Should You Use a Fungicidal Seed Treatment on Low-Quality Soybean Seed?

Ethan Stoetzer
Iowa State University, stoetzer@iastate.edu

Daren S. Mueller
Iowa State University, dsmuelle@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, and the Agriculture Commons

Recommended Citation
https://lib.dr.iastate.edu/cropnews/2517

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Should You Use a Fungicidal Seed Treatment on Low-Quality Soybean Seed?

Abstract
With this year's harvest of soybeans delayed beyond what is considered an ideal window of time, the opportunity for diseases to infect seed pods and in some instances, to the seed itself, was greatly increased. Across the state and the north central region, seed suppliers have reported that this year's crops of seed soybean are frequently testing positive for the Diaporthe fungus (Phomopsis seed decay), which is resulting in lower than normal germination rates of seed. Seed decay is characterized by cracked, shriveled seed with white chalk-colored mold on the seed surface.

Disciplines
Agricultural Science | Agriculture

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/cropnews/2517
With this year’s harvest of soybeans delayed beyond what is considered an ideal window of time, the opportunity for diseases to infect seed pods and in some instances, to the seed itself, was greatly increased. Across the state and the north central region, seed suppliers have reported that this year’s crops of seed soybean are frequently testing positive for the *Diaporthe* fungus (Phomopsis seed decay), which is resulting in lower than normal germination rates of seed. Seed decay is characterized by cracked, shriveled seed with white chalk-colored mold on the seed surface.
The large amounts of rain that occurred throughout August and September set up this year’s soybean crop to be at a disadvantage to the *Diaporthe* fungus, which typically infects soybean pods between the R5 (early seeding stage) and R6 (fully seeded pods) growth stages. This is important because only infections initiated in the pods can infect seeds and cause seed decay. As soybean plants reach the R7 growth stage (beginning to mature and dry out), pod colonization declines drastically. Seeds will not become infected once moisture is below 19 percent. However, during periods of wet and warm weather, seed infection and colonization can continue or resume if seed moisture increases to more than 19 percent.

Infected seed will have a lower probability of germination in the following season, when planted. If soil conditions are wetter and cooler than normal, this could drastically impact both the survival and stand count of plants. Diminished seed quality and reduced seed vigor, germination and emergence are all consequences of seed decay. Seed decay can also reduce seed test weight and oil content.

Many dealers will want to have their seed treated with a fungicide to increase the chances of germination and prevent seedling diseases. The Iowa State University Seed Lab is able to test the germination rate of seeds to verify if and what percentage of seeds are infected with the *Diaporthe* fungus. Depending on the germination rate and incidence of infection, the use of a seed treatment may be warranted.

Decaying seed as a result from *Diaporthe* infection.
According to past Iowa State University research, appropriate seed treatments can increase germination rates by 10-15 percent. Given the progress and development of fungicides, germination rates could be further improved, given the right mix. However, winter storage of seed can also increase germination rates, due to the fact that under dry storage conditions, the mycelium of the fungus will die, improving the seed quality. A suggested practice is to dry-store low germ-seeds over winter and re-test the seed in February.

When deciding on which fungicides will be the most effective, consult the Crop Protection Network’s guide on seed treatments, which includes a chart rating the efficacy of fungicides for several diseases (consult the Phomopsis section for combating Diaporthe).

It is recommended to not use seed lots with more than 20 percent Diaporthe infection because severely infected or moldy seed will fail to germinate even after being treated.

To be proactive with seed production next year, foliar fungicide applications to protect from seed infection between R3 (beginning pod) and R5 (beginning seed) may reduce seed infection especially in seed production fields. Although fungicide applications may reduce disease and improve seed quality, yield may not be impacted.

Links to this article are strongly encouraged, and this article may be republished without further permission if published as written and if credit is given to the author, Integrated Crop Management News, and Iowa State University Extension and Outreach. If this article is to be used in any other manner, permission from the author is required. This article was originally published on December 6, 2018. The information contained within may not be the most current and accurate depending on when it is accessed.

Category: Grain Handling and Storage Plant Diseases
Tags: Diaporthe phomopsis seed decay Soybean seed treatments

Authors:
Ethan Stoetzer Communications Specialist II

Daren Mueller Associate Professor

Dr. Daren Mueller is an associate professor and extension plant pathologist at Iowa State University. He is also the coordinator of the Iowa State University Integrated Pest Management (IPM) program. Dr. Mueller earned his bachelor's degree from the Univ...