . 

tfe define a function P from Sg into Sg by F(f) = 

0{T, f (Y) ). From (3)(vi) it follows that || F(f) || - A for 

d^(T, f (u) ) 
• —-—tt: > 0, i = 1, 2, • • •, n, -s all f in S3. ^ 

d^T, f (u) ) 

-since 

du 
is a solution of the equation 

- ax(t, act. f(u)) _ 

and therefore, if 

y = ax, 

i0AT, f(uj) 

du 
= 0, i = 1, 2, •••, n for some 

uQ in [a, d] , then f|(uQ) = 0. But by the definition of ; 

| f'(u)| >0 so that &F(f)j(u) _ d0j(T> f(Y(u))) ^ > Q ̂ 

du dY 

I a*|, 
b - a 

Since |âE|lM| = 

3]_ - | J - 52* -AJ-50 F(f) (a) =  0 { T ,  f(Y(a))) 
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= 0(1, f(a)) = 0(0, f(a)) = f(a) = 0 and F(f)(b) 

= 0(1, f(Y(b))) = f(b) = a*. Therefore, F maps Sg into Sg. 

Since u' (Y) = 'p & PB^ b " * for all f 
I qt i j cc*( I a*| 

in Sg, the set of* functions '£y*(u)J is uniformly bounded for 

u in f a, bJ . Let f be in Sg. Then there is a sequence 

such that f(n) is in Sg and —• f as n —»eo . 

Let = F(f^). Then is in Sg. Since the sequences 

| (Yn(u)|J- and ^Y^(u) j  are uniformly bounded, there is a 

subsequence ^Y^(u)j of ^Y^(u)^ and a continuous function 

Y(u) such that Y(a) = a, Y(b) = b, and Ym—» Y as n . 

Let g(u) = 0(T, f(Y(u))). Then 

llg - g(m)|| = II jZf ( T, f (Y) ) - 0(11, f(m)(Ym))|| 

* II f (Y) - f(%) (Ym) || 

where = max J ^ ^ j  ,  | a |  -  A .  H e n c e  

l ie - g( m ) l i  - M1( l l f (Y) - f (m) (Y) H + | | f ( m ) (Y) -  f ( m ) (Ym ) | | ) ,  

and therefore, g^—*. g as m •*- since jl f (Y) - f^(Y)U 

= || f - f(™̂  II , and the functions f ̂  are equicontinuous. 

Thus g is in Sg, and therefore we may extend the domain of F 

such that F maps Sg into Sg. 

To show that F is continuous on Sg let f and h be in Sg 

and let f^n^ » f, h^—- h, Yn Y, and &n—- 0 as 

n where 
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F(f )  = 0(T, f(T)), 

F(f(n)) = #(?, f(n)(Yn)), 

F(g) = 0(T, g(0)), 

F(g(^ = 0( t ,  (en ) ) .  

Then 

II F(f) - F(h)|| - % II f(Y) - h(9) }| 

- !•!-,_( Il f - h II + || h(Y) - h(e) II ) 

- (If - h I I  + I l  h (Y) - h(n) ( r n ) l l  

+ l lh(e) -  h(n ) (en ) | |  + I I  h(n ) (Yn )  -  h(%)(ej | |  ) .  

Thus it follows that F is continuous if we can show that 

II (Yn) - h(n)(©n) II is small provided II f - h II is small. 

But 

llh(n)(Yn) - h(n)(6n) || * Bx |Yn(u) - 9n(u)| 

- rn(Y21(en(u)))| 

i BiS max |e;i(ea(u)) 

- r;1(en(u))| 

where K is a uniform bound for the sequence |Y^(u)^ . Hence 

by the definition of 0 and Y^\ 

l lh ( n )  (Yn )  -  htn ) (en ) l l  i BjK l |0(T,  k ( n )  (9n(u))) 

- (#(1, f<n ' (en(u) ) ) l l  
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-  BjS-I-l ° "^  l lh(n)(8n(u)) - £(n) (6n(u) ) l |  

- 'lil " f 11 • 

The Schauder fixed point theorem states that if Sg is 

a compact convex subset of a Banach space S, and if P is a 

continuous function mapping Sg into Sg, then F has a fixed 

point in Sg. It follows, therefore, that there is a continu­

ous function f in Sg and a continuous function Y such that 

j f (u) | - A for u in [a, b ] , f (a) = â = 0, f(b) = a* , 

Y(a) = a, Y(b) = b, and 0(T, f(Y(u))) = 0(0, f(u)) = f(u) 

for u in [ a, b] . 
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EXAMPLE I 

= (xi - sin - 1 - sin crt) + ccos t 

( 4 )  

^2 — 

where a - -2-
log 2 

Then 
al 

xL, cx2) = ^ + (1 - c^Je1 + Sln at 

02(t, a1, a2) = a2e 

and 

— "t . A 
9 

a, 

^(log 2, c^, a2) = 2-T^ 

02(log 2, c^, ag) = -2 

«1 

as 
2" 

Let A = 1. Then if |a| - 1, then | 0(log 2, a) I - 1. Also 

A ^ d o g  2,  a 1 ,  ° g )  2 > x 

ial (2 - a,)2 

à0'2 ( log 2, ax, cig ) 2 
_ = - , 

d 0n(log 2, a a ) 3 0p(log 2, a,, a ) 
_ _ 0. 

Let a* = (1, 0) and â = (0, 0). Then 0-^(t, 1, 0) 

= 01(t, 0, 0) =02(t, 1, 0) =02(t, 0, 0) = sin eft. Thus 

0(i, a*) = 0(t + log 2, a*), and 0(t, a) = 0(t + log 2, a). 

Consider f(u) = (u, 0), Y(u) = u for u in [o ,  l] .  

le have that f(0) = (0, 0), f(1) = (0, 1), Y(0) =0, Y(l) =1, 
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and 0(log 2, f(Y(u)) = 2 -^?[y1u)) = ^2 -^rlu)' = *u' " 

Hence the integral surface formed by solutions of (4) such 

that a = (a^, 0), O-a^-lisa periodic integral surface 

for (4). 



TYPjsi II 

ïfe first define the following notation. Let a be an 

m-vector and g(w) be a differentiable n-vector function. 

Then we denote the n x m matrix 1 by g* (w) 
2 0 w v. v j j 

and we let |w| = (ZZ w^ ̂  and |g' (w)J 
3=± 

n m e. 

i=i j=i wj V 

rie consider the system of differential equations 

(5) • : x = X(t, x) 

where x is an n-vector and the following conditions are satis 

fied : 

(i) there is some open set U2 and a constant tQ, which 

we again assume to be zero, such that the matrix 
o x 

exists and is continuous for t - 0 and x in Ug. 

(ii) X(t + T, x) = X(t, x) for t - 0 and x in Ug. 

(iii) there are constants 0 < A^ < Ag such that if 

0(t, r, u) is the solution of (5) such that 

0^(0, r, u) = | 0(0, r, u)I cos 

1 = 1, 2, •••, n, and if R is the set £ (r, u) { A-j_ ^ r - Ag, 

T~! cos2u, =1, 0 - u. - 27t? , then the vector ^ r> 

i=l 0 

and the matrix ^  ̂ >  r :  u .l exist and are continuous for 
o u 

t - 0 and (r, u) in R. 



(iv) A1 - 10(?, r, u) | - Ag for (r, u) in R. 

(v) we let 

6(r- u) = $ [ l ]  ul) '  

/sin -ui 

S(u) .= I . Sîn 

. . ^ • sin "n 
** . 

a(r, u) = |-j£l> 

b(p, u) = | - | i |  - I I' u" I (n - I)?, 

c(r, u) = u»' (a - 1)2, 

and. we assume that b - 0, that b2 - 4ac - 0, and that there 

is a number B - 0 such that the roots and P2 of 

aP2 - bp + c = 0 satisfy p^_ - 3 - P2 and |-|-^/ > 

for (r, u) in R. 

(vi) we let Pg be the set of all continuous functions 

f, periodic with period 2tc, such that A1 - f (u) - Ag, f ' (u) 

exists and is continuous, and ff'(u)/ - B for all u, and 

for each f in P^ we assume that the equations 6^(f(v), v) 

= cos u^, i = 1, 2, •••, n, define a continuously differen-

tiable vector function v(u) such that 

v(ux + 277, + 2n) = (v1(u) ± 27t, •••, vn(u) ± 2tt) 

for all u. 
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Theorem 2: There exists a periodic integral surface of 

(5) with period T whose cross section for any t is a closed' 

•h - 1 dimensional surface, that is, there is a continuous 
V 

* 

function f(u), periodic with period 2rr, and a continuous vec 

tor function v(u) such that v(u-j_ + 2n, •••, u^ + 2rc) 

= (vx(u) ± 27t, . . , vn(u) ± 2tt) , 

0(1, f(v(u)), v(u)) = 0(0, f(u), u), 

and A1 - f(u) - Ag for all u. 

Proof. We let P be the set of all continuous functions 

f which are periodic with period 2tt. With the usual defini­

tions of addition and scalar multiplication, and with II f II 

= m^x |f(u)| , P is a Banach space over the real number 

field. It follows that Pg is a subset of P. 

If f is in Pg, then 

( (v(^? » v(u) ) f ' (v(u) ) + v1 (u) = - S (u). 

It follows that 

0~t~u^ ~ ^~f"r ̂  3) |v'(u)l - IS (u) 1 = (n - l)2, 

and, therefore, 
1 

We define a function F from Pg into P by F(f) 

= I 0(1, f (v), v) | . Prom (5) (iv) A^ 6 F(f)(u) - Ag. 

Also 
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(f|1 luj S ( ' :j :\i; ) 

-4T)  «'  »  

so that 

|F(f)'(u)| i (|lifi-|3 + |v'(u)| 

< ' 4 f - i 3  + i 4 f - i  

mi - I-hi b 

^ ' ' »» i-Hn - I)2 - 3 +3 

aB2 - 1=3 + o tB,3 

I i ff  - It# lB  

since a32 - bB + c - 0. Thus F maps Pg into Pg. 

Since j-~^ | > j j B, the set of functions |jv' (u)|j 

for f in Pg is bounded above. Therefore, using arguments 

similar to those used in Theorem 1, we may extend the defini­

tion of F to Pg such that F maps Pg continuously into Pg. 

Since Pg is convex and P-. is compact, from the Schauder theo­

rem F has a fixed point in Pg, that is, there is a continuous 

periodic function f in P_. with period 2tc and a continuous 
D 

function v(u) such that v(u^ + 2tt, , u^ + 2tt) 

= (v1(u) ± 27T, • • • , vn(u) ± 27t), A1 - f(u) - Ag, and 

0(T, f(v(u)), v(u)) = 0(0, f(u), u) for all u. This completes 

the proof of Theorem 2. 

Ivhen n = 2, using the polar representation 0 ( t ,  r,  © )  

where 



16 

0 1(O, r, 9) = j 0(0, r, 9) | cos 9 = rcos 9 

0g(O, r, 9) = |  0(0, r, 9) j  sin 9 = rsin 9, 

if we let 

/ 0]_(T, r, 9) 0 2(T, r, 9) 

\(r, 9) = det I è0±(T, r, 0) Ï02(T, r, 9) |, 

\ ir dr 

/01(T, r, 0) 02(T, r, 0) 

%@(r, 9) = det j h0J(T, r, 9) b02(T, r, 9) 

X à9 )9 

a(r, 9) = |"fr(r, 9) | , 

b(r, 9) = | vf0(r, 9)| - | 9)1 j  | 0 ( T >  r >  qj| 2  

c(r, 9) = |  |  |  0(T, r, 9) | 2, 

and assume that b - 0, that b2 - 4ac - 0, and that there is a 

number B - 0 such that the roots and P2 of ap2 - bp + c 

= 0 satisfy P^ - B - P2 and__ | { > |tfr | B for (r, 0) in 

R, then it follows that the equations 

0]_(T, f (v), v) 

I 0 ( T ,  f W ,  v)|  = 005 9 

and 

0O(T, f(v), v) 
|2(T, f(v), v)| " Sin 9 

define, for each continuously differentiable periodic function 

f such that jf1(0)| - B, a continuously differentiable func­

tion v(9) such that v(9 + 27r) = v(9) + 2tt. Thus when n = 2 

assumption (5)(vi) is unnecessary. 
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EXAMPLE II 

x-, = + 2TTCOS 27rt - sin 2rct 
( 6 )  

kl z 

Xg = - x^ + 2ttcos 27Ct + sin 27ft 

and 

01(t, r, u^, u2) = rcos (u-j_ - t) + sin 2%t 

02(t, r, u1$ u2) = rcos (ug - t) + sin 2nt. 

Then T = 1 and |0(1, r, u-,, u2) j  = r so that 

ôi(p, Ui, u2) = cos (ux - 1), 

ô2(r, u1, u2) = cos (u2 - 1), 

a(r, ux, u2) = 0, 

b(r, u1, u2) = 1, 

c(r, ulf u2) = 0. 

Therefore B = 0, and if we consider the set Pj of all con­

stant functions f(u) = rQ where A1 - rQ - Ag and A^ and A2 

are any constants such that 0 < A^ < Ag, then v1(u1, Ug) 

= u^ + 1 and Vg(u^, Ug) = Ug + 1. 

Thus the integral surfaces formed by solutions 

0(t, rQ, u) of (6) are periodic with period 1 since 

0±(1, rQ, v(u1} u2) ) = 01(1, rQ, u-L + 1) 

= rQcos Uq_ 

— 0^(0> rQ, u^, Ug) 

for i = 1 and 1=2. 
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