Theoretical, Simulated, and Experimental Resolution Enhancement of a Transducer by Deconvolution of the Point Spread Function

Thumbnail Image
Date
1997
Authors
Downs, J.
Peterson, M.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

In developing a system for high-speed, high-resolution, large-area, ultrasonic scanning of steel rubber composite material, higher resolution was required of the imaging system than was possible given transducer constraints. Constraints on spot size were imposed by the operating conditions and design of the focusing hemispherical transducer (FHT) used. To enhance the resolution of the transducer, deconvolution of the acquired signal and the transducer’s point spread function (PSF) is performed. Specifically, for a transducer pair operated in through transmission conditions, the resolution of the receiver is enhanced by a deconvolution of the receiver’s PSF. This paper presents a theoretical review of this concept with results of numeric simulation and experiments showing resolution enhancement by deconvolution of an experimentally recovered PSF.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Wed Jan 01 00:00:00 UTC 1997