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GENERAL ABSTRACT

My thesis deals with Institutions and Financial markets. In chapter 2, of my thesis the role of

government in achieving technological progress in an insecure property rights environment is discussed.

In such a setting, it is shown that publicly-funded protection of private property rights may successfully

support the adoption of frontier technologies as Nash equilibrium which is not possible otherwise.In

chapter 3, I study an investment problem faced by a risk averse investor who has the option to invest in

a risk free asset (such as a bank account ) and a risky asset. The wealth can be transferred between the

two assets and there are no transaction costs.The objective is to find an optimal quitting time from the

stock market which maximizes the expected discounted utility from terminal wealth. I show the optimal

stopping time is of threshold type. Finally in Chapter 4, I discuss numerical results in the context of

chapter 3 and future research topics.
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CHAPTER 1. GENERAL INTRODUCTION

Insecurity of property rights and allocation of resources are two central issues in economics. My

thesis deals with Institutions and Financial markets. In chapter 2, of my thesis (co-authored with Subhra

Bhattacharya) the role of government in achieving technological progress in an insecure property rights

environment is discussed. In such a setting, it is shown that publicly-funded protection of private prop-

erty rights may successfully support the adoption of frontier technologies as Nash equilibrium which

is not possible otherwise. However, increased security of property rights may not be associated with

higher welfare for all adoptees. Indeed it is possible that the poor are made worse off, and may in a

political-economy sense, block a movement towards more secure property rights.

In chapter 3, we study an investment problem faced by a risk averse investor who has the option

to invest in a risk free asset (such as a bank account ) and a risky asset. The wealth can be transferred

between the two assets and there are no transaction costs. The proportion of wealth in the risky asset

is an a priori chosen deterministic function of wealth. The objective is to find an optimal quitting time

from the stock market which maximizes the expected discounted utility from terminal wealth. First,

we consider the situation where the wealth process is not subject to bankruptcy and obtain an optimal

quitting time. Second, we consider the more realistic scenario when an investor’s wealth is subject

to default. Here we model bankruptcy via a reduced form model in credit risk theory. We develop

necessary mathematical techniques to obtain an optimal selling time in both these circumstances. In

both cases, it turned out that the optimal selling time is of the threshold type. We show that higher default

intensity leads to a higher optimal exercise boundary and to a higher value function. Moreover, optimal

exercise boundary and the value function in the default case are both higher than their counterparts in

the no default model. We also show that there exist an optimal portfolio process.

Finally in Chapter 4, we discuss numerical results in the context of chapter 3 and future research

topics. We show numerically the impact of change in parameters on optimal threshold and value func-
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tion. We also verify and illustrate numerically the monotonicity of the optimal exercise boundary and

the value function with respect to the default intensity. The results of our numerical analysis provide fur-

ther insights into the linkages between optimal threshold boundary, value function and relevant policy

variables. In particular, we show that there is a positive monotone relationship between optimal thresh-

old boundary and volatility. This leads to future research questions. Can we show theoretically whether

optimal threshold increases with volatility. Does value function increases with volatility for a given set

of parameter choices. Also we intend to find a sequence of portfolio choices (trading strategies) and try

to find out numerically the optimal trading strategy. This would be of considerable importance from a

practitioner’s point of view as it would determine the optimal buy and hold strategy.
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CHAPTER 2. PUBLIC PROVISION OF SECURITY IN AN INSECURE PROPERTY

RIGHTS ENVIRONMENT

2.1 Introduction

The term property rights refers to an owner’s legal right to use a good/asset for consumption or

income generation and also, the right to transfer the good to another party. Property rights have received

pride of place in all analyses of the development (and dominance) of the market system in modern

societies. Over two centuries ago, Adam Smith and other thinkers expounded on the idea that property

rights encourage their holders to develop the property, generate wealth, and efficiently allocate resources

via the market mechanism.1 They noted that the anticipation of profit from “improving one’s stock of

capital” rests on clear delineation and enforcement of private property rights, which, in turn leads to

more wealth and improved standards of living for all.2

While the above prescription for material progress and prosperity has been around for over two

hundred years, not every country has succeeded in using it to achieve sustained growth and development.

Indeed, in most less-developed and transition economies, institutions aimed at defining and preserving

property rights are woefully fragile, and as such, property rights are terribly insecure. This insecurity

comes at a hefty price – heightened conflict over property and the accompanying dissipation of scarce

resources in the creation of effective property rights.3

1A practical application of this principle can be found in the introduction of the Permanent Settlement System (around
1800) in colonial India. Under this system, the colonizers – the British under Lord Cornwallis, one of the leading British
generals in the American War of Independence – granted proprietarial rights to former landholders (would-be zamindars) to
the land they occupied. This method of incentivisation of zamindars was intended to encourage improvements of the land,
such as drainage, irrigation and the construction of roads and bridges. The land tax was also fixed in perpetuity. Cornwallis
successfully argued that “when the demand of government is fixed, an opportunity is afforded to the landholder of increasing
his profits, by the improvement of his lands”.

2Besley (1995) investigates the interconnection between investment and land rights using data from Ghana, when the
country was in a state of transition between traditional and modern land rights. His findings for Wassa, a cocoa growing
region where most of the land is owned, was supportive of the idea that “better land rights facilitate investment”.

3In recent times, economists have popularized this line of thinking. De Soto (2000) has brought the argument into a broader
public domain. Economic historians such as North (1981), Jones (1986), and Mokyr (2002) have cited evidence to support
this view. There is a growing literature that focuses on the links between the security of property and economic behavior at
the institutional level in a variety of specific institutional settings. For example Besley (1995), Goldstein and Udry (2008)
study the impact of insecure land rights on investment and productivity in rural Ghana. In a related study Field (2007) finds
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Our paper studies the consequences of insecure property rights on the mechanics of technological

innovation. The work is motivated by a certain “social resistance” to technological change that charac-

terizes many poor economies. For example, Platteau (2000, p.200) documents how fishermen in Congo

refused to use a new net technology which was offered to them at no cost. More generally, it has been

documented that economic agents in impoverished societies often reject superior technologies – tech-

nologies that are on the frontier – even when the cost of adoption appear negligible. In explaining this

apparent paradox, Parente and Prescott (1999) make the convincing case that technological innovation

is not a Pareto-superior outcome. There are economic winners and losers, and the latter have an in-

centive to block technology adoption by others because it necessarily influences the expost distribution

of wealth. This view finds prominence in Olson (1982), Mokyr (1990), Krusell et al. (1996), among

others.

Linked to this, is the view that post-production conflict is inevitable if the property rights are not

perfectly enforced. Specifically, output is contestable in a society with imperfect property rights and

conflict over the output cannot be settled without expending scarce resources in “appropriation” (grab-

bing the production of other agents or defending it from others). In the last two decades, a growing

body of research has tried to explain the consequences of such conflict and appropriation in the pro-

cess of development. Almost all of this work models conflict as a contest in which a non-cooperative

game is played between agents to settle the conflict. A key ingredient of conflict is the use of weapons

or defensive means, a composite form of which is termed “appropriative investment”. Returns of ap-

propriative investments that accrue to an agent is represented by “technologies of conflict”or “context

success functions”.

Continuing in this tradition, Gonzalez (2005) argues that the aforementioned paradoxical choice

of inferior technologies can be understood as “a strategic response to the anticipation of conflict” over

the expost distribution of newly-created wealth especially when property rights over it are insecure.

Gonzalez (2005) has in mind a setting in which two agents contemplate adoption of a superior technol-

ogy in an insecure property-rights environment. While each recognize that such adoption would lead

to an increase in future output, each is nevertheless afraid that this newly-created wealth generates an

that issuing of “property titles” in urban Peru has led to a significant increase in labor supply. Johnson et al. (2002) studies
the impact of insecure property rights on the investment decisions taken by manufacturing firms in post-communist countries
when bank loans were available. A common thread running through these studies is secure property rights facilitates the
creation of wealth.
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incentive for the rival to engage in a costly game of predation. The expected predatory response discour-

ages adoption of the superior technology in the first place, and thus “... poverty becomes the price of

peace.” (Bates 2001).4 The upshot of the Gonzalez (2005) analysis is that adoption of the best-available

technology is never sustainable as a Nash equilibrium.

If people are hesitant to adopt superior technologies because of a fear of subsequent conflict, would

some sort of external intervention be beneficial? Would it help, if a third party intervenes in this conflict

by providing some manner of public protection of rights on private property? To implement this, we in-

troduce a “government” in the framework of Gonzalez (2005). We think of the government as imposing

a non-distortionary tax on the initial endowments of each agent at the start of their life. The tax proceeds

are utilized to finance the hiring of a “guard”. The guard is simply a public security service whose sole

aim is to reduce the effectiveness of each agents’ predatory activities, without directly interfering in the

expost conflict. The posting of a guard is shown to influence agents’ decisions on allocation of resources

to productive and predatory activities. In sharp contrast to the main result in Gonzalez (2005), we prove

that adoption of the frontier technology by each agent can now be supported as a Nash equilibrium.

We go on to extend the analysis by allowing the government to directly influence the nature of the

expost conflict. In other words, we allow the government to use its tax-financed resources to alter the

existing regime of property rights. Presumably, a government can achieve increased security of property

rights by funding the police, the judiciary, and the corrections systems better. We find that adoption of

the best-available technology by each agent continues to emerge as a Nash equilibrium. Within this

equilibrium, we find that improved property rights, though growth enhancing, is not always socially

optimal from an aggregate-welfare point of view. 5

The paper is organized in the following manner. Section 2.2 describes the benchmark model due to

Gonzalez (2005). In section 2.3, we introduce the public security of private property and analyze the

equilibrium outcomes. In section 2.4, we endogenize the property rights regime. Section 4 concludes

the paper.

4Hall and Jones (1999) provide evidence that poor enforcement of property rights can be a serious impediment to techno-
logical progress.

5In a somewhat-related study, Gonzalez (2007) analyzes the growth-welfare trade-off in an exogenously-specified property
rights environment. He showed a symmetric equilibrium allocation associated with more-secure property rights and faster
growth can be Pareto dominated by one associated with poorer property rights and slower growth.
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2.2 The model

2.2.1 Physical environment

We consider a two-period model of imperfect security of private property and its impact on technol-

ogy choice. The model economy is inhabited by two agents, named R and P (“rich” and “poor”) – these

agents can be thought of either as individuals or collectives (such as tribes, nation states, and so on).

There is a single good and the aggregate endowment of this good in period 1 is a fixed amount Y. Agent

R is endowed with a share p ∈ (1/2,1] of Y ; correspondingly, Agent P is endowed with the remaining

share, 1− p. Rights to this property in period 1 are perfectly secure for each agent. However, property

rights in period 2 are not secure, and all the action in this model derives from this insecurity.

Each agent uses a portion of his property in period 1 and undertakes some productive investment;

the latter, via a production technology, produces consumables in period 2. At the start of period 1, each

agent costlessly chooses a technology from a set of available technologies, [AL, AH ]. A technology is to

be interpreted as a blueprint that transforms investment into output in the following period. We assume

that each agent has access to the same AK production technology and that productive investments of

the agents are decided independently of each other. To be specific, productive investment Ki by agent i,

i ∈ {R,P} , at period 1 produces output AiKi at period 2 where Ai ∈ [AL,AH ] is the technology choice of

agent i.

In a world with secure property rights, the resources available to agent R in period 2 would be

ARKR, and that to agent P would be APKP. Not so here. Here, the total amount of consumables (“com-

mon property”) available at the start of period 2 is Y ′ = (ARKR +APKP) and property rights over Y ′ is

insecure, that is, it is subject to pillage and appropriation. This insecurity prompts agents to invest in

appropriative investments that help convert their claims on production into effective property rights on

the common output. Let Xi denote agent i’s investment in appropriation, and let p′ denote agent R’s

share of Y ′; henceforth p′ is labeled the “appropriation function”. Then,

ṕ =
(XR)

m

(XR)
m +(XP)

m ∈ [0,1] ; m > 0, (2.1)

where (2.1) is a share function – taken as a primitive – capturing the technology of conflict over claims

on future output. Note p′ is increasing in an agent’s own appropriative investment and decreasing in

that of his rival’s. This is the workhorse functional form for the technology of conflict. For future
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reference, note that ṕ is symmetric and homogeneous of degree zero in XR and XP. This last property

is analytically convenient and largely accounts for the widespread use of this functional form in the

conflict literature. (For surveys of conflict models and contests see Garfinkel and Skaperdas (2007) and

Konard (2009)). As an aside, note that resources allocated to productive investment in period one are

not subject to appropriation, only the final output in period two is. Finally, note that if property rights

were perfectly secure, agent R’s share of Y ′ would be given by ARKR/Y ′; therefore, as long as ṕ in

(2.1) deviates from this ratio, property rights are insecure. For future use, note that ṕ in (2.1) can never

approach ARKR/Y ′. This last observation will make a major appearance in the penultimate section of

this paper.

It is instructive to outline a time-line of events. At the start of period 1, each agent chooses a

technology from the aforementioned set of available technologies. Once that is done, and cognizant of

his own technology choice but not that of his rival’s, an agent makes consumption, appropriation, and

productive investment decisions, financing everything from his endowment. Production activity is then

initiated. Agents consume and undertake the planned appropriation investments. When period 2 arrives,

the common production, Y ′, is realized and agents receive their share which they consume; agent R gets

a share p′ and agent P, a share 1− p′. Note that p′ is determined by past appropriation investments of

both parties, as is described by (2.1).

The resource constraints in period 1 can be written as

pY =C1R +XR +KR, for i = R (2.2)

(1− p)Y =C1P +XP +KP, for i = P (2.3)

where C1i, i ∈ {P,R} is consumption by agent i in period 1. The second period constraints are

C2R = p′(ARKR +APKP), for i = R (2.4)

C2P = (1− p′)(ARKR +APKP), for i = P. (2.5)

where C2i, i ∈ {P,R} is consumption by agent i in period 2.

The description of the physical environment is complete once preferences are specified. We assume

that agent i has preferences described by the separable utility function, Ui ≡ ln C1i +β lnC2i, β > 0.
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2.2.2 Equilibrium

The aforediscussed time-line of events suggests the following characterization of the game. Period

one is characterized by two stages, where in each stage, agents act non-cooperatively to maximize their

payoffs without any information on their rivals’ strategies. Therefore, we are faced with a two-stage

game, where at each stage, agents play a simultaneous-move game, and the outcome of the first stage is

not revealed before the actions of the second stage are taken. To find a reasonable solution, we look for

the set of subgame-perfect equilibria. In other words, for any choice of technology at stage one, we first

find the optimal consumption and investment strategies for each agent which are mutual best responses

to each other. These optimal responses are solely a function of the technology choices made in stage

one. Then, we incorporate these optimal decisions in the agents’ utility maximization problem and find

the set of technologies in stage one that produce non-cooperative optima for each agent.

Consider the problem faced by agent R at stage two of period 1. At this point in the game, agent R

knows AR; he takes AP, XP and KP as given, and solves the following problem:

max UR ≡ lnC1R +β lnC2R

subject to

pY =C1R +KR +XR,

p′Y ′ =C2R,

p′ =
(XR)

m

(XR)m +(XP)m ,

and Y ′ = ARKR +APKP.

The interior optimality conditions for agent R are given by the following equations:

1
C1R

= β
(XR)

m

(XR)m +(XP)m AR
1

C2R
, (2.6)

AR

ARKR +APKP
=

(XP)
m

(XR)m +(XP)m
m
XR

. (2.7)

Equation (2.6) is a standard intertemporal Euler equation equating the marginal rate of substitution

(MRS) of consumption between the two time periods with the marginal rate of transformation (MRT). In

a standard model with perfect property rights, the MRT for agent R would simply be AR; here, because
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of insecure property rights, it is p′AR. The second condition, (2.7) reflects the equality of marginal

returns across different the two types of investment activities. An unit of resource can be invested either

in productive or in appropriative activities. In equilibrium, these avenues should generate the same

return.

Analogously, the reaction functions for agent P are given by

1
C1P

= β
(XP)

m

(XR)m +(XP)m AP
1

C2P
, (2.8)

AP

ARKR +APKP
=

(XR)
m

(XR)m +(XP)m
m
XP

. (2.9)

We can use the symmetry of the reaction functions for the two agents to write (AR/AP) = (XP/XR)
m+1

and use in (2.1) to get

p′ =
1

1+
(

AR
AP

) m
m+1

. (2.10)

Notice how the appropriation function in (2.1) is transformed to depend solely on the ratio of the tech-

nology choices of both agents.

The above formulation of p′ highlights the possibility of wealth-ranking reversal in this setup. To

see this, suppose the technologies adopted satisfy AR > AP (i.e., suppose the initially-wealthier agent

adopts the superior technology). Then, (2.10) makes clear that p′ < 1/2 is possible even when p > 1/2

was true. In other words, a wealth-ranking reversal is possible. The fact that there is a scope for

redistribution of wealth, from the wealthier and more productive agent to the poorer one, should not

come as a surprise. After all, the agent choosing the superior technology has a higher opportunity cost

of investing in appropriative activities, which in turn give him a comparative advantage (relative to the

other agent) in production. The optimal allocation of saving between different investment activities (or,

the equalization of marginal return across productive and appropriative activities) implies that the agent

invests more in production and cut back on appropriative investments, and thus end up with less share

of future output.

Using (2.6)-(2.10), it is possible to derive the optimal allocation of resources to consumption and

appropriation in terms of the stage-one technology choices of both parties. The optimal choices for

agent R are given by

C1R =
AP

AR
C1P =

[
(p+(1− p)AP

AR
)Y
]

β (1+m)+2
, (2.11)
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XR =

 1(
AP
AR

) m
m+1

+1

 mβ

[
(p+(1− p)AP

AR
)Y
]

2+β (1+m)
, (2.12)

and

C2R =
β

1+
(

AR
AP

) m
m+1

.
[(pAR +(1− p)AP)Y ]

2+β (1+m)
. (2.13)

Analogous expressions for agent P are given by

C1P =
AR

AP
C1R =

AR

AP

[
(p+(1− p)AP

AR
)Y
]

β (1+m)+2
, (2.14)

XP = XR

(
AR

AP

) 1
1+m

=

(
AR

AP

) 1
1+m

 1(
AP
AR

) m
m+1

+1

 mβ

[
(p+(1− p)AP

AR
)Y
]

2+β (1+m)
, (2.15)

and

C2P =

(
AR

AP

) m
1+m

C2R. (2.16)

If the income distribution is highly unequal, we may end up at a corner solution where the poorer

agent does not contribute anything to productive investment and invests only in appropriation. Similarly,

the richer agent may have absolute advantage in appropriation. Implicitly then, we assume that the initial

distribution of income is not very skewed i.e., p is not very close to 1.

From the expressions of (2.11), (2.13), (2.14), (2.16), it is evident that if the initially-wealthier agent

adopts a superior technology, he enjoys less consumption in both periods than the poorer agent. Also

note that the equilibrium share of output is less for the relatively more-productive agent. These results

are invariant to whether the more-productive agent is initially richer or not. This is because equilibrium

allocation of resources are determined by comparative advantage. For example, when AR > AP, agent

R has a comparative advantage in production and poor in appropriation. From standard trade theory, it

follows that agent P should invest relatively more in appropriation and thus enjoy higher second-period

consumption i.e. C2P > C2R. On the other hand, agent P is reluctant to sacrifice current consumption to

increase the size of the pie as he is relatively less productive, and therefore, he consumes more in the

first period i.e., C1P >C1R. Similar arguments hold when AR < AP.

It remains to incorporate these optimal decisions, (2.11)-(2.16), in the agents’ utility maximization

problem and compute the technology choices (AR,Ap) in stage one that produce non-cooperative optima

for each agent. In other words, we compute UR as a function of AR (given Ap) and Up as a function of Ap
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(given AR). These represent the mutual best-responses. A pure strategy Nash equilibrium is a fixed point

of these best-response functions that is consistent with positive levels of productive and appropriative

investments, and consumption in each period, by both agents.

Proposition 2.1. (Gonzalez, 2005) If p is sufficiently close to half and AH

AL → 1, then a pure-strategy

Nash equilibrium exists.
(
AR = AH , AP = AH

)
is not a pure-strategy Nash equilibrium, i.e., the equi-

librium technology profile cannot involve each agent adopting the best available technology.

Why might agents not wish to adopt the best available technology even when it is costlessly avail-

able? In this environment of insecure property rights, the answer lies in the anticipation of future

conflict. While adoption of a better technology by an agent raises tomorrow’s common output, the very

increase in tomorrow’s pie elicits a harmful response from his rival (in the form of an increase in appro-

priative investment), and this dissuades the agent from adopting superior technologies in the first place.

More specifically, the optimality conditions imply that agents allocate resources by equating marginal

returns from the two types of investment activities. It follows that adoption of a superior technology

raises the opportunity cost of appropriative investments for the adopter, inducing him to shift resources

from appropriative to productive activities. Ceteris paribus, this raises future common output. On the

flip side, the adoption of a superior technology lures his opponents to specialize in appropriation – ap-

propriative investments act as strategic substitutes – thereby increasing the “expost tax” on the returns

to adoption. The upshot is that choosing to adopt a superior technology confers a strategic disadvantage

in the subsequent distribution of wealth.

The starting point of our analysis is this striking result in Gonzalez (2005): people are hesitant

to adopt superior technologies because of the fear of subsequent heightened conflict. This presents a

prima facie case for some sort of external intervention. Would it help, if a third party, say, a government,

intervenes in this conflict by providing some manner of public protection of rights on private property?

In the next section, we take up a slice of this issue.
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2.3 Guard posting: introducing public security

2.3.1 Modified environment

To implement the idea discussed above, we introduce a third party, called “government” in the

framework of the benchmark model. We think of the government as imposing a non-distortionary tax

on the initial endowments of each agent at the start of their life. The tax proceeds are utilized to finance

the hiring of a “guard”. In terms of the model economy, the guard is simply a public security service

whose sole aim is to reduce the effectiveness of each agents’ appropriative investments by a constant

amount. Since agents’ share of future output depends on their effective appropriative investments, the

presence of a guard, in effect, creates a threshold below which all appropriative investments are rendered

ineffective. This influences agents’ decisions on allocation of resources to various activities, which in

turn, affects their marginal returns. The question at hand is: can the presence of a guard induce a

reallocation of resources in such a way that adoption of the best-available technology by each agent

evolves as a Nash equilibrium? 6

As discussed above, assume each agent is required by law to pay as a tax, a fixed proportion (τ)

of his inherited wealth. Since inherited wealth is exogenously-specified – pY for agent R and (1− p)Y

for agent P – the tax is non-distortionary. We denote the total tax revenue by G, where G = τY. The

government uses the tax proceeds to post a guard whose only job is to equally reduce the effective

amounts of the appropriative investments of each agent. Specifically, if Xe
i is the effective appropriation

investment for agent i, then Xe
i ≡ Xi−G where Xi is the corresponding investment made by agent i in

the benchmark model. The technology of conflict, the analog of (2.1), is redefined in the following

manner:

p′G =
(Xe

R)
m

(Xe
R)

m +(Xe
P)

m . (2.17)

The new formulation, which looks a lot like (2.1), maintains the properties of symmetry and homo-

geneity of degree zero in effective appropriative investments; this keeps the model analytically tractable.

This formulation requires that each agent invests at least an amount G – the threshold – to get a posi-

6By posting a guard, the government can act as a more-effective deterrent against one party capturing more of the final
output than is due to that party. A question that legitimately arises at this juncture is, why does the government, via the posting
of a guard, get involved in this conflict in the first place? Presumably, the government cares about improving property rights.
A fuller discussion of this issue is presented in Section 2.4 below.
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tive return from appropriative activities. Since τ can be quite small, the threshold – the restriction that

Xe
i > 0 has to hold – may not be too onerous for the agents. What is important to note is that dimin-

ishing returns in appropriative investments imply that the marginal effect of an extra unit invested in

appropriation (over and above the threshold) is much lower than in the benchmark model; additionally,

the marginal return on appropriative investments is lower than the marginal utility from consumption or

the return to productive activities.

It is evident that compared to the benchmark model, the qualitative changes in this section are the

imposition of a tax in the first period and the modification of the share function/technology of conflict.

The sequence of activities and the information available to each agent at each point of time are exactly

the same as that in the baseline model. Therefore, we proceed exactly as before to obtain the set of

subgame perfect Nash equilibria (SPNE).

2.3.2 Equilibrium

Analogous to (2.6)-(2.7), the interior optimality conditions for agent R are given by:

1
C1R

=
β p′GAR

C2R
, (2.18)

and
m(XP−G)m

(XR−G){(XR−G)m +(XP−G)m}
=

AR

Y ′
. (2.19)

The first condition, (2.18), is the familiar intertemporal Euler equation that equates the marginal utility

of an unit of consumption across periods. For agent R, an unit of consumption forgone today and

invested in the productive technology produces AR units of future output. Since property rights are

insecure, agent R gets to consume only his effective share, p′GAR. The second optimality condition

requires that the marginal returns from both types of investment activities – productive and appropriative

– be equated in equilibrium.

It is easy to check that (2.10) continues to hold in this reformulated environment, i.e.,

p′G =
1

1+
(

AR
AP

) m
m+1

(2.20)

holds. Analogous to (2.11)-(2.16), we now have

C1R =
Y
[(

p+(1− p)AP
AR

)
(1− τ)−

(
1+ AP

AR

)
τ

]
β (1+m)+2

, (2.21)
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C2R =
β

1+
(

AR
AP

) m
m+1

.
Y [(pAR +(1− p)AP)(1− τ)− (AR +AP)τ]

2+β (1+m)
, (2.22)

C1P =
Y
[(

AR
AP

p+(1− p)
)
(1− τ)−

(
1+ AR

AP

)
τ

]
β (1+m)+2

, (2.23)

and

C2P =
β

(
AR
AP

) m
m+1

1+
(

AR
AP

) m
m+1

.
Y [(AR p+(1− p)AP)(1− τ)− (AR +AP)τ]

2+β (1+m)
. (2.24)

Additionally,

XR =

 1(
AP
AR

) m
m+1

+1

 mβ∆

2+β (1+m)
+ τY, (2.25)

and

XP =

 1(
AP
AR

) m
m+1

+1

 mβ∆

2+β (1+m)

(
AR

AP

) 1
m+1

+ τY (2.26)

hold where ∆ ≡
[(

p+(1− p)AP
AR

)
(1− τ)Y −

(
1+ AP

AR

)
τY
]
. It is clear from (2.25)-(2.26) that Xe

R and

Xe
P are positive.

What are the main margins on which all the action in this model rests? First, at the margin, a higher

tax rate reduces disposable income generating a first order negative effect on utility. However, there

may arise a countervailing positive effect since the proceeds from the tax are used to employ a guard,

whose actions may help secure property rights, and thereby encourage better technology adoption. How

might this happen? Recall that the presence of a guard creates a threshold below which all appropria-

tive investments are rendered ineffective. As a result, the marginal effect of an extra unit invested in

appropriation (over and above the threshold) is considerably lowered, raising the corresponding return

from productive activities. Both agents now have an incentive to respond to these favorable returns by

adopting better technologies. The whole thing turns on the following tension: does the presence of

a guard reduce the anticipation of future conflict by so much that the benefit to agents from adopting

superior technologies outweighs their contribution to the financing of the guard in the first place? The

next proposition argues that for a range of tax rates, the answer may be in the affirmative.

Proposition 2.2. (Guard-posting) If p→ 1/2 and AH

AL → 1, a pure strategy equilibrium with positive

investment in productive activities exists for τ ≤ τinv. Moreover for τ ∈ [τH ,τinv],
(
AR = AH , AP = AH

)
can be achieved as a Nash equilibrium technology profile.
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The definitions of τinv and τH – all in terms of underlying parameters – can be found in the

appendix. Proposition 2.2 is the central analytical result of our paper. It argues that under the same

sorts of parametric restrictions imposed in Proposition 2.1, a publicly-financed guard can significantly

improve the equilibrium technology choice. In particular, [AH ,AH ] can now be supported as a Nash

equilibrium, something that was not possible in Proposition 2.1 or in Gonzalez (2005). 7

2.3.2.1 Welfare Analysis

As discussed earlier, there is a tension between utility losses from lower disposable income when

young and possible welfare gains from superior technology adoption in the presence of a guard. On net,

can we say anything about overall welfare levels with and without public provision of security? To that

end, we posit a Benthamite social welfare function:

SWF ≡UR +UP. (2.27)

Since there are multiple equilibria possible both in the benchmark and in the guard-posting models,

indeed the set of equilibria are different, the choice of which equilibria to compare becomes critical.

Here we choose to compare social welfare across two symmetric equilibria,
(
AL,AL

)
in the benchmark

model and
(
AH ,AH

)
in the guard-posting model.

Corollary 2.1. If (AH ,AH) and (AL,AL) are equilibrium technology profiles in the guard-posting model

and the benchmark model respectively, then aggregate social welfare is higher in the former equilibrium

if the following parameter condition holds:

AH

AL ≥
(

1
(1−3τ)2(β+1)

) 1
2β

.

Before we close this section, it would be useful to summarize our findings thus far. Gonzalez (2005)

argued that a primary reason for technological backwardness is insecurity of property rights. If agents

anticipate increased conflict from adoption of a superior technology, they may choose not to. The

best-available, and yet free, technologies may never be adopted, with serious consequences for growth

and welfare. We introduced the notion of public security of private property rights. In our setup, a

7A few words about Proposition 2.2 are in order. When the tax rate lies within the interval [τH ,τinv], each agent’s best
response is to choose either the best or the worst available technology. That is, any equilibrium technology profile must be
situated in the boundaries of the set of available technologies. If the tax rate lies outside the interval [τH ,τinv] then emergence
of an interior equilibrium in technology choice is possible. In the baseline model, this was never a possibility.
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guard is posted by the government with the sole aim of reducing the effectiveness of the appropriative

investments of each agent. We find that the best-available technology can now be supported as a Nash

equilibrium. This new equilibrium may also exhibit superior welfare.

In the environment studied thus far, the extent of involvement of the government in the post-

production conflict was limited to posting a guard. All the guard did was thwart the appropriative

activities of each agent, much like a policeman would. As an intuition-building exercise, this thought

experiment was useful. What happens if the government takes on a more direct, proactive role in the

post-production conflict, and is not restricted to merely impeding the appropriative activities of agents?

2.4 Improving property rights

In this section, we allow the government to utilize the tax proceeds to directly influence the tech-

nology of conflict with a view to improving the security of private property rights. This is achieved via

the following reformulation of the conflict technology:

p′e =
xmθ

R (ARKR)
1−θ

xmθ
P (APKP)1−θ + xmθ

R (ARKR)1−θ
, θ ∈ [0,1]. (2.28)

In this formulation, p′e denotes the share of second-period output that accrues to agent R. As is clear

from (2.28), p′e reduces to p′ (see (2.1) in the benchmark model) when θ = 1 and to ARKR/Y ′ when

θ = 0. In other words, the technology of conflict in (2.28) straddles two extremes, the insecure property-

rights regime from the benchmark model and an environment of perfect property rights (where agent R

receives his legitimate share, ARKR/Y ′).

We posit that θ is a choice variable for the government albeit not a costless choice. Real resources

are diverted to enhance property rights. Specifically, the government can influence θ directly by spend-

ing G where θ ≡ Φ(G), and G = τY. Furthermore, Φ(0) = 1, Φ(G∗) = 0, and Ω′(G) < 0. If the

government wishes to improve property rights, it raises τ (and hence, G) and uses the revenue to reduce

θ .8 In the limit, as G approaches a critical level, G∗, a perfect property rights regime is established. In

a laissez-faire regime, the government takes no part in post-production conflict and sets G = 0. This

establishes the polar opposite regime of insecure property rights. Henceforth, θ measures the exact

level of insecurity of agents’ claims to private property.

8This action could be interpreted as improving funding for the police and the judiciary at large.
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The rest of the environment is exactly as it is in the benchmark model. Analogous to (2.6)-(2.7), the

interior optimality conditions for agents R and P are given by

1
(1− τ)pY −XR−KR

=
βAR

ARKR +APKP
+

(1−θ)Xmθ
P (APKP)

1−θ

[Xmθ
P (APKP)1−θ +Xmθ

R (ARKR)1−θ ]KR
, (2.29)

1
(1− τ)pY −XR−KR

=
mθXmθ

P (APKP)
1−θ

[Xmθ
P (APKP)1−θ +Xmθ

R (ARKR)1−θ ]XR
, (2.30)

and

1
(1− p)(1− τ)Y −XP−KP

=
βAP

ARKR +APKP
+

(1−θ)Xmθ
R (ARKR)

1−θ

[Xmθ
P (APKP)1−θ +Xmθ

R (ARKR)1−θ ]KP
, (2.31)

1
(1− p)(1− τ)Y −XP−KP

=
mθXmθ

R (ARKR)
1−θ

[Xmθ
P (APKP)1−θ +Xmθ

R (ARKR)1−θ ]XP
, (2.32)

respectively. The equilibrium technology profile involves solving the above system of equations –

(2.29)-(2.32) – for KR,KP,XR and XP, where p∈ (1/2,1], β ∈ [0,1], τ ∈ [0,1], m∈ [0,1], θ ≡Φ(G)∈

[0,1], and Y > 0.The nature of non-linearity in the system of equations severely restricts the scope for

analytical solutions. We resort to a numerical analysis.

2.4.1 Numerical Analysis

The model economy, and hence, the system eqs. (2.29)-(2.32), has undergone a substantial change

over the model described in Section 2.2. There, as Proposition 2.1 had established, all Nash equilibria

lay at the boundary of the available technologies set, i.e., either AP or AR could take the boundary values

AH or AL but not an interior value. No such guarantees are available to us in the system, (2.29)-(2.32).

Multiple, possibly interior, equilibria are clearly possible here. Since we are ultimately interested in

studying changes in θ , matters could get tricky especially if a change in θ takes us from one equilib-

rium to another. To keep the analysis in this section comparable with Sections 2.2 and 2.3 below, we

will restrict the analysis to a single Nash equilibrium,
(
AR = AH , AP = AH

)
, even though many others,

possibly even a continuum, are possible. Within the confines of this single equilibrium, the one corre-

sponding to both parties choosing the frontier technologies, we will ask, how do various variables of

interest vary as θ changes? Specifically, as θ falls (i.e., property rights become more secure), how does

growth, inequality, and welfare respond? The question uppermost on our mind is, is government-funded

increased security of property rights a good idea always?
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We develop the following numerical scheme in order to simulate the system, eqs. (2.29)-(2.32), so

as to analyze the effect of property rights improvement (through effective government intervention) on

relevant choice variables. Since the model economy is quite stylized, the numerical exercise below is

not to be understood as a calibration exercise, rather the exploration of a particular equilibrium using

numerical methods.

We begin by specifying the values of the parameters, the range of tax rates, and the set from which

the technology is chosen: τ ∈ (0,20%), Y = 100, β = 0.8, Ai ∈ [AL = 18.9,AH = 20] , m = 0.5, p =

0.6, Φ(G) ≡ 1− (G)α

Kα with K =, and α = 0.5. To stay in line with Propositions 2.1-2.2, we choose(
AH/AL

)
≈ 1 and p close to 1/2. Clearly, Y and β are scale parameters and are easily varied without any

change in the qualitative properties. The tax rate is kept in a reasonable range of under 20% (indeed,

much of the action below happens for tax rates below 10%). α represents the elasticity of effective

property rights with respect to government spending.

In steps 1 and 2 below, we summarize the algorithm that we use to identify the set of tax rates that

supports the choice of best available technologies as a Nash equilibrium for the poor agent. A similar

scheme is developed for the rich agent. Finally, in step 3, we find the interval of tax rates that supports

the choice of frontier/best-available technologies for both agents as a Nash equilibrium.

Step 1 : We start by making a grid for τ (the tax rate ) and AP (the technology choice of the poor agent).

Given an initial choice of τ at the first grid point, we perform the following analysis: We fix AR

at its highest possible level, AR = AH = 20, and choose the first grid point of AP = AL = 18.9.

For the given choice of parameters, we simultaneously solve the above-discussed system of non-

linear equations (using the Matlab in-built function “simulnonlinear”) to get the optimal values of

C1R, C1P, XP and XR. Using these, we compute KR, KP, C2R, and C2P. Next, we evaluate indirect

utility of agent P, UP ≡ lnC1P +β lnC2P, which depends on the initial choice of τ , AH = 20 and

AP = 18.9. Keeping the initial choice of τ unchanged, we change AP along the grid, holding AR

fixed at AH to see how UP changes with AP. This process is iterated twenty times. For the initial

choice of τ , the indirect utility curve is plotted as a function of AP for every iteration.

Step 2 : To check whether agent P has an incentive to choose the best possible technology when agent

R has done so, we compute ∂UP/∂AP at AP = AR = AH for this choice of τ . If the slope is

positive, we assert that this tax rate supports the best available technology adoption for the poor
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and consequently, record the value of τ . A negative slope implies an incentive on the part of

agent P to deviate from the best technology choice given agent R has chosen it. In that case, we

reject that value of τ and proceed to repeat the same exercise for the next point on the grid. This

process is repeated for the entire grid of τ and record those τ for which the aforementioned slope

is positive. Denote this set by S1 = [τ1,τ2].

Step 3: An analogous exercise is performed for agent R and a set S2 = [τ3,τ4] is found. We denote

S = S1∩S2 as the range of tax rates that supports {AH ,AH} as the Nash equilibrium. In our case,

S = [0.0020,0.1001].

Investment Appropriation.

Current Consumption. Future Consumption.
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Utility of Poor. Utility of Rich.

Social Welfare. Output Growth.

2.4.2 Discussion

Here, we study how an improvement in property rights shapes optimal resource allocations when

the best-available technology has already been adopted. Intuition suggests that within this interval,

enhanced security of property rights should induce larger productive investments and thereby foster

economic growth. Would this benefit come at the cost of lower welfare? Are more secure property

rights always desirable? If the government could ensure perfectly secure property rights, would it?

The figures above summarize the movements in resource allocation and other important economic

indicators with improvements in property rights. When 1−θ increases, property rights improve, pro-

ductive investment for both the agents go up and appropriative activities fall. It is evident from the
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figures that agents sacrifice first period consumption along with appropriative investment and allocate

the resources towards productive investment in an anticipation of higher second-period consumption.

However, the rates at which these changes occur varies significantly across the two agents. Growth of

output shows a steady positive relationship with improvement in property rights, which can be logically

concluded from the effect on capital accumulation. This also substantiates the empirical findings as

documented in International Property Rights Index (IPRI) , 2007, report.9 However, effect on social

welfare is non-monotone. This raises the following question does improvement in property rights al-

ways beneficial from a socio economic point of view? Also the fall in the indirect utilty of the poor

makes us ponder that poor has an incentive to block a movement towards more secure property rights.

The economic rationale behind the movements in the resource allocation is intuitive and foresee-

able from the nature of the problem and the framework considered. The central result here is the

growth-welfare trade-off. An improvement in property rights and institutional arrangement induces a

reallocation of resources towards productive investment at the expense of appropriation and first period

consumption. These effects can be traced back through different avenues for both the individuals and

the reason can be attributed to their initial comparative advantage and individual resource allocations.

For the poor agent, who had a comparative advantage in appropriation, return from productive invest-

ment increases unambiguously which in turn shifts resources towards production form appropriation

and current consumption. For the initial rich, this reallocation of resources results from a decrease in

the return from appropriation. The effect of improved property rights on the return from production for

the rich agent is ambiguous. However, it is insightful to note that, this is a composite of a direct effect

of θ and an indirect effect of θ on p′ on the return from the productive activities. Similar effects work

for the return from appropriation for the poor agent. From the figures, it is clear that investment in pro-

duction remains the more lucrative option although the rate of capital accumulation varies significantly

with improvement in property rights. This is apparent from the curvature of the capital investment curve

which is initially increasing and convex and thereafter, concavity sets in. This concavity is a result of

9In particular it has been mentioned that there is a positive correlation (89%) between effective property rights and GDP.
The study carried out by IPRI covers seventy nations, both industrialized and developing countries. In total, the IPRI country
set represents ninety -five percent of world GDP. The index is rated on a scale of 0 (weakest property rights protection) to 10
( strongest protection). The average rank for the whole study’s country set is 5.3 . The highest score obtained is 8.3, while the
lowest score is 2.2. Countries in the top quartile of the IPRI ranking have an average GDP per capita of $32,924, ( Sweeden,
Norway, Denmark, etc) more than seven times higher than countries which rank in the bottom quartile ( Sub-Saharan African
countries , and parts of Latin America). Thus more secure property rights environment fosters growth.
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diminishing marginal return, which plays a crucial role in explaining the growth welfare trade-off.

In a Benthamite definition of welfare, both agents are treated equally. In our framework, that simply

means the direction of movement in welfare results from the interaction between current and future

consumption. Initially, when property rights improves, agents sacrifice appropriative investments and

first period consumption in an anticipation of increased second period consumption. Since capital is

accumulated at a rapid pace, this anticipation is fulfilled and consequently, we obtain an increasing

trend in the welfare. This process continues until we reach a critical value of property right parameter

θ , beyond which increase in future consumption is outweighed by the fall in current consumption. This

effect can be justified along the following lines: after significant amount of productive investment is

undertaken, diminishing returns set in. Though agents still keep reallocating their resources towards

production, the increase in second period consumption fail to dominate the loss in utility and thus

welfare begins to exhibit a steep decline. In other words, enhanced security of private property promotes

productive investment and thus fosters economic growth, which might necessitate a sacrifice in current

consumption. The trade off between growth and welfare is central to the policy analysis of this research.

An improved property right environment (generated by effective government intervention) that fosters

economic growth might not be optimal from a welfare point of view.

2.5 Conclusion

We have considered the role institutions of property rights and conflict management can play in both

achieving prosperity and mitigating conflict in developing countries. In the first half of our paper, we

consider a scenario where public-funded protection of private property rights may successfully support

the adoption of best-available technologies as Nash equilibrium. Such a scheme may even be welfare

enhancing. Here the government’s role in post production conflict is limited to ” posting a guard”

who thwarts the appropriative activities each agent much like a policeman Next we try to answer a

more pertinent question: what happens if government takes on a more direct, proactive role in post-

production conflict? Basically we endogenize the property rights by introducing a new formulation

of the conflict technology, where government can explicitly intervene in the existing level of property

rights by choosing the tax rate. We allow the government to utilize the tax proceeds to directly influence

the technology of conflict with a view to improve the security of private property. With in this set
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up, we study how an improvement in property rights shapes optimal resource allocations when the

best-available technology has already been adopted. This addresses a fundamental question. When

the government has the option to choose a tax rate that ensure perfect property rights, is that always

desirable? Would such a choice of tax rate be always welfare enhancing? We show that there exists

an interval of taxation such that an increase in property security leads to a decrease in welfare. From a

policy perspective this surprising result calls for a caution in recommending improved property rights

enforcement, particularly when such improvements are to be made incrementally in middle-income

countries.
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2.7 Appendix

Optimal resource allocation of agents R and P

The optimization problem of agent R in the second stage of first period is:

maxlnC1R +β lnC2R (2.33)

subject to pY (1− τ) =C1R +KR +XR (2.34)

p′Y ′ =C2R (2.35)

p′ =
(XR−G)m

(XR−G)m +(XP−G)m (2.36)

Y´= ARKR +APKP (2.37)

The interior optimality conditions are:
1

C1R
=

βAR

Y´
(2.38)

m(XP−G)m

(XR−G){(XR−G)m +(XP−G)m}
=

AR

Y´
(2.39)

Analogous expressions for agent P are given by:

1
C1P

=
βAP

Y´
(2.40)

m(XR−G)m

(XP−G){(XR−G)m +(XP−G)m}
=

AP

Y´
(2.41)

Denote, α = (XR−G)m +(XP−G)m. Dividing (2.39) by (2.41), we get

m(XP−G)m

(XR−G)α

(XP−G)α

m(XR−G)m =
AR

AP
(2.42)

or,
(

XP−G
XR−G

)m+1

=
AR

AP
(2.43)

or,
(XP−G)

(XR−G)
=

(
AR

AP

) 1
m+1

. (2.44)

Dividing (2.36) by (XR−G)m we get

p′ =
1

1+
(

XP−G
XR−G

)m (2.45)

Substituting the expression in (2.44) in (2.45) we get

p′ =
1

1+
(

AR
AP

) m
m+1

(2.46)
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Using the resource constraints and above formulation of p′, we can reduce the FOC’s of agents R and P

as a system of linear equations in Ci and Xi, i ∈ {R,P}. The unique solution to the linear system is given

by:

C1R =
1

β (1+m)+2

[
(p+(1− p)

AP

AR
)(1− τ)Y − (1+

AP

AR
)τY
]

(2.47)

C1P =
1

β (1+m)+2

[
(
AR

AP
p+(1− p))(1− τ)Y − (1+

AR

AP
)τY
]

XR =

 1(
AP
AR

) m
m+1

+1

 mβ

2+β (1+m)
∆+ τY

XP =

 1(
AP
AR

) m
m+1

+1

 mβ

2+β (1+m)
∆

(
AR

AP

) 1
m+1

+ τY

where, ∆ = [(p + (1− p)AP
AR
)(1− τ)Y − (1 + AP

AR
)τY ]. This concludes the derivation of the optimal

consumption and resource allocation.

2.7.1 Proof of Proposition 2.2

We start by proving: If τ ≤ τinv, positive investment equilibrium exists. We need to find a bound on

τ such that XP−G≥ 0, XR−G≥ 0,KP ≥ 0, KR ≥ 0. From the expressions of appropriative investments

from (2.47) we see that XR−G≥ 0 if ∆≥ 0. Now ∆≥ 0 implies

1− τ

τ
≥

1+ AP
AR

p+(1− p)Ap
AR

∀ AP

AR
∈ [

AL

AH ,
AH

AL ] (2.48)

Taking limit on both sides as AH

AL → 1 we have 1−τ

τ
≥ 2 this implies 1− τ ≥ 2τ , or 3τ ≤ 1, i.e. τ ≤ 1

3 .

similar reasoning holds good for XP−G ≥ 0. Thus for τ ∈ [0,τ], where τ = 1
3 , equilibrium effective

appropriative investments are positive. We check the conditions under which KR,KP ≥ 0. Substituting

the values of XR, C1R in the expression of KR we see that KR reduces to

KR = pY (1− τ)− [
mβ

2+β (1+m)

∆(
AP
AR

) m
m+1

+1
+ τY ]− ∆

2+(1+m)β
(2.49)

Upon tedious manipulation we see that KR ≥ 0 implies

p(1− τ)−a+b− τ− (1− τ)∆

2+β (1+m)
+

(1+ z)τ
2+β (1+m)

≥ 0 (2.50)



28

Where a = mβ (1−τ)∆

(2+β (1+m))(z)
m

m+1 +1
, b = mβ (1+z)τ

(2+β (1+m))(z)
m

m+1 +1
, z = AP

AR
. Taking limit on both sides of the above

equation as AH

AL → 1 we have

τ[−(1− p)+
6+3mβ

2(2+β (1+m))
]≥ mβ +2

2(2+β (1+m))
− p (2.51)

If we assume, [−(1− p)+ 6+3mβ

2(2+β (1+m)) ]> 0, we arrive at a condition that states p < 1
2 , which contradicts

our basic assumption. Thus −(1− p)+ 6+3mβ

2(2+β (1+m)) < 0. By similar reasoning mβ+2
2(2+β (1+m)) − p < 0.

Rearranging terms we see that KR ≥ 0 iff τ ≤
mβ+2

2(2+β (1+m))−p

−(1−p)+ 6+3mβ

2(2+β (1+m))

. Let us call τ1 =
mβ+2

2(2+β (1+m))−p

−(1−p)+ 6+3mβ

2(2+β (1+m))

.

Again, for KP ≥ 0, we substitute the values of XP and CP in the expression of KP, which gives,KP =

(1− p)(1−τ)Y −c−τY −d where c = mβ∆[(1−τ)
2+β (1+m)

1

(1+
(

AP
AR

) m
m+1

)

(
AR
AP

) 1
m+1

, d = ∆

2+β (1+m) . Taking limit on

both sides of the expression of KP as AH

AL goes to 1 we get KP ≥ 0 iff

(1− p)(1− τ)− mβY
2+β (1+m)

[
(1−3τ)

2
+(1−3τ)]− τ ≥ 0

i f f , τ ≤ 2+mβ +2(p−1)(2+β (1+m))

−2(1− p)(2+β (1+m))+2+mβ −2β

Let τ2 =
2+mβ+2(p−1)(2+β (1+m))

−2(1−p)(2+β (1+m))+2+mβ−2β
. Thus KP ≥ 0 iff τ ≤ τ2. Thus for τ ≤min{τ,τ1,τ2} all the three

inequalities are satisfied. We denote τinv = min{τ,τ1,τ2}.Thus there exists positive levels of investment

for τ < τinv as, AH

AL −→ 1

Next, we prove the second part of the proposition. We show that an agent’s best response to any

choice of technology by the other agent involves in either choosing the best technology or the worst one

i.e Ai ∈ {AL,AH} for a given interval. Substituting the values of C1R and C2R into the utility function,

we get UR =UR(AR,AP). Differentiating UR w.r.t AR we get,

∂UR

∂AR
≥ 0 iff

τ

1− τ
≥ Γ(x) (2.52)

provided (1− τ)(p+(1− p)x)− (1+x)τ ≥ 0 and φk(x)(1+x)+ x−β ≥ 0. Here Γ(x) = f (x)
g(x) , x = AP

AR
,

f (x) = (p+(1− p)x)[1+ φk(x)]− (1+ β )p, g(x) = φk(x)(1+ x)+ x− β . Also, φ = mβ

m+1 < β ,and

k(x) = 1
1+x

m
m+1

. Now,

Γ
′(x)≥ 0

i f f , [β (2p−1)+φ(1−β )(1−2p)k(x)+φ
2(1−2p)k(x)2 +φ(1+β )(2p−1)k′(x)x≥ 0

i f f , βx
2m

m+1 +[(β −φ)(1+φ)+β (1− (
m

m+1
)2)]x

m
m+1 +(β −φ)(1+φ)≥ 0. (2.53)
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The above is an equation of a parabola where both the roots, say x1 and x2, are negative. Therefore, for

all x≥max{x1,x2}, the Γ(x) is positively sloped. For the values of x that satisfy equations (43)−(2.53),

we get the best response of agent R is to choose either AL or AH . This interval of x implicitly put a

restriction on τ . We denote that critical value of τ ≥ τR = 1−p
2−p . Again, substituting C1P and C2P into the

utility function, we get

UP =UP(AR,AP)

Following the same steps for the poor agent, we get if ,(1− τ)(py+ 1− p)− τ(1+ y) ≤ 0, and (1+

β )(1− p)− (py+1− p)(1+φk(y)≤ 0 then,

∂UP

∂AP
≥ 0 i f f

1− τ

τ
≥ G(y) where, (2.54)

G(y) =
β − y−φk(y)(1+ y)

(1+β )(1− p)− (py+1− p)(1+φk(y)
,y =

AR

Ap

Now, G′(y)≥ 0

i f f [β (2p−1)+φ(1−β )(1−2p)k(y)+φ
2(1−2p)k(y)2 +φ(1+β )(2p−1)k′(y)y≥ 0

i f f (β −φ)(1+φ)x
2m

m+1 +[(β −φ)(1+φ)+β (1− (
m

m+1
)2)]x

m
m+1 +β ≥ 0 (2.55)

Which is again an equation of a parabola, where both the roots (say x3,x4) are negative, though different

in values. Then, x ≥ max{x3,x4},G(y) is positively sloped. Thus, for x ≥ 0,both Γ(x) and G(y) are

positively sloped. Therefore, for the values of x that satisfy equations (46)−(2.55), we get the best

response for agent P is to choose either AL or AH .This interval of x implicitly put a restriction on τ. We

denote that critical value of τ ≤ τP = p
1−p .

Let AH

AL → 1. If τ ∈ [1−p
2−p ,

p
1+p ], then both the agents best response is to adopt either AH or AL. We

denote τH = 1−p
2−p . From the Lemma 1, we know that positive investment equilibrium exists for τ ≤ τinv.

Thus for τ ∈ [τH ,τinv], [AH ,AH ] can be sustained as a positive investment equilibrium. This completes

the proof.

2.7.2 Proof of Corollary 2.1

Given (AL,AL) is an equilibrium in the bench-mark model the optimal choices of C1i and C2i, i ∈

{R,P} are given as C1i =
Y

2+β (1+m) ,C2i =
βYAL

2(2+β (1+m)) . The SWF in this case is given by

SWF(AL,AL) = (lnC1P +β lnC2P)+(lnC1R +β lnC2R)
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plugging in the values of C1i and C2i into the above equation we have

SWF(AL,AL) = ln
Y 2

(2+β (1+m))2

(
βALY

2(2+β (1+m))

)2β

Similarly when (AH ,AH) is an equilibrium in the guard posting framework the optimal choices of C1i

and C2i, i ∈ {R,P} are C1i =
Y (1−3τ)

2+β (1+m) and C2i =
βAH(1−3τ)Y
2(2+β (1+m)) respectively. Plugging in the expressions

of C1i and C2i in the social welfare function SWF =UR +UP and rearranging the terms we get

SWF(AH ,AH) = ln

[(
(1−3τ)Y

(2+β (1+m))

)2(
βAHY (1−3τ)

2(2+β (1+m))

)2β
]

From this it follows that

SWF(AH ,AH)≥ SWF(AL,AL)

i f
(

(1−3τ)Y
(2+β (1+m))

)2(
βAHY (1−3τ)

2(2+β (1+m))

)2β

≥ Y 2

(2+β (1+m))2

(
βALY

2(2+β (1+m))

)2β

⇔ (1−3τ)2 (AH)2β
(1−3τ)2β ≥

(
AL)2β ⇔ AH

AL ≥
(

1
(1−3τ)2(β+1)

) 1
2β

This completes the proof.
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CHAPTER 3. OPTIMAL PORTFOLIO SELECTION WHEN AN INVESTOR’S

WEALTH IS SUBJECT TO BANKRUPTCY

3.1 Introduction

Utility maximization problems in mathematical finance are usually of two types : expected utility

of consumption on a finite interval or the expected utility of terminal wealth at some future time point.

In this article, we are interested in a problem of second category. Research related to expected utility

maximization goes back to the seminal articles of Samuelson and Merton (1969), Merton (1971) and in

the recent times, for instance in the writings of Pliska (1986), Karatzas, Lehoczky and Shreve (1987)

and Cox and Huang (1989). Although different in approach, these articles share a common setting of

an investor who wants to invest a certain portion of his wealth in stocks and the rest in money market

account so as to maximize a discounted expected utility of his wealth up to a fixed terminal time.

Here, we consider a variant of these problems by allowing the agent to freely stop at a time of con-

venience rather than a fixed terminal time. Investor’s objective is to maximize the discounted expected

utility of his terminal wealth. The discount rate is a known exogenously determined constant. The

time chosen to stop is a stopping time and it may depend on the investor’s past experience. A typical

example of a stopping time is the first time the price of a single share of a stock reaches a certain level.

We always know whether that event has already happened or not by knowing the past history (but we

do not know when it will happen in future). Such problems are known as optimal stopping problems.

For example we can think of a risk averse individual who wants to maximize his expected utility before

” quitting” from the stock market and put all his money in bank. Here ”quitting” time refers to the time

after which an agent only invests in the safe asset and nothing in the risky asset.

Other examples that can fit into this category would be an optimal harvesting strategy for a single

species in a random environment whose growth is modeled as a diffusion process. The motive is to
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look for a harvesting strategy which maximizes the expected discounted income from harvesting up to

extinction, (see Chao, Song, Stockbridge, 2010). Several areas in economics draws on such optimal

stopping problems. The tree cutting problem analyzed by the Austrian capital theorists also fits into the

above framework. Briefly stated, the problem is as follows. Suppose we have a tree whose growth is

stochastic. If the tree depletes at a rate r > 0, when should the tree be cut down? What is the present

value of such a tree? In order to answer when a tree should be felled we are analyzing the optimal

timing of cutting a tree to maximize the net present value of a tree when the tree’s growth is stochastic

rather than deterministic (Brock, Rothschild and J.E Stiglitz, 1979).

We consider an economy consisting of a single risk averse individual and two assets. One is a risky

asset such as a stock, and the other is a risk-free asset which can be considered as a bond. At any point

in time, the investor wants to allocate his wealth between the two assets. He invests a certain portion of

his wealth in stock and the rest in bond. He has the option to quit from the stock market at any random

time defined by a stopping rule. The assets available to the agent can be traded continuously, without

restrictions. There are no frictions or transaction costs. Against this backdrop, the agent maximizes his

discounted expected utility over the class of all stopping times by taking into account that the wealth

process is stochastic. It turns out that the optimal stopping time in this scenario is of the threshold

type. An optimal policy in this setting involves taking action when the state variable (here the wealth of

an investor) exceeds an appropriately chosen threshold and doing nothing when the state variable lies

inside the region defined by the threshold.

Using techniques of stochastic calculus and the principle of smooth fit, in optimal control, we derive

an optimal threshold of wealth at which the investor quits from the stock market. In the particular case

where the agent invest a fixed proportion of his wealth in stocks and bonds, we obtain closed form

expressions for optimal exercise boundary as well as for the value function. In the general case, we

prove the existence of an optimal threshold but we are unable to derive closed form solution for the

threshold. We also analyze the sensitivity of the value function and the optimal threshold with respect

to the parameters involved in the model. In the general case, where the proportion of wealth invested in

the assets varies with the current wealth we cannot explicitly get a closed form solution of the threshold

region, rather we solve it qualitatively.
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Once we obtain these results,we are interested in investigating a more realistic problem. What

would be the optimal selling time for a financial asset subject to bankruptcy. There are primarily two

types of approaches that attempt to model default processes in the credit risk literature: structural form

and reduced form models. Structural models as the name suggests use the evolution of firm’s structural

variables, such as an asset price and debt values to determine the time of default. Merton’s (1974)

model was the first to introduce this concept. Here default time is defined as the first time a firm’s asset

is below it’s outstanding debt.

One of the major drawbacks of the structural models is the predictability of default time. Generally,

structural models assume complete information about the firm’s asset value and threshold. This together

with the fact that the asset price movement is continuous makes the default time a predictable stopping

time i.e. default does not come as a surprise. The predictability of default makes the models to generate

short term credit spreads close to zero. Empirical findings are unable to substantiate the above claim.

In fact it is observed in the market that even short-term credit spreads are bounded from below. One of

the ways to be out of this predicament is to model the default time in such a manner such that default is

unpredictable. Reduced form models accomplish this task. They do not consider the relation between

default and firm value in an explicit manner. In contrast to the structural models, the time of default in

reduced models is not determined by the firm’s economic fundamentals, but it is the first jump of an

exogenously given jump process where intensity may depend on the past behavior of the asset price.

Hence default is not a predictable event any more, and the default probabilities for short maturity do not

go to zero.

Although easy to calibrate, reduced form models lack the link between credit risk and the infor-

mation regarding firms assets and liabilities. A key element to link both the approaches lies in the

model’s information assumptions. A detailed discussion that links the two approaches can be found

in Jarrow, Protter, Sezer (2007), Jarrow and Protter (2004) Duffie and Lando (2001), Guo, Jarrow and

Zeng (2005). A common viewpoint among these articles is ”...it is possible to transform a structural

model with a predictable default time into a reduced-form model, with a totally inaccessible default

time, by altering the information sets available for modelling purposes” ( Guo, Jarrow and Zeng, 2005,

p2). To represent bankruptcy in this article, we use a reduced form model.
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Our paper is closely related with the works of Linetsky (2004, 2006), Yor, Elliot and M. Jeanblanc,

(2000), Meng (2007). Although the model setup is in line with their work, our problem is different.

We consider a scenario where a risk averse individual would like to maximize the discounted expected

utility from terminal wealth taking into account the fact that wealth process of the investor is prone to

default. The wealth process follows a stochastic differential equation (SDE) with variable coefficients.

There are only two assets, namely a stock and a bond. For simplicity, we assume that there are no

transaction costs. In contrast to the work of Linetsky (2004,2006), our results are not contingent on

negative power hazard functions in the reduced-form model, rather we take a general functional form for

the hazard function. When there is no default, the problem reduces to the one mentioned in paragraph

four. When an investor’s wealth is subject to default risk and the wealth process is represented by a

reduced form model, we are able to show that there is an optimal strategy which is of the threshold

type.

We also analyze the effect of default risk on the optimal exercise boundary as well as on the value

function. Once we incorporate default risk into our model there are two opposing forces: first the

default intensity will be added to the drift coefficient of the SDE which is favorable to the investor.

Thus the investor has an incentive to keep the asset longer. On the other hand, the discount factor also

increases by the same amount and hence the investor tends to sell the asset earlier. Which effect would

dominate in an optimal strategy can not be said ex-ante. In this direction, we try to answer the following

pertinent questions. Does higher default intensity leads to a higher optimal exercise boundary and to a

higher value function? Does the optimal exercise boundary and the value function in the default case

are both higher than their counterparts in the no default case? The questions are answered here by some

monotonicity results with respect to the default intensity. To be specific, we show that higher default

intensity leads to a higher optimal exercise boundary and to a higher value function. Moreover, optimal

exercise boundary and the value function in the default case are both higher than their counterparts in

the no default model.

Having shown the existence of an optimal stopping time we address the issue of optimal portfolio

selection when an investor’s wealth is subject to bankruptcy. We show the existence of an optimal

portfolio process.
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The rest of the article is organized in the following manner: In section 2, we describe the model

and utility maximization problem. In section 3, we set up the optimal stopping problem and state a

verification lemma associated with the HJB equation of the stopping problem. In sub-section 3.1, we

introduce our main theorem assuming the existence of a particular type of solution to the HJB equation.

In section 4, we setup the bankruptcy model and proceed in similar lines. In section 5, we derive the

monotonicity results. We discuss the existence of an optimal portfolio process in section 6. We intend

to do some numerical computations that would reinforce the results we obtained in section 3, 4 and 5.

bigskip

A few words about notation is needed. C0 denotes the space of all continuous functions from R to

R. C1 consists of all differentiable functions whose derivative is continuous. C2 is the class of functions

whose derivative is in C1. The space of all Ft measurable stopping times is denoted by Γ. Here (Ft)t≥0

is the filtration generated by a standard Brownian motion B(t).

3.2 Model Setup

3.2.1 An investor’s problem.

We consider a risk averse individual who is endowed with an initial wealth W0 and intends to in-

vest it between two assets: a risky asset ( a stock) and a riskless asset (say Govt Bonds). The uncer-

tainty is modelled by a probability space (Ω,F ,P). On this space a one dimensional Brownian motion

{(W1(t),Ft)}t≥0 is defined and we simply assume that {Ft}t≥0 to be a right continuous filtration. The

σ -algebra F0 contains all the P-null sets of F , and the Brownian motion Z(t) is Ft adapted. One of

the assets is a risk-free bond which is governed by the differential equation

dB(t) = r0B(t)dt.

with B(0) = 1. Here r0 denotes the fixed market rate of return. The other asset is a stock and stock

price is modelled as a Geometric Brownian motion, (GBM). The corresponding Stochastic Differential

Equation (SDE) is given by

dS(t) = S(t)[µdt +σdZ(t)], S(0) = s
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where µ is the drift term and σ is the volatility coefficient ( measure of risk). Obviously µ > r, otherwise

the investor may not invest in a risky asset. The investment behavior is modelled by a portfolio process

π = (p(W (t)),1− p(W (t))) that is Ft adapted. Note Ft contains all the information of the wealth

process, to be defined below upto time t. Here p(W (t)) represents the fraction of his wealth invested

in the stock when the total wealth is W (t). Therefore the quantity 1− p(W (t)) is the fraction of total

wealth invested in Bonds. The fraction, p(w) is a continuous function which is bounded below by a

positive lower bound ε > 0, (i.e. ε ≤ p ≤ 1) but it need not be differentiable. The investor uses his

wealth to buy shares of bond and stock. Out of the amount p(W (t))W (t) invested in the stock, the

agent buys α(t) units of stock, each worth S(t) dollars i.e. α(t)S(t) = p(W (t))W (t). The remaining

portion of wealth [1− p(W (t))]W (t) is used to buy bonds, i.e. β (t)B(t) = [1− p(W (t))]W (t), where

β (t), is the units of bond bought and B(t), is the price of each unit. Having modelled the price and

portfolio processes, we now make the standard assumptions of a market model. The two assets that are

available to the agent can be traded continuously, without restrictions, frictions or any transaction costs.

The investor has to invest in a self financing way, change in the wealth of portfolio is due to gains and

losses from investment in the assets. Also we assume the so-called small investor hypothesis i.e. the

actions of a single investor should not have any impact on the stock prices. A direct consequence of the

assumption of self financing portfolio is that the wealth process of the investor can be written as

W (t) = α(t)S(t)+β (t)B(t)

and, the SDE associated with it is given by dW (t) = α(t)dS(t)+β (t)dB(t). Using the equation for

S(t) and B(t),

dW (t) = α(t)S(t)[µdt +σdZ(t)]+β (t)[r0B(t)]dt

Substituting α(t)S(t) = p(W (t))W (t) and β (t)B(t) = (1− p(W (t))W (t) into the above equation we

obtain

dW (t) = p(W (t))W (t)[µdt +σdZ(t)]+(1− p(W (t))W (t)r0dt

On rearranging terms we get
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dW (t) =W (t)[µ1(W (t))dt + σ̃(W (t))dZ(t)]

with W (0) = w0, where µ1(w) = µ p(w) + r0(1− p(w)), σ̃(w) = σ p(w) are the drift and diffu-

sion coefficients respectively. Here Z(·) represents a standard Brownian-motion. Note that the non-

differentiability of p(·) manifests into the non-differentiability of µ1(·) and σ̃(w). Existence and unique-

ness of a solution of such an SDE is guaranteed by Theorem 2.9 (page 289, Karaztaz and Shreve, 1991).

The wealth equation can be interpreted as a controlled SDE with the control being the portfolio process

π .

In our problem, we take the portfolio process as given. Since the agent is a risk averse individual,

we intend to use a concave utility function to represent his preferences. Our methods work for any non-

negative concave utility function which satisfies lim
x−→∞

U(x) = ∞. For analytical simplicity, we choose

the utility function to be U(w) = lnw. In this setting if an investor wants to sell the stock at an (Ft)

stopping time τ , the present value utility is given by e−ρτ(lnW (τ)) where ρ > r0 is a discount factor.

Thus the agent’s problem is to find an Ft stopping time τ∗ which maximizes E[e−ρτ(lnW (τ))] over the

class of all Ft stopping times τ . We denote this class of stopping times by Γ. Notice that if the investor

waits too long to withdraw from the stock market then his discounted utility goes to zero (ρ > r0). On

the contrary, if he starts with a very low initial wealth, it may be prudent to wait for sometime rather than

quit immediately from the stock market. With these considerations in mind, we guess that an optimal

selling strategy is determined by some threshold: when the price is below the threshold we hold our

asset, but once the price is above the threshold we sell it. Now we are in a position to formally formulate

the optimization problem:

U(w) = Sup
τ∈Γ

E[e−ρτ lnW (τ) |W (0) = w] (3.1)

with

dW (t) =W (t)[µ1(W (t))dt + σ̃(W (t))dZ(t)] (3.2)

and W (0)=w0. For analytical tractability, we make the following substitution Y (t)= lnW (t). Applying

Ito’s lemma to the process Y (t) we get the SDE for Y (t) as



38

dY (t) = µ̃(Y (t))dt + σ̃(Y (t))dZ(t)] (3.3)

with Y (0) = y, µ̃(y) = µ1(ey)− 1
2 [σ̃(ey)]2 = µh(y)+ r0(1−h(y)) − 1

2 [σh(y)]2, where h(y) = p(ey)

and σ̃(y) = σh(y). Furthermore we assume K1 < |µ̃(y)| < K2 and ε1 < σ̃(y) < σ ∈ R. Also µ̃(y) is

a Lipschtiz continuous function with Lipschitz constant K < ρ . With the above transformation, the

reformulated problem can be stated as

V (y) = Sup
τ∈Γ

E[e−ρτY (τ) | Y (0) = y] (3.4)

where Y (t) follows the SDE given in equation (3.3). As with any optimal stopping problem (see EL

Karoui (1981)), we introduce two disjoint sets, usually called the stopping region E and continuation

region C. These regions are defined by E = {y > 0 : V (y) = y}, C = {y > 0 : V (y)< y}. They describe

the optimal threshold in terms of E and C as their common boundary point. The approach for deriving

the optimal threshold follows from (Ghosh, A., and Weerasinghe, A., 2007), ( Weerasinghe, A., 2005)

and (Ocone,D., and Weerasinghe, A., 2005 ).

3.3 Verification lemma

Following the theory of stochastic control, we can formulate the Hamilton-Jacobi-Bellman (HJB)

equation associated with the reformulated optimal stopping problem in (3.4) as

Max {1
2

σ̃
2(y)Q′′(y)+ µ̃(y)Q′(y)−ρQ(y), y−Q(y)} = 0 , for all y a.s on R (3.5)

The following, verification lemma shows that any smooth solution to (3.5) is an upper bound for the

value function. The proof of the following Lemma closely follows that of Meng (2007).

Lemma 3.1. Let Q(y) be a non-negative function satisfying the following conditions:

(i) Q(y) is a C1 function on R and piecewise twice continuously differentiable.

(ii) Q(y) a solution to the HJB equation

(ii) limc− Q′′(y) and limc+ Q′′(y) exits and are finite for all c on R.

Then Q(y)≥V (y) for all y ∈ R, where V is the value function defined above.
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Proof. The second order differential operator associated with the SDE in (3.3) is given by

L =
1
2

σ̃
2(y)

d2

dy2 + µ̃(y)
d
dy
−ρ (3.6)

for all y ∈ R. Let us introduce a sequence of stopping times τn with respect to the filtration (Ft)t≥0, for

every n > y by

τn =

 inf{t ≥ 0 : Y (t) /∈ (−∞,n]

∞, if the above set is empty

where Y (t) satisfies (3.3). Define s = τn∧ τ ∧N. Clearly s→ τ a.e P as n→ ∞ and N→ ∞. Applying

Ito’s Lemma, to e
−ρt

Q(Y (t)) where Q(y) is C2 we obtain

Ey[e−ρsQ(Y (s))] = Q(y)+Ey[
∫ s

0
e−ρuLQ(Y (u))du]+Ey[

∫ s

0
e−ρuQ′(Y (u))σ̃(u)dZ(u)]

= Q(y)+Ey[
∫ s

0
e−ρuLQ(Y (u))du]≤ Q(y)

Since Y (u) is bounded on [0,τ ∧ τn ∧N] and σ̃ and Q
′

are continuous the integrand in the stochastic

integral is bounded and hence the integral is a mean zero martingale. The last inequality follows from

the fact that Q ≤ 0 as Q satisfies (3.5). Since Q and exp(·) are both nonnegative functions applying

Fatou’s Lemma we obtain

Ey[e−ρτQ(Y (τ))]≤ liminf
n→∞

Ey[e−ρ(τ∧τn∧N)Q(Y (τ ∧ τn∧N))]≤ Q(y)

for each y ∈ R. Taking supremum over all Ft stopping times we obtain V (y)≤ Q(y) for all y ∈ R.

3.3.1 Optimal selling Time.

In this section we want to show that the optimal selling time of the stock is of threshold type i.e.

the investor ”quits” from the stock market when the Y (t) process reaches for the first time a threshold

[y∗,∞). This y∗ separates the continuity region C and the stopping region E and hence it is the free

boundary of (3.5). The proof of the above statement runs along the following lines. First we assume

that there exists a free boundary point y∗ and a function Q̃(y) which satisfies (I) given below. Then we

use the pair (y∗, Q̃) to construct a function Q∗ that is a smooth solution to the HJB equation. It turned
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out that the the point y∗ is indeed the free boundary of the HJB equation (3.5). We would then use it

to construct our optimal selling time. In the appendix, we establish the existence of the pair (y∗, Q̃)

satisfying (I).

From now on let us assume the existence of a point y∗ and a non-negative function Q̃(y) which

satisfy the following conditions :

(i) Q̃ : R→ (0,∞) and L Q̃(y) = 0 , for all y ∈ (−∞,∞), Q̃(y∗) = y∗, Q̃(−∞) = 0.

(ii) Q̃(y)> y , for all y < y∗ , Q̃′(y∗) = 1, Q̃′′(y∗)> 0.

 .....(I)

Note Q̃(y) is C1 on R. Existence of such a pair (Q̃,y∗) will be proved in appendix. We can describe our

main result depending on the existence of this pair (Q̃,y∗).

Next, we introduce the function Q∗(·) by

Q∗(y) =

 Q̃(y) for y≤ y∗

y∗ for y≥ y∗
(3.7)

We are now in a position to introduce one of the main theorems in this article that shows Q∗(y) =

V (y).

Theorem 3.1. Assume the existence of the function Q̃, and the point y∗ satisfying (I). Let Q∗(y) be as

defined above . Then we claim the following results hold.

(i) Q∗(y) is a C2- function on the set R/{y∗} and C1- function on R that satisfies the HJB equation.

(ii) if τ∗ =

 inf{t ≥ 0 : Y (t) /∈ (−∞,y∗]

∞, if the above set is empty

Then τ∗ is an optimal stopping time and V (y) = Q∗(y) for all y ∈ R, where V is the value function.

Proof. (i) By construction Q∗ = Q̃(y) on y ∈ (−∞,y∗] ( since Q̃(y) is C1 it follows Q∗ is C1 on

(−∞,y∗] ) and Q∗ = y on [y∗,∞). Thus Q∗ is C1. Now limy∗− Q́́
∗
(y) = Q̃′′(y∗)> 0 and limy∗+ Q′′∗(y) = 0.

Thus Q∗(y∗) is well defined at y∗ proving Q∗(y) is twice continuously differentiable on R\{y∗}.
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In order to show that Q∗(y) satisfies the HJB equation, we split R into two open intervals (−∞,y∗),

and (y∗,∞). On the open interval (−∞,y∗), Q∗ = Q̃ therefore LY Q∗ = LY Q̃ = 0 and by construction

y− Q̃(y) < 0. Hence Q∗ satisfies the HJB on the open interval (−∞,y∗). To verify it on (y∗,∞) we see

that at y∗−, LY Q∗(y∗−) =
1
2 σ̃2(y∗−)Q̃

′′(y∗−)+ µ̃(y∗−)Q̃
′(y∗−)−ρQ̃(y∗−) = 0. Since Q̃′′(y∗)> 0, Q̃′′(y∗−)> 0

(by continuity), Q̃′(y∗−) = 1 and Q̃(y∗−)' y∗−. Incorporating these facts in LY Q∗(y∗−) = 0 it follows that

µ̃(y∗−)−ρy∗− < 0, at y∗−. By continuity of µ̃(y) it follows that µ̃(y∗)−ρy∗ < 0 at y∗. For y > y∗, we need

to show that LY Q∗(y) = µ̃(y)−ρy < 0. If we can show µ̃(y)−ρy ≤ µ̃(y∗)−ρy∗ we are done. But

this amounts to showing µ̃(y)− µ̃(y∗)≤ ρ(y− y∗), for y > y∗. Since µ̃(y) is Lipchitz continuous with

a Lipchitz constant less than ρ this immediately follows. Thus for y > y∗, y = Q∗(y) and LY Q∗(y)< 0.

This completes the proof of part (i).

(ii) We can use the proof just outlined along with Lemma 1 to conclude that Q∗(y)≥V (y) for all y

∈ R. It remains to show that Q∗(y)≤V (y) for all y ∈ R to conclude the proof of part (ii).

We first consider the domain (−∞,y∗). The problem occurs on the boundary of C. Within C evolu-

tion is governed by diffusion and is therefore smooth. However, once the boundary ∂C is reached the

smooth evolution comes to an abrupt end. The classical Ito’s rule can not be applied but luckily we have

generalizations of Ito’s rule that do not require functions to be C2 everywhere. Applying the extended

Ito’s rule (page 218 Karatzas and Shreve, 1991) to e−ρtQ∗(Y (t)) we have

Ey[Q∗(Y (k))e−ρ(N∧τ∗)] = Q∗(y)+Ey

∫ N∧τ∗

0
e−ρtLQ∗(Y (t))dt +Ey

∫ N∧τ∗

0
e−ρuQ

′
(Y (u))σ̃(u)dZ(u)

Clearly as N tends to ∞, k→ τ∗ a.e P. Since Y (t) is bounded on [0,N ∧ τ∗] and both Q′ and σ̃ are

continuous it follows that the last term in the above equation is a mean 0 martingale. Now for y < y∗,

L Q∗(y) = 0 and Q∗(y∗) = y∗. Letting N going to infinity we have

Q∗(y) = Ey[e−ρτ∗Y (τ∗)]

Since τ∗ is a Ft stopping time and V (y) is obtained by taking maximum over Γ it follows that

Q∗(y)≤ V (y) for all y < y∗. For the case y≥ y∗, Q∗(y) = y and by definition τ∗ = 0. We can still write

Q∗(y) = Q∗(y) = Ey[e−ρτ∗Y (τ∗)]. Hence Q∗(y) ≤ V (y) for all y ∈ R. This completes the proof that

Q∗(y) = V (y) for all y and τ∗ is an optimal stopping time.
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The existence of a function Q̃ and it’s associated free boundary y∗ is proved in Theorem 8 (see

Appendix (a)). In fact we also show that such a pair (Q̃,y∗) is unique. Having established the existence

of an optimal threshold in full generality, we now close the section with an example.

Example.

Let us consider a simple case where our risk averse investor invests a fixed proportion of his wealth

in stocks and bonds i.e. the portfolio process is a constant vector. In the light of this change the problem

becomes analytically tractable. As a bargain we get a closed form solution of the value function. The

optimization problem now becomes

V = Sup
τ∈Γ

EY (0)=y[e
−ρτY (τ)] (3.8)

where Y (t) follows the process dY (t) = µdt +σdZ(t). The HJB equation associated with this problem

is given by

Max{1
2

σ
2Q′′(y)+µQ′(y)−ρQ(y), y−Q(y)} = 0 , for all y a.s on R (3.9)

where σ = σ p, µ = µ p+ r0(1− p) − 1
2 [σ p]2. The closed form solution of the value function is

given by

V (y) =
{ 1

α1
eα1(y− 1

α1
) for y ∈ (−∞, 1

α1
]

y for y≥ 1
α1

(3.10)

i.e. the optimal threshold is given by 1
α1

where α1 is given by

α1 =
−[µ]+

√
µ

2 +2ρσ
2

σ
2 =

−[µ p+ r0(1− p)− 1
2 σ2 p2]+

√
µ

2 +2ρσ
2

σ
2 .

We now analyze how the optimal threshold change as we change the parameters of the problem. The

effect of r0 on the optimal threshold is studied by looking at the sign of the derivative ∂α1
∂ r0

, where

∂α1
∂ r0

=− (1−p)
σ

2 + 1
2
√

µ
2+2ρσ

2
(2µ(−p)). Note that as r0 increases, the 1st term in the numerator decreases

and simultaneously the term under the square root increases. The net effect of a change in r0 on α1

depends on which effect dominates. We can not say a priori what would be the effect of a change in

interest rate on the optimal threshold. Similar argument holds for the effect of p, µ , σ , on α1.
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3.4 Bankruptcy Model.

3.4.0.1 Jump to default diffusion process.

To accommodate a defaultable risky asset in our problem it is necessary to use new mathematical

techniques.

In this section, we consider the problem of an investor who wants to invest his wealth in stocks and

bonds in such a manner so as to maximize his expected utility before ”quitting” from the stock market

taking into account the fact that his wealth can be subject to bankruptcy. First, we formally introduce

the information structure and the SDE associated with the pre-default process. As usual, we begin with

a probability space (Ω,F ,Q) carrying a standard Brownian motion {Z(t), t ≥ 0} and an exponential

random variable e with parameter 1 (e∼ exp(1)) independent of Z(t). We assume frictionless markets,

no arbitrage, and take an equivalent martingale measure (EMM) Q as given. The pre-default wealth

process under the risk neutral measure is modelled as a diffusion process {Wt , t ≥ 0} solving a SDE

given by

dW (t) =W (t)[(µ1(W (t))+h(W (t))dt +σ1(W (t))dZ(t)] (3.11)

where W0 = w. where µ1(·)+h(·) can be interpreted as the intensity adjusted drift, σ1(·) the diffu-

sion coefficient and h(·) the default intensity (hazard intensity) that satisfies the following assumption.

Existence and uniqueness of a solution to (3.11) is guaranteed by Theorem 2.9 in Karatzas and Shreve

(page 289, 1991).

Assumption 1. We assume that h(·) ∈C1(0,∞) is a non-negative Borel measurable function that is

strictly decreasing and satisfies the following conditions:

lim
w→0+

h(w) = ∞, lim
w→∞

h(w) = 0.

The assumption on the hazard rate seems to be counter-intuitive. As the wealth process tends

towards zero the hazard rate increases to infinity. When the wealth process increases the default intensity

goes to zero. The above assumption on h(·) generates a non-exploding solution to (3.11) on (0,∞) with

both 0 and ∞ inaccessible boundaries.



44

We model the random time of default τ0 as the first time when the process
∫ t

0 h(W (u))du is greater

than or equal to the independent random variable e where e∼ exp(1). Formally, it is captured by

τ0 =


inf{t ≥ 0 :

t∫
0

h(W (u))du≥ e}

∞, if the above set is empty

(3.12)

Note τ0 need not be Ft measurable since e is independent of Ft . It turned out τ0 is an unpredictable

stopping time with respect to the enlarged filtration Gt defined below. At the time of default τ0 the

wealth process jumps to the default state ∆, in the terminology of Markov processes it is known as a

cementary state. In otherwords in order to model the wealth process subject to bankruptcy as a diffusion

process {W4t , t ≥ 0} we extend the state space to E4 = (0,∞)∪{∆} where

W4t =

{
Wt for t < τ0

4 for t ≥ τ0
(3.13)

In order to explain how information is modelled, we follow (Elliot et al 2000) to introduce a

bankruptcy jump indicator process {Nt , t ≥ 0}, Nt = 1[t≥τ0]. We denote H = {Ht , t ≥ 0}, the filtra-

tion generated by the Brownian motion, Z(t), t ≥ 0. We introduce by Gt = Ft ∨Ht = σ〈Ft ∪Ht〉

the enlarged filtration. It contains all the information in both W (t) and the jump process. Following

Linetsky (2004, 2006) we can write the wealth process subject to bankruptcy as

dW4t =W4t−[(µ1(W (t))+h(W (t))dt + σ̃(W (t))dZ(t)−dMt ]

where

Mt = Nt −
∫ t

0
h(W (u))1[τ0>u]du

is a Gt martingale. It is clear that (e−ρtMt) is a Gt martingale.

3.4.1 Problem Formulation.

We consider our risk averse individual to invest in stocks and bonds in such a manner that his

expected utility at the chosen quitting time is maximized over all such available quitting times. The

information regarding the wealth process available to the investor at time t > 0 is contained in the

σ−algebra Ft . Thus τ0 is a stopping time but not predictable with respect to Gt . We assume there is no

transaction costs.
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From the above discussion, it follows that the investor’s optimization exercise is to find an Ft

stopping time τ∗ which maximizes E[e−ρτ lnW4t 1[τ<τ0]] over all Ft stopping times τ . Formally we

have

U(w) = Sup
τ∈Γ

EW (0)=w[e
−ρτ lnW4τ 1[τ<τ0]] (3.14)

where W4t is the wealth process with default and Γ is the space of all Ft stopping time τ . Note

when the wealth process is not subject to default we have solved the problem qualitatively in section 1.

In order to facilitate the optimization exercise we invoke a result from Meng (2007) that

Proposition 3.1 ( page 6). For any finite (Ft) stopping time τ we have E[1[τ<τ0] |Ft ] = e−
∫

τ

0 h(W (u))du

where τ0 is the default time. Using this we can derive an alternative expression of the value func-

tion in the following manner. Note we can write Ew[e−ρτ lnW4t 1[τ<τ0]] = Ew[e−ρτ lnWτ1[τ<τ0]] =

Ew[e−ρτ lnWτEw[1[τ<τ0] |Ft ] =Ew[e−
∫

τ

0 (ρ+h(W (u))du ln(W (τ))]. Thus we have reduced the problem from

an optimal stopping problem with default to an optimal stopping problem for processes without default.

This implies that our optimization exercise becomes

U(w) = Sup
τ∈Γ

Ew[e−
∫

τ

0 (ρ+h(W (u))du ln(W (τ))]

For analytical simplicity we make the following transformation Y (t) = ln(W (t)). Applying Ito’s

Lemma to the process Y (t) we get the SDE for Y (t) as

dY (t) = [µ̃(Y (t))+ψ(Y (t))]dt + σ̃(Y (t))dZ(t)] (3.15)

with Y (0) = ln(W (0)) where lim
y→∞

ψ(y) = 0, and lim
y→−∞

ψ(y) = ∞. The reformulated problem is stated

below

V (y) = Sup
τ∈Γ

Ey[e−
∫

τ

0 (ρ+ψ(u))duY (τ)] (3.16)

where the transformed pre-default process Y (t) satisfies (3.15). Next, we introduce a verification

lemma. It can be effectively used to calculate an achievable lower bound for the value function.
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3.4.2 Verification Lemma for the bankruptcy model.

Following the theory of stochastic control, we can formulate the Hamilton-Jacobi-Bellman equation

associated with the reformulated optimal stopping problem with bankruptcy in (3.15) as

Max{1
2

σ̃
2(y)Q′′(y)+(µ̃(y)+ψ(y))Q′(y)−(ρ +ψ(y))Q(y), y−Q(y)} = 0 , for all y a.s on R (3.17)

It turned out that value function is the only function that is a ” smooth solution” to the HJB equation.

In the following proofs we use Q(·) to represent the solution to the ODE.

Lemma 3.2. Let Q(y) be a non-negative function satisfying the following conditions:

(i) Q is continuously differentiable and Q′′ also continuous except at finitely many points.

(ii) Q is a solution to the HJB equation

(ii) limc− Q′′(y) and limc+ Q′′(y) exits and are finite for all c on R.

Then,

Q(y)≥V (y) for all y ∈ R, where V is the value function defined above.

Proof. The differential operator associated with the pre default process (Y (t)) is given by

L =
1
2

σ̃
2(y)

d2

dy2 +(µ̃(y)+ψ(y))
d
dy
− (ρ +ψ(y)) (3.18)

for each y ∈ R. For each n we introduce a sequence of stopping times τn by

τn =

 inf{t ≥ 0 : Y (t) /∈ (−∞,n],

∞, if the above set is empty

Define θ = τn∧ τ ∧N. Clearly θ → τ a.e P as n→ ∞ and N tends to ∞. Applying Ito’s Lemma, to

e
−
∫ t
0(ρ+ψ(u))du

Q(Y (t)) where Q(y) is C2 we obtain

Ey[e−ρ
∫

θ

0 ((ρ+ψ(Y (u))du)Q(Y (s))] = Q(y)+Ey[
∫

θ

0
e−

∫ u
0 (ρ+ψ(Y (s))dsL Q(Y (u))du]

≤ Q(y)

Since Y (u) is bounded on [0,τ ∧τn∧N] and σ̃ and Q
′
are continuous functions, the integrand in the

stochastic integral is bounded and hence it is a mean zero martingale. The last inequality follows from
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the fact that Q ≤ 0 as Q satisfies (3.17). Since Q is a nonnegative function applying Fatou’s Lemma we

obtain

Ey[e−ρ
∫

τ

0 ((ρ+ψ(Y (s))ds)Q(Y (τ))]≤ liminf
n→∞

Ey[e−ρ
∫

θ

0 ((ρ+ψ(Y (u))du)Q(Y (τ ∧ τn∧N))]≤ Q(y)

for each y ∈ R. Taking supremum over all Ft stopping times we obtain V (y) ≤ Q(y) for all y ∈ R.

Note if ψ(y) is identically zero , then we are back to the case of optimal stopping problem without

bankruptcy.

3.4.3 Optimal selling time in the presence of bankruptcy.

In this section, we provide a road map of what to do. We want to show that the optimal selling

time of the stock is of the threshold type [y∗,∞) when the wealth process is subject to bankruptcy.

This y∗ determines the free boundary for (3.17). The proof of the above claim can be approached via

the following steps. First we assume that there exists a point y∗ and a function Q̂(y) satisfying the

conditions in (3.19) below. Then we construct a function Q∗ which is a smooth fit solution to the HJB

equation. We further show that y∗ is the optimal threshold. From now on we assume the existence of a

point y∗ and a non-negative function Q̂(y) which satisfy the following conditions

(i) Q̂ : R→ (0,∞),L Q̂(y) = 0, f orall y ∈ R, Q̂(y∗) = y∗, Q̂(−∞) = 0

(ii) Q̂(y)> y, for all y < y∗, Q̂′(y∗) = 1, Q̂′′(y∗)> 0

 (3.19)

Existence of such a pair (Q̂,y∗) will be proved in the appendix. We describe the main result here

depending on the existence of this pair (Q̂,y∗).

Next we introduce the function Q∗(y) by

Q∗(y) =

 Q̂(y) for y≤ y∗

y∗ for y≥ y∗
(3.20)

The following theorem shows that Q∗(y) =V (y).

Theorem 3.2. Let Q∗(y) be as defined above. Then we claim the following to hold.

(i) Q∗(y) is a C1 function on R and C2 on R/{y∗} that satisfies the HJB equation.
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(ii) if τ∗y =

 inf{t ≥ 0 : Y (t) /∈ (−∞,y∗]

∞, if the above set is empty

Then τ∗ is an optimal stopping time and V (y) = Q∗(y) for all y ∈ R, where V is the value function.

Proof. The proof of part (i) that Q∗(y) is C1-function which is C2-function everywhere except at y∗

is straight forward. To show that Q∗(y) satisfies the HJB equation, we perform the following trick. We

divide R into two disjoint intervals (−∞,y∗), and (y∗,∞). Then separately show that Q∗(y) satisfies the

HJB equation on both the intervals. On the set (−∞,y∗), Q∗ = Q̂ by (3.19 ) therefore LY Q∗ = LY Q̂ = 0

and by construction y− Q̂(y) < 0. Thus on the open interval (−∞,y∗), Max {LY Q∗,y− Q̂(y)} =

0, hence Q∗ satisfies the HJB equation on this interval. To verify it on (y∗,∞) we see that at y∗−,

LY Q∗(y∗−) =
1
2 σ̃2(y∗−)Q̂

′′(y∗−) + (µ̃(y∗−) + ψ(y∗−))Q̂
′(y∗−)− (ρ + ψ(y∗−))y

∗
− = 0. Since Q̂′′(y∗−) > 0

therefore Q̂′′(y∗−)> 0 (by continuity), Q̂′(y∗−) = 1 and Q̃(y∗−)' y∗−. Incorporating these facts it follows

from LY Q∗(y∗−) = 0 that (µ̃(y∗−)+ψ(y∗−))− (ρ +ψ(y∗−))y
∗
− < 0, at y∗−. By continuity it follows that

[µ̃(y∗)+ψ(y∗)]− (ρ +ψ(y∗))y∗ < 0 at y∗. For y > y∗, we need to show that LY Q∗(y) = (µ̃(y)+

ψ(y))− (ρ +ψ(y))y < 0. If we can show that (µ̃(y)+ψ(y))− (ρ +ψ(y))y < [µ̃(y∗)+ψ(y∗)]− (ρ +

ψ(y∗))y∗ then LY Q∗(y) < 0 follows. Rearranging, we get [µ̃(y)− µ̃(y∗)] +ψ(y)[1− y]−ψ(y∗)[1−

y∗]−ρ(y− y∗). We have to show it is less than 0. Note since ψ(·) is a decreasing function and µ̃(·) is

Lipshcitz continuous we are done. Thus for y > y∗, y = Q∗(y) and LY Q∗(y)< 0. Thus Q∗(y) satisfies

the HJB equation on the interval (y∗,∞). This completes the proof of part (i).

We can use the proof just outlined along with Lemma 3 to conclude that Q∗(y)≥V (y) for all y ∈ R.

It remains to show that Q∗(y) ≤ V (y) for all y ∈ R there by completing the proof of part (ii). We first

consider the domain (−∞,y∗). Now Q∗ is a C1, function on R and it is C2 everywhere except at y∗. But

Q∗́́(y∗−) and Q∗́́(y∗+) exists and are finite. The classical Ito’s rule can not be applied, but luckily we have

generalizations of Ito’s rule that do not require functions to be C2 everywhere. Applying the extended

Ito’s rule (page 218, Karatzas-Shreve, 1991) to e−ρ
∫ t

0(ρ+ψ(s))dsQ∗(Y (t)), we have

Ey[Q∗(Y (N∧ τ
∗))e−

∫ N∧τ∗
0 (ρ+ψ(u))du] = Q∗(y)+Ey[

∫ N∧τ∗

0
LY Q∗(Y (u))e−

∫ N∧τ∗
0 (ρ+ψ(s))dsdu] (3.21)
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Define k = N∧ τ∗, clearly as N tends to ∞, k→ τ∗ a.e P. Since Y (t) is bounded on [0,N∧ τ∗] and both

Q′ and σ̃ are continuous functions it follows that the integrand in the stochastic integral is bounded and

hence it is a mean zero martingale. Now for y < y∗, L Q∗(y) = 0 and Q∗(y∗) = y∗. Letting N tend, to

infinity we have

Q∗(y) = Ey[Y (τ∗)e−
∫

τ∗
0 (ρ+ψ(u))du]

Since τ∗ is a Ft stopping time and V (y) is obtained by taking maximum over Γ it follows that

Q∗(y)≤ V (y) for all y < y∗. For the case y≥ y∗, Q∗(y) = y and by definition τ∗ = 0. We can still write

Q∗(y) = Q∗(y) = Ey[e−ρτ∗Y (τ∗)]. Hence Q∗(y) ≤ V (y) for all y ∈ R. This completes the proof that

Q∗(y) = V (y) for all y and τ∗ is an optimal stopping time.

Our next objective is to show the very existence of a function Q̂(y) and an associated free boundary

point y∗ which satisfy (3.19). This is shown in Theorem 12 (Appendix b). We also show that such a

pair (Q̂(y), y∗) exists.

3.5 Comparison of Value Functions

In this section we trace out the effect of a change in the default intensity function ψ(·) on the optimal

threshold y∗ and in the value function V (·). To identify this dependency, corresponding to the default

intensity ψ we label the optimal threshold as y∗ψ and the value function as Vψ(·) respectively. When

the asset is not subject to bankruptcy , i.e. when the default intensity is identically zero, the optimal

exercise boundary and the value functions are denoted by y∗0 and V0(·) respectively.

Theorem 3.3. Let us suppose that there are two default intensity functions such as ψ1(y) and ψ2(y)

such that lim
y→∞

ψi(y) = 0 and lim
y→−∞

ψi(y) = ∞, further let y∗ψi
and Vψi(·) be the optimal exercise boundary

and the corresponding value function respectively. Then the following results hold:

(i) If ψ1(y) > ψ2(y) ∀ y ∈ R, then y∗ψ2
< y∗ψ1

and Vψ2 ≤ Vψ1 for all y ∈ R. Moreover, Vψ2 < Vψ1 in

the open interval (−∞, y∗ψ1
).

(ii) Let y∗0 and V0(·) be the optimal exercise boundary and the value function when there is no

default (i.e ψ(·) is identically zero). Then y∗0 < y∗ψ and V0(y) ≤ Vψ(y) for y and V0(y) < Vψ(y) in the

open interval (0,y∗ψ) where ψ(y) is any default intensity function which satisfies lim
y→∞

ψ(y) = 0 and
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lim
y→−∞

ψ(y) = ∞ . Here y∗ψ and Vψ(·) represents the corresponding optimal exercise boundary and the

value function respectively.

Proof. Corresponding to each default intensity ψi(·) where i = 1,2, let Q̂ψi(·) be the function used

in (3.18) and part (ii) of Theorem 13. We make the following transformation y = logz and define

Q̂ψi(z) = Qψi(logz). Note Qψi ≥ y for all y ∈ R and Qψi = y∗ψi
. Thus it follows that Q̂ψi(z) ≥ logz for

all z ∈ (0,∞) and Q̂ψi(z
∗
ψi
) = logz∗ψi

for i ∈ {1,2}. We prove part (i) by contradiction.

Let us assume y∗ψ2
≥ y∗ψ1

. This implies that z∗ψ2
≥ z∗ψ1

. Define η(z) = Q̂ψ1(z)− Q̂ψ2(z). Since

Q̂ψ1(z
∗
ψ1
)= lnz∗ψ1

≤ Q̂ψ2(z
∗
ψ1
) and Q̂ψ2(z

∗
ψ2
)= lnz∗ψ2

≤ Q̂ψ1(z
∗
ψ2
) . Thus η(z∗ψ1

)≤ 0 at z∗ψ1
and η(z∗ψ2

)≥ 0.

It follows from intermediate value theorem that there exist a ξ ∈ [z∗ψ1
,z∗ψ2

] such that η(ξ ) = 0. We intend

to obtain a contradiction by proving that there does not exist such a ξ .

Case I Suppose ξ > z∗ψ1
. Let L̂ψi(·) be the differential operator associated with the function ψi(·)

after we make the transformation y = logz. It can be easily shown that it has the following expression.

L̂ψi(·) =
1
2

σ̂
2(z)z2 d2

dz2 +(
1
2

σ̂
2(z)+ µ̂(z)+ ψ̂i(z))z

d
dz
− (ρ + ψ̂i(z)) (3.22)

where σ̂2(z) = σ̃2(logz), µ̂(z) = µ̃(logz), ψ̂i(z) =ψi(logz). Clearly L̂ψiQ̂ψi(z) = 0 for all z∈ [0,ξ ]

and

L̂ψ2Q̂ψ1(z) = L̂ψ1Q̂ψ1(z)+(ψ1−ψ2)(Q̂ψ1− zQ̂′ψ1
) (3.23)

= (ψ1−ψ2)(Q̂ψ1− zQ̂′ψ1
) (3.24)

We know that ψ1(z) > ψ2(z) but to determine the sign of (Q̂ψ1 − zQ̂′ψ1
) we do the following trick.

Perform the transformation z = ey and we are back to the operator Lψi as in (3.18). Note L̂ψ2Q̂ψ1(z) =

Lψ2Qψ1(y) = (ψ2−ψ1)(Q́ψ1(y)−Qψ1(y)). Thus the sign of L̂ψ2Q̂ψ1depends on the sign of (Q́ψ1(y)−

Qψ1(y)). It can be shown via Lemma 19 ( see appendix (b)) that if ρ > µ1, then (Q́ψ1(y)−Qψ1(y)) is

strictly positive. Thus it follows that L̂ψ2Q̂ψ1(z) is < 0 for all z∈ [0,ξ ]. By applying L̂ψ2 on η(z) on the

interval [0,ξ ] we see that Lψ2η(z)< 0. Thus it follows from maximum principle that Q̂ψ1(z)> Q̂ψ2(z)

on the open interval (0,ξ ). If ξ > z∗ψ1
we arrive at a contradiction since Q̂ψ1(z

∗
ψ1
) = lnz∗ψ1

≤ Q̂ψ2(z
∗
ψ1
).
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Case 2. If ξ = z∗ψ1
, then Q̂ψ1(ξ ) = Q̂ψ2(ξ ) = lnξ and Q̂́ψ2(ξ ) =

1
ξ

and Q̂́ψ1(ξ ) =
1
ξ

. Therefore

L̂ψ2(Q̂ψ1 − Q̂ψ2)(ξ ) =
σ̂2

2 ξ 2(Q̂ψ1 − Q̂ψ2 )́́(ξ ) < 0. This implies Q̂ψ1(z) < Q̂ψ2(z) on the open interval

(ξ −δ ,ξ ) for some δ . This is a contradiction to the fact that Q̂ψ1(z) > Q̂ψ2(z) on (0,ξ ). Thus we can

say that z∗ψ2
< z∗ψ1

and there does not exist a ξ ≥ z∗ψ1
for which Q̂ψ1(ξ )< Q̂ψ2(ξ ). By Theorem 18 (see

appendix (b)), it follows that Vψ2 = Qψ2(y) in the interval (−∞,z∗ψ2
] and Vψ1 = Qψ1(y) in the interval

(−∞,z∗ψ1
]. Thus Vψ2(y)≤Vψ1(y) This completes the proof of part (i).

The proof of part (ii) is essentially the same with the relevant differential operator being L0 =

1
2 σ2(y) d2

dy2 + µ̂(y) d
dy −ρ instead of L̂ψ2 above. Thus, we omit the details. This concludes the proof of

the theorem.

3.6 Remark

The economic interpretation of the above result is important from a practitioner’s point of view.

Let us consider an investor who has the option to invest in stocks with different intensities of default.

Then the optimal strategy for the investor would be to invest in the stock which has a higher intensity of

default, since the value associated with it is much higher than the one with less probability of default.

The incorporation of default intensity adds linearly to the drift coefficient of the SDE governing the

wealth process of the investor there by increasing the expected earnings from the stock. Thus the

investor has an incentive to keep the asset longer. On the contrary, the discount factor is replaced by the

intensity-adjusted discount factor (ρ + h(W (s))) and hence the investor tends to sell the asset earlier.

The above Theorem 5 asserts that a stock with a higher intensity of default, the positive effect accruing

from the increase in the drift coefficient more than offsets the negative effect arising from the rise in

discount factor. This explains why a higher default intensity leads to a higher optimal exercise boundary

and to a higher value function. Also, optimal exercise boundary and the value function in the default

case are both higher than their counterparts in the no default model.

3.7 Optimal Portfolio Selection

In this section, we consider the portfolio problem of an investor trading in different (financial) assets

when his wealth may be subject to bankruptcy. To be more precise, an investor, with a given initial
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wealth w0, has to decide how many shares of which asset he should hold at each instant to maximize

his expected utility from terminal wealth. Our goal is to deliver a solution method for the portfolio

problem. The objective of the agent is to maximize expected utility over the class of all stopping times

and admissible self-financing portfolio processes. Thus the optimization exercise of the agent can be

formulated as

Ṽ (y) = Sup
p∈U

Vp(y) (3.25)

where Vp(y) = Sup
τ∈Γ

EY (0)=y[e
−
∫

τ

0 (ρ+ψ(u))duY (τ)] (3.26)

subject to the SDE governing the wealth process (see 3.15). Here

U = {pn : R−→ [ε,1] such that pn’s satisfy | pn(x)− pn(y) |≤ c | x− y |} (3.27)

where c > 0 is a priori given fixed constant. pn(y) represent the investment strategy of the investor.

The space U is endowed with the norm ‖ pn(y) ‖= Sup
y∈R

pn(y). We show that there exist an optimal

portfolio process p∗ ∈U that achieves the supremum in (3.26). In order to prove this result we introduce

Lemma 6, Lemma 7 and Lemma 8. We first show that the problem in (3.26) is well-defined i.e Ṽ (y)<∞.

This is captured in Lemma 6.

Lemma 3.3. Ṽ (y)< ∞ for all y ∈ R and M=Sup
p∈U

y∗p < ∞, where y∗p, satisfies y∗p = Qp(y∗p), Q́p(y∗p) = 1,

LpQp(y∗p) = 0.

Proof. Since µ̃(y) is bounded therefore it follows µ̃(y)≤ µ0 for all y ∈ R. The SDE corresponding

to µ0 is given by

dY0(t) = µ0dt + σ̃(Y0(t))dZ(t) (3.28)

By a Comparison Theorem in Karaztaz- Shreve ( page 293, 1991) it follows that Y (t)≤Y0(t). Now,

for each fixed τ , we have Ey[e−
∫

τ

0 (ρ+ψ(u))duY (τ)]≤ Ey[e−
∫

τ

0 (ρ+ψ(u))duY0(τ)]. Taking supremum over all

τ it follows Sup
τ∈Γ

Ey[e−
∫

τ

0 (ρ+ψ(u))duY (τ)] ≤ Sup
τ∈Γ

Ey[e−
∫

τ

0 (ρ+ψ(u))duY0(τ)]. We thus have Vp(y) ≤ V 0
p (y).

If we can show V 0
p (y)< ∞ then we are done. It is well known that , via a random time change method

(see Theorem 4.6 Karatzas and Shreve, 1991) one can write the process Y0(t) as
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Y0(t) = y0 +µ0t +Z(
∫ t

0
σ

2
0 (p2(Y0(s)))ds)

= y0 +µ0t + Ẑ(t)

It follows that

Sup
[0,c0τ]

Y0(t)≤ Sup
[0,c0τ]

(y0 +µ0t + Ẑ(t))

= y0 +µ0c0τ + Sup
[0,c0τ]

Ẑ(t)

Taking expectations over both sides we obtain

Ey[e−
∫

τ

0 (ρ+ψ(u))du Sup
[0,c0τ]

Y0(t)]≤ y0+µ0c0Ey[e−
∫

τ

0 (ρ+ψ(u))du
τ]+Ey[e−

∫
τ

0 (ρ+ψ(u))du Sup
[0,c0τ]

| Ẑ(t) |] (3.29)

We intend to show that the right hand side of (3.29) is finite. Clearly the first two terms are finite.

For the last term notice that

Ey[e−
∫

τ

0 (ρ+ψ(u))du Sup
[0,c0τ]

| Ẑ(t) |] = Ey[
∞

∑
n=0

1[n≤τ≤n+1]e
−
∫ n

0 (ρ+ψ(u))du Sup
[0,c0τ]

| Ẑ(t) |]

≤
∞

∑
n=0

e−
∫ n

0 (ρ+ψ(u))du
√

Ey[1[n≤τ≤n+1]]Ey[ Sup
[0,c0(n+1)]

| Ẑ(t) |2]

Where the last inequality follows from Cauchy -Scwartz inequality. By Dobb’s L2 inequality, it follows

that Ey[ Sup
[0,c0(n+1)]

| Ẑ(t) |2]≤ [c0(n+1)]2. Using this the right hand side becomes
∞

∑
n=0

e−ρn[c0(n+1)]2 <

∞. Thus V 0
p (y) < ∞. Thus Vp(y) ≤ V 0

p (y) < ∞. Taking supremum over all p’s we get Ṽ (y) < ∞ for

all y ∈ R. By definition Vp(y∗p) = y∗p. Since Sup
p∈U

Vp(y) < ∞ we get Sup
p∈U

Vp(y∗p) < ∞. This implies Sup
p∈U

y∗p < ∞. Thus M < ∞, where M = Sup
p∈U

y∗p. This completes the proof.

The next Lemma guarantees the continuity of Vp(y) in p.

Lemma 3.4. Let {Qpn}n≥1 and {pn}n≥1 ∈U be sequences such that

(i) lim
n−→∞

pn = p0



54

(ii) LnQpn = 0, Qpn(ypn) = ypn and lim
y−→−∞

Qpn(y) = 0,

(iii) lim
k−→∞

ypnk
= yp0

where Ln =
1
2 σ̃2

n (y)
d2

dy2 +(µ̃pn(y)+ψ(y)) d
dy − (ρ +ψ(y)) then

a) lim
n−→∞

Qpn = Qp0 .

b) L0Qp0 = 0, Qp0(yp0) = yp0 and lim
y−→−∞

Qp0(y) = 0, Q́p0(yp0) = 1.

L0 =
1
2 σ̃2

0 (y)
d2

dy2 +(µ̃p0(y)+ψ(y)) d
dy − (ρ +ψ(y)) where σ̃2

0 (y) = lim
n−→∞

σ̃2
pn
(y)

and µ̃0(y) = lim
n−→∞

µ̃pn(y).

Proof. We begin by giving a proof of part (a). Notice LnQpn(y) = 0 implies 1
2 σ̃2

n (y)Q
′′
n(y) +

(µ̃n(y)+ψ(y))Q′n(y)− (ρ +ψ(y))Qn(y) = 0. Rearranging terms this can be rewritten as

Q′′pn
(y)+βn(y)Q′n(y) = γnQn(y) (3.30)

where βn(y) =
2(µ̃n+ψ)

σ̃2
n

, γn(y) =
2(ρ+ψ)

σ̃2
n

. Now (3.30) can be written as d
dy(e

∫ x
0 βn(y)dyQ́pn(y)) =

γn(y)Qpn(y)e
∫ x

0 βn(y)dy. Integrating out we get

e
∫ x

0 βn(y)dyQ́pn(y) =
∫ x

−∞

γn(y)Qpn(y)e
∫ x

0 βn(y)dydu , (3.31)

since lim
z−→−∞

e
∫ z

0 βn(y)dyQ́pnk
(z)= 0. By Helly’s selection criterion there exist a sub-sequence {Qpnk

}k≥1

such that lim
k−→∞

Qpnk
= Q̃p0 . We would later show that Q̃p0 = Qp0 . We now prove the continuity of Q̃p0 .

It follows from (3.31) that

e
∫ x

0 βnk (y)dyQ́pnk
(y) =

∫ x

−∞

γnk(y)Qpnk
(y)e

∫ x
0 βnk (y)dydu

As k tends to ∞, by Helly’s Theorem and the convergence of βnk and γnk to β0 and γ0 respectively

it follows that {Q́pnk
(y)}k≥1 converges to a function pointwise. We denote this function by g(y) where

lim
k−→∞

Q́pnk
(y) = g(y). The limit exists and is finite. We would show g(y) = Q̃́p0(y).

Integrating (3.30) between (y,M) we get

Q́pnk
(M)− Q́pnk

(y) =
∫ M

y
(γnk(u)Qpnk

(u)−βnk(u)Q́pnk
(u))du (3.32)

Taking limit both sides as k tends to ∞ we get
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1−g(y) =
∫ M

y
(γ0(u)Q̃p0(u)−β0(u)g(u))du (3.33)

The L.H.S of the above equation is finite. This implies that R.H.S is Riemann Integrable and by

differentiating (3.32), we get −ǵ(y) =−(γ0(y)Q̃p0(y)−β0(y)g(y)). By integrating (3.32) on [y,M] we

obtain

Q́pnk
(M)

∫ M

y
du−

∫ M

y
dQpnk

(u) =
∫ M

y

∫ M

u
(γnk(r)Qpnk

(r)−βnk(r)Q́pnk
(r))dr.

Using (3.33), it follows that

Q́pnk
(M)(M− y)− [Qpnk

(M)−Qpnk
(y)] =

∫ M

y
(1−g(u))du

Using Qpnk
(M) = M and Q́pnk

(M) = 1 and taking limit we get (M− y)− [M− Q̃p0(y)] =
∫M

y (1−

g(u))du. Since the L.H.S is finite, by differentiation, it follows that −1+ Q̃́p0(y) = −1+ g(y). Thus

we obtain g(y) = Q̃́p0(y). Hence Q̃p0(y) is continuous. Next we intend to show, lim
k−→∞

Q́́pnk
(y) = Q̃́́p0(y).

By letting n tend to infinity it follows that 1− Q̃́p0(y) =
∫M

y (γ0(u)Q̃p0(u)−β0(u)Q̃́p0(u))du. Since the

left hand side is finite it follows Q̃́́p0(y) = γ0(y)Q̃p0(y)−β0(y)Q̃́p0(u). From (3.30), we have Q′′pnk
(y)+

βnk(y)Q
′
nk
(y) = γnk Qnk(y). Taking limit as k tends to ∞ , and by Helly’s selection criterion, we get f (y)+

β0(y)Q̃′p0
(y) = γ0Q̃p0(y). From this we deduce f (y) = Q̃́́p0(y). We now show L0Q̃p0 = 0, Q̃p0(yp0) =

yp0 and lim
y→−∞

Q̃p0(y) = 0. From (3.30) and the fact that lim
k−→∞

Qpnk
(y) = Q̃p0(y), lim

k−→∞

Q́pnk
(y) = Q̃́p0(y)

and lim
k−→∞

Q́́pnk
(y) = Q̃́́p0(y) we infer L0Q̃p0 = 0. From continuity of Q́pnk

and Qpnk
one can conclude that

Q̃́p0(yp0) = 1 and Q̃p0(yp0) = yp0 respectively. lim
y−→−∞

Q̃p0(y) = 0 follows from part (iii) of proposition

(16) (see appendix (b)). By part (b) of theorem 18 and convexity of Q̃p0(y), it follows that Q̃p0(y) is a

C2 function which satisfies L0y = 0, Q̃p0(yp0), Q̃́p0(yp0) = 1.

Finally we show Q̃p0 = Qp0 . We define Qp0 to be a solution of L0Qp0 = 0 such that Qp0(yp0) = yp0

, Q́p0(yp0) = 1 and lim
y−→−∞

Qp0(y) = 0. By the uniqueness of solutions it follows that Qp0(y) = Q̃p0(y)

establishing our claim.

Let U be as in (3.27). Define

S(y) = {yp : p ∈U}. (3.34)
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The next Lemma shows that S(y) is a closed set.

Lemma 3.5. The functional Λ :U −→ R , such that Λ(pn) = ypn = Qpn(ypn) is continuous in U. Note

U is endowed with the sup-norm ‖p(y)‖= Sup
y∈R

pn(y).

Proof. Let lim
n−→∞

pn = p0 we need to show lim
n−→∞

Λ(pn) =Λ(p0). We need the following facts to prove

the claim. From Monotonicity of (Qpn)n≥1 , in y variable it follows Qpn(y1)≥Qpn(y2) whenever y1≥ y2.

Hence lim
n−→∞

Q̃pn(y1) ≥ lim
n−→∞

Q̃pn(y2) and thus Q̃p0(y1) ≥ Q̃p0(y2) if y1 ≥ y2, proving monotonicity of

Qp0 in y. Also Qp0 is a smooth solution to the boundary value problem as established in Lemma 8.

Since (ypn )n≥1 is bounded ( as 0 < ypn ≤M ), by Bolzano-Weistressas theorem there exist a convergent

subsequence (ypnk
)n≥1 such that lim

k−→∞

ypnk
= yp0 . If (y ṕnk

)n≥1 be another sequence such that lim
k−→∞

yṕnk
=

ýp0 then yp0 = ýp0 for the following reasons. Note yṕnk
= Qpnk

(ypnk
). By continuity of Qpnk

it follows

ýp0 = Qp0(yp0). From monotonicity and smooth pasting property of Qp0 , we infer yp0 = ýp0 . Since

lim
k−→∞

ypnk
= yp0 we conclude from the definition of Λ that lim

k−→∞

Λ(pnk) = Λ(p0).

Corollary 3.1. The set S(y) in (3.34) is closed.

Proof. Suppose lim
n−→∞

ypn = c and pn ∈ U then we need to show that there exist a p0 ∈ U such that

c = yp0 . By definition of Λ we see lim
k−→∞

Λ(pn) = c. By Arezala -Ascoli theorem (page 208, Royden)

there exist a subsequence {pnk}k≥1 such that lim
k−→∞

pnk = p0 and p0 ∈U . From continuity of Λ it follows

that lim
n−→∞

Λ(pn) = Λ(p0). Hence c = yp0 , which completes the proof.

Theorem 3.4. The set Ψ = {Vp(y) : p ∈U} is closed. Let M = Sup {yp : p ∈U}, then M = yp∗ .

Proof. We first prove that Ψ is closed. Let lim
n−→∞

Vpn(y) = z and pn ∈U . We need to show there exist

a p∗ ∈U such that z = Vp∗(y). By Arezala -Ascoli theorem there exist a subsequence {pnk}k≥1 such

that lim
k−→∞

pnk = p∗ and p∗ ∈U . By continuity of Vp(y), in p, lim
k−→∞

Vpnk
(y) = Vp∗(y). Since the original

sequence converges to a limit and the subsequence also has a limit it follows from elementary analysis

that z = Vp∗(y). This completes the proof that Ψ is closed. Now we prove M = yp∗ . By definition of

supremum we have M ≥ yp∗ . We need to show M ≤ yp∗ . Note by definition yp∗ =Vp∗(yp∗)≥Vp(yp∗)≥

Vp(yp) = yp. The first inequality follows from definition of supremum. Thus yp∗ ≥ yp for any p. Taking

supremum over both sides we get yp∗ ≥M. This completes the proof.
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It immediately follows from the above theorem along with monotonicity of the value function that

their exist an optimal portfolio p∗.

3.8 Conclusion

• We considered the continuous time portfolio optimization problem when an investor’s wealth is

subject to bankruptcy. We assumed that the price dynamics of the stock market is governed by

a geometric Brownian motion. We have shown that the utility maximization problem may be

separated into no-default and a with-default optimization subproblems, and proven verification

theorems for both cases taking into account that the portfolio process is given. We showed that

the optimal stopping time is of the threshold type for both the cases. We obtain closed form

solution of the optimal threshold region and the value function when an agent invests a fixed

proportion of his wealth in stock and rest in money market account.

• We also analyze the effect of default risk on the optimal exercise boundary as well as on the value

function. Once we incorporate default risk into our model there are two opposing effects: first the

default intensity will be added to the drift coefficient of the SDE which is favorable to the investor.

Thus the investor has an incentive to keep the asset longer. On the other hand, the discount

factor also increases by the same amount and hence the investor tends to sell the asset earlier. In

this context, we establish some monotonicity results with respect to the default intensity. To be

specific we show that higher default intensity leads to a higher optimal exercise boundary and to a

higher value function. Moreover, optimal exercise boundary and the value function in the default

case are both higher than their counterparts in the no-default model. Additionally, we established

the existence of an optimal portfolio process.



58

3.9 Appendix

3.9.1 Appendix (a)

3.9.1.1 Existence of free boundary without bankruptcy.

In this section we present the technical results and details that would help us to prove the existence

of a function Q̃(y) and an associated free boundary point y∗ which satisfy (I) (see subsection 3.1). The

existence and the uniqueness of the pair (Q̃(y),y∗) is established in Theorem 14. The free boundary y∗

turned out to be the optimal threshold boundary for our problem. In order to accomplish our goal we

follow the following steps:

(i) For a large d, the boundary value problem L Qd(y) = 0, Qd(y) = d and lim
y→−∞

Qd(y) = 0 has a

unique solution that has a stochastic representation given by (3.8).

(ii) Second we extend the solution to this differential equation over the entire real line.

(iii) Lastly, we show that Q′d(y)> 1 for large d > 0 and the graph of Qd(y) intersects the line y = x

at least twice in the open interval (0,d).

Once we have found such a function Qd(y) we take constant multiples of it to get a smooth solution

which meets the line y = x tangentially. In order to achieve our target for each d > 0 we introduce the

function

Qd(y) = dEy[e−ρτd ] (3.35)

where

τd =

 inf{t ≥ 0 : Y (t) /∈ (−∞,d]

∞, if the above set is empty
(3.36)

To prove theorem 14, we introduce Lemma 11, Propositions 12 and 13. In the following Lemma

we show that Qn(y) is the unique solution to the boundary value problem L Qn(y) = 0, for all y in the

interval (−n, d) Qn(d) = d and Qd(−n) = 0.

Lemma 3.6. Let d > 0 and Y (t) satisfies (3). We now introduce the stopping times τn by
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τn =

 inf{t ≥ 0 : Y (t) /∈ [−n,d]

∞, if the above set is empty.
(3.37)

Define

Qn(y) = dEy[e−ρτn1{ω:Y (τn)=d}] (3.38)

for each y≤ d. Then we get the following results:

(i) Qn(y) is the unique solution to the boundary value problem L Qn(y) = 0 for all y ∈ (−n,d),

Qn(d) = d and Qn(−n) = 0.

(ii) Qn(y) has no local extrema and, Q′n(y)> 0 on the interval (−n,d).

(iii) for any fixed y < d, {Qn(y)}∞
n=1 is strictly increasing in n.

(iv) lim
n→∞

Qn(y) = Qd(y) for each y≤ d where Qd(y) is given by Qd(y) = dEy[e−ρτd ].

Proof. (i) Notice that since σ̃2(y) and µ̃(y) are both positive and continuous, we know from the the-

ory of differential equations that there exists a unique solution to the boundary value problem L Qn(y)=

0, Qn(d) = d, Qn(−n) = 0. To show that the unique solution is given by Qn(y) = dEy[e−ρτn1{ω:Y (τn)=d}],

we apply Ito’s lemma to e−ρtQn(Y (t)) to get Ey[e−ρτnQn(Y (τn))] = Qn(y). This completes the proof of

part (i).

(ii) It’s clear from part (i) that Qn(y) ≥ 0 on (−n,d). Continuity of Qn(y) is guaranteed since it is

a solution to a second order ODE. Suppose there exist a local maximum at ŷ such that Q′n(ŷ) = 0, ŷ ∈

(−n,d). From L Qn(y) = 0 it follows that 1
2 σ̃2(ŷ)Q′′d(ŷ)−ρQ(ŷ) = 0, since ρ , Q(ŷ), σ̃2(ŷ) are strictly

positive, it follows that Q′′d(ŷ) > 0, contradicting the fact that ŷ is a local maximum. Similar argument

hold for the case of a local minimum. Since Qn(−n) = 0 and Qn(d) = d and Qn(y) is continuous with

Qn(y) > 0 (there doesn’t exist any local max or min) it follows that Qn(y) is increasing over (−n,d).

Also note it is bounded above by d. This completes the proof of part (ii).

(iii) To show that the sequence {Qn(y)}n≥1 is strictly increasing on the open interval (−∞,d) it

suffices to show it is true for any y ∈ (−n,d). By induction, we can show that this holds for any

y < d. By construction Qn+1(d) = Qn(d) = d. Note Qn+1(−n) > Qn(−n) = 0. Suppose not then

Qn+1(−n)≤ 0. This is not possible, since Qn+1(y)> 0 for y∈ (−(n+1),d). Now L (Qn+1−Qn)(y)= 0
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on y∈ (−n,d). Invoking the Maximum principle of differential equations (Weinberger and Porter, 1984)

we have Qn+1 > Qn for all y ∈ (−n,d). Since n is arbitrary, it follows by induction that Qn+1 > Qn, for

y < d. This completes the part of (iii).

(iv) In order to complete the proof of part (iv) we do the following trick. We introduce the scale

function associated with the diffusion Y (t). Namely

S(y) =
∫ y

0
e
−2
σ̃2
∫ z

0 µ̃(u)dudz

It is well defined since µ̃(y) is bounded and σ̃2(y)> 0. Now

Py[Yτn = d] =
S(y)−S(−n)
S(d)−S(−n)

(3.39)

Note S(−n) = −
∫ 0
−n e

2
σ̃2
∫ 0

z µ̃(u)dudz. Now µ̃(y) = µh(y)+ r0(1− h(y))− 1
2 [σh(y)]2. Since h(y) is

bounded below by ε > 0 on (−∞, ∞), for large negative value of y, µ̃(y) ' µε + r0(1− ε)− 1
2 [σε]2.

We assume µ̃(y)> 0 Implicitly, this means ε(µ− r0)+ r0 >
1
2 [σε]2. Thus for large n we have S(−n)'

−
∫ 0
−n e−αzdz, α > 0. Clearly as lim

n−→∞
S(−n) = −∞. Hence Py[Yτn = d]→ 1 as n tends to ∞. Thus

it follows that 1[Yτn=d] → 1 a.e Py. Define φn = e−ρτn1{ω:Y (τn)=d}]d. Clearly the sequence (φn)n≥1 is

increasing to φ , where φ = Ey[e−ρτd ]d and 0 ≤ φn ≤ 1. Thus by bounded convergence theorem it

follows that lim
n⇀∞

Qn(y) = Qd(y) for all y ∈ R.

The following proposition states some qualitative results regarding the function Qd(y).

Proposition 3.1. Given Qd(y) = Ey[e−ρτd ]d for each y ∈ (−∞,d] the following results hold

(i) Qd(y) satisfies L Qd(y) = 0 for all y < d.

(ii) Qd(y)> 0 and Q′d(y)> 0 for all y < d. Also Qd(y) is bounded on (−∞,d].

(iii) Qd(y) is the unique bounded solution to the boundary value problem L Qd(y) = 0 for all y < d

with the boundary conditions Qd(d) = d and lim
y→−∞

Qd(y) = 0.

Proof. (i) We consider the sequence {Qn(y)}n≥1 introduced in Lemma 11 where Qn(y) has the

stochastic representation given (3.38). By part (iv) of Lemma 11 we have

Q∞(y)≡ lim
n−→∞

Qn(y) = Qd(y) (3.40)
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To obtain part (i), we write the differential equation for Qn(y) in integral form and show that Q′n(·) as

well as Q′′n(·) are convergent. Then we use (3.40) to establish that Qd(·) also satisfy the same integral

equation which leads to the conclusion of (i). Let us consider the family of solutions (Qn) ’s to second

order linear ODE’s indexed by n as 1
2 σ̃2(y)Q′′n(y)+ µ̃(y)Q′n(y)−ρQn(y) = 0 with boundary conditions

Qn(−n) = 0, Qn(d) = d. The above differential equation can be rewritten as

Q′′n(y)+b(y)Q′n(y)−α(y)Qn(y) = 0 (3.41)

where b(y) = 2µ̃(y)
σ̃2(y) > 0, α(y) = 2

σ̃2(y) > 0 and are bounded by K and K0 respectively. If we can show

that as n tends to ∞, lim
n−→∞

Q′′n(y) = Q′′∞(y), lim
n−→∞

Q′n(y) = Q′∞(y), lim
n−→∞

Qn(y) = Q∞ for all y < d, then we

are done since Q∞(y) = Qd(y) by part (iv) of Lemma 11 (see Appendix (a)). We can write (3.41) in the

following manner: d
dy(e

∫ y
c b(u)duQ′n(y)) = α(y)e

∫ y
c b(u)duQn(y). Integrating between y to d we have∫ d

y d(e
∫ u

c b(z)dzQ′n(z))=
∫ d

y α(z)e
∫ z

c b(u)duQn(z)dz and this implies e
∫ d

c b(z)dz lim
n→∞

Q′n(d)− e
∫ y

c b(z)dz lim
n→∞

Q′n(y)=∫ d
y α(z)e

∫ z
c b(u)du lim

n→∞
Qn(z)dz. Since {Q′n(d)}∞

n=1 is a monotone decreasing sequence, which is bounded

below, it converges and has a finite limit say λ0. We know Qn(z) goes to Qd(z) as n goes to infin-

ity, by part (iv) of Lemma 11. Thus Q′n(y) converges to a finite limit, say f (y). Integrating (3.41)

between (y,d), we have Q′n(d)−Q′n(y) =
∫ d

y (α(u)Qn(u)− b(u)Q′n(u))du. By letting n tends to ∞ we

have λ0− f (y) =
∫ d

y (α(u)Q∞(u)−b(u) f (u))du. Since the left hand side is finite by differentiation we

have − f ′(y) =−(α(y)Q∞(y)−b(y) f (y)). Hence Q′n(d)−Q′n(u) =
∫ d

u (α(r)Qn(r)−b(r)Q′n(r))dr. By

integrating this equation, we obtain

Q′n(d)
∫ d

y
du−

∫ d

y
dQn(u) =

∫ d

y

∫ d

u
(α(r)Qn(r)−b(r)Q′n(r))drdu

Consequently, Q′n(d)(d− y)− [Qn(d)−Qn(y)] =
∫ d

y (λ0−Q′∞(y))du. Letting n tending to infinity and

using Qn(d) = d, we have Q∞(y)−d +λ0(d− y) =
∫ d

y (λ0− f (y))du. Thus Q∞(y) is differentiable and

we obtain Q′∞(y)−λ0 =−λ0 + f (y), implying f (y) = Q′∞(y) for all y. To see that lim
n−→∞

Q′′n(y) = Q′′∞(y),

we integrate (3.41) and let n tend to infinity to obtain Q′∞(d)−Q′∞(y) =
∫ d

y (α(r)Q∞(r)−b(r)Q′∞(r))dr.

Consequently Q′′∞(y) = α(y)Q∞(y)− b(y)Q′∞(y). Rearranging (3.41), we get Q′′n(y) = α(y)Qn(y)−

b(y)Q′n(y). As n goes to infinity, we have lim
n−→∞

Q′′n(y) = g(y) the limit exists and is finite since Q(y)

and Q′∞(y) are finite. Thus g(y) = α(y)Q∞(y)− b(y)Q′∞(y). Hence g(y) = Q′′∞(y) and this implies
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that lim
n→∞

Q′′n(y) = Q′′∞(y). From (3.41) upon taking limit we get Q′′∞(y)+ b(y)Q′∞(y)−α(y)Q∞(y) = 0,

proving L Qd(y) = 0 for all y < d. This completes the proof of part (i).

From expression (3.8), it is clear that Qd(y) > 0. We claim Q′d(y) ≥ 0, i.e Qd(y1) ≥ Qd(y2) for

y1 ≥ y2. Suppose not, then Qd(y1) < Qd(y2). Hence, by part (ii) (iii) and (iv) of Lemma 11 it follows

that Qn(y1)< Qn(y2) for large n. This contradicts the monotone increasing property of Qn(y). Suppose

Q′d(η) = 0 for some η < d. Then L Qd(η) = 0 implies that Q′′d(η) > 0 thus η is a local minimum

for Qd(y). By Lemma 11, it follows that there exists a n, such that Qn(y) has a local minimum in the

interval (η − δ , η + δ ). This contradicts with the part (ii) of Lemma 11. Hence Q′d(y) > 0 for y < d.

It’s clear that 0 < Qn(y)≤ Qd(y)< Qd(d) = d. Thus, part (ii) is complete.

Since Qd(y) is non-negative and strictly increasing it follows that lim
y→−∞

Qd(y) exists and is finite. In

the next proof we show lim
y→−∞

Qd(y) = 0. (iii) Let us consider the boundary value problem, LnQn(y) = 0

where Ln =
d2

dy2 +b(y) d
dy −α(y), Qn(−n) = 0, Qn(d) = d. Integrating on the interval (−n,x), we have

or,

Q′n(x)−Q′n(−n)+
∫ x

−n
b(y)Q′n(y)dy−ρ

∫ x

−n
α(y)Qn(y)dy = 0.

Since Q′n(−n)≥ 0, it follows that

Q′n(x)+
∫ x

−n
b(y)Q′n(y)dy≥ ρ

∫ x

−n
α(y)Qn(y)dy.

This implies Q′n(x)+
∫ x
−n b(y)Q′n(y)dy≥ ρK0

∫ x
−n Qn(y)dy, since α(y)≤ K0. Consequently,

ρK0

∫ x

−n
Qn(y)dy≤ Q′1(x)+K

∫ x

−n
Q′n(y)dy

since {Q′n(y)}∞
n=1 and b(y) are bounded above by Q′1(x) and K respectively. Thus it follows that

ρK0
∫ x
−n Qn(y)dy ≤ Q′1(d) +Kd < ∞, (since Qn(x) is bounded by d). The LHS can be rewritten as

ρK0
∫ x
−∞

Qn(y)1[−n,d]dy < ∞.Since Qn(y)1[−n,d] is non-negative, and lim
n−→∞

Qn(y) = Q∞(y) by Fatou’s

lemma we obtain

liminf
n→∞

∫
(−∞,d]

ρK0Qn(y)1[−n,d]dy≥
∫
(−∞,d]

ρK0Q∞(y)dy (3.42)

Qd(y) ≡ Q∞(y) by part (iv) of Lemma 11, it follows that Q′1(d)+Kd ≥
∫
(−∞,d] ρK0Q∞(y)dy and thus

lim
y−→−∞

Qd(y) = 0. In order to prove the uniqueness, let Q̂d(y) be another bounded solution to the bound-
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ary value problem L Qd(y) = 0, Qd(d) = d, lim
y→−∞

Qd(y) = 0. Applying Ito’s Lemma to it we get the

same stochastic representation for Q̂d(y) as (3.8). Thus Q̂d(y) = Qd(y) for all y ∈ (−∞,d]. Q.E.D.

We now extend each Qd(y) to (−∞,∞) so that it satisfies the differential equation L Qd(y) = 0 for

all y ∈ R. Each such Qd(y) is positive and strictly increasing over R. Also Qd(d) = d and lim
y→−∞

Qd(y) =

0. The proofs of these facts runs along similar lines to that in part (ii) of Lemma (11). In the next

proposition, we show that there exists a curve Qd1(y) among the family of solutions to L Qd(y) = 0

such that it intersects the line y = x at least twice.

Proposition 3.2. There exists a function Qd1(y) such that it intersects the line y = x at least twice in the

interval (0,d∗]. Moreover, Q′d1
(d∗)> 1, Qd1(d1) = d1, and Qd1(y)< y for all y in the interval (0,d∗].

Proof. Let us consider the ODE, 1
2 σ̃2(y)Q′′d(y)+ µ̃(y)Q′d(y)−ρQd(y) = 0,where µ̃(y) = µh(y)+

r0(1−h(y)) − 1
2 [σh(y)]2. This can be written as µ̃(·) = µz+ r0(1− z) − 1

2 [σz]2. This is a quadratic in

z. Now µ̃(·) is bounded above by K2 and since Q′d(y)> 0 it follows that

1
2

σ
2h2(y)Q′′d(y)+K2Q′d(y)−ρQd(y)≥ 0

or Q′′d(y)+
2K2

σ2h2(y)Q
′
d(y)−

2ρ

σ2h2(y)Qd(y)≥ 0 for all y∈ R, implying Q′′d(y)+C3Q′d(y)−C4Qd(y)≥ 0,

where C3 = 2K2
σ2ε2

0
, C4 = 2ρ

σ2ε2
0
, and ε0 = inf

y∈R
h(y). Multiplying both sides with the integrating factor

eC3y we get d
dy(Q

′
d(y)e

C3y) ≥ C4eC3yQd(y). Integrating between 0 to y we have Q′d(y)e
C3y−Q′d(0) ≥

C4
∫ y

0 eC3sQd(s)ds. Since Qd(s) is increasing therefore Qd(s) > Qd(0). Thus Q′d(y)e
C3y −Q′d(0) ≥

C4Qd(0)[ e
C3y

C3
− 1

C3
]. Rearranging terms we get Q′d(y)e

C3y ≥ Q′d(0)+
C4
C3

Qd(0)(e
C3y −1). Thus Q′d(y) ≥

e−C3y[Q′d(0)−
C4
C3

Qd(0)]+ C4
C3

Qd(0) for all y. As y goes to infinity we have Q′d(y) ≥
C4
C3

Qd(0). We can

choose a d say d1, such that Qd1(0) >
C3
C4

and thus Q′d1
(y) > 1. Thus there exists a point d∗ such that

Qd1(y) = d1. and Q′d1
(d∗) > 1. Since slope of Qd1(y) at d1 is less than 1 and Qd1(y) > 0, Q′d1

(y) > 0

it follows that the graph of Qd1(y) intersects the line y = x at least twice in the interval (0,d∗]. This

completes the proof.

Once we have established the existence of a curve like Qd1(y) that intersects the line y at least twice

we are almost done. We now take constant multiples of it until we reach a point of tangency between

one such curve and the line y = x. This determines the optimal threshold or the free boundary. The next

proposition aptly demonstrates this fact.
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Theorem 3.5. (i) There exists a point y∗ ∈ (d1,d∗) and a strictly positive function Qy∗(y) defined on R

such that Qy∗(y∗) = y∗, Qy∗(y)> y for all y ∈ R/{y∗} and Q′y∗(y) = 1, L Qy∗(y) = 0 for all y ∈ R.

(ii) There exists a function Q̃ : R→ R+ that satisfies all the conditions of (I) (see subsection 3.1).

Moreover the threshold y∗ and the function Q̃ are unique.

Proof. (i) Step1: Here we intend to show that there exists a curve Qy1(y) that lies above Qd1(y) and

intersects the y = x line twice.

Let us consider the family of curves, {tQd1(y) : t ≥ 1}. By continuity of Qd1(y) there exists a δ > 0

such that for all d∗−δ < y < d∗, we have Qd1(y)< y. From here it follows that there exists a t1 > 1 and

a point y2 ∈ (d1,d∗) such that t1Qd1(y2) = y2 and t1Q′d1
(y2)> 1. Also since Qd1(d1)> 0 and Qd1(y)> y,

for all y less than d1, therefore there exist a δ0 and a point y1 ∈ (d1,d∗) such that t1Qd1(y1) = y1, where

y1 = d1 +δ0.Thus the graph of Qy1(y) intersects the line y = x straight line at lest twice in the interval

(d1,d∗).

Step 2: Here we show the existence of the optimal threshold y∗ and the function Qy∗(y) that is

tangent to the straight line y = x. Let’s define t∗ = inf{t ≥ 1 such that tQd1(y)> y for all y ∈ (d1,d∗)}.

The infimum is well defined as the set is bounded below by 1 and t2 = d∗
d1

is greater than 1 clearly

belongs to the set. Note t1 < t < t2. We claim now t∗Qd1(y
∗) = y∗ where y∗ = inf{y : y ∈ (d1,y2) and

t∗Qd1(y) = y}. Suppose not, then either t∗Qd1(y
∗)> y∗, or t∗Qd1(y

∗)> y∗ (not possible by construction).

Since t∗Qd1(y
∗) > y∗ therefore there exist t̃ < t∗ such that t̃Qd1(y

∗) > y∗, violating the definition of

infimum, hence we have proved t∗Qd1(y
∗) = y∗. (b) t∗Q′d1

(y∗) = 1. Suppose not then t∗Q′d1
(y∗) < 1

or greater than 1. If less than 1 then the function t∗Qd1(y) intersects the line y = x at y∗ and dips

down. By continuity, there exists an interval (y∗,δ2) ⊂ (d1,d∗) such that t∗Qd1(y) < y, (contradiction

to the definition of t∗). Similar argument negates the other case. Thus we have shown the existence

of the function Qy∗(y) = t∗Qd1(y) and the optimal threshold y∗. To show that L Qy∗(y) = 0. Note that

L Qy∗(y) = L (t∗Qd1(y)) = t∗L Qd1(y) = 0, since L Qd1(y) = 0. This completes the proof of part (i).

(ii) In order to complete the proof of part (ii) we simply define Q̃(y) = Qy∗(y) for y ∈ R and y∗

as defined above. Clearly Qy∗(y) and y∗ satisfies all the conditions in (I) (see subsection 3.1). The

uniqueness of Q̃(y) and y∗ are straightforward. Let there be two thresholds y∗1 and y∗2 corresponding to

the two functions Q̃1(y) and Q̃2(y) such that y∗1 < y∗2. Clearly Q̃2(y∗1)> Q̃1(y∗1) since Q(y) is monotone
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increasing and solutions of ODE don’t intersect more than twice. By Theorem 2 and (3.7), it follows

that V (y∗1) = Q̃2(y∗1), V (y∗1) = Q̃1(y∗1), contradicting the initial assumption Q̃2(y∗1)> Q̃1(y∗1) Q.E.D.

3.9.2 Appendix (b)

3.9.2.1 Existence of free boundary for the bankruptcy model.

In this section,we present the technical details that would help us to prove the very existence of a

function Q̂(y) and an associated free boundary point y∗ which satisfy (3.7) (see subsection 2.3). The

existence and the uniqueness of the pair (Q̃(y),y∗) is established in Theorem 18 where Q̃(·) satisfies

the differential equation. The free boundary point y∗ which satisfy (3.19) would evolve as an optimal

threshold boundary for our problem. In order to accomplish our goal, we follow the following steps:

(i) We show that for large b, the boundary value problem L Qb(y) = 0, Qb(y) = b and lim
y→−∞

Qb(y) =

0 has a unique solution that has a stochastic representation given by (3.43) .

(ii) We extend the solution Qb(y) over the entire real line.

(ii)Here we show that Q′b(y) > 1 for large b > 0 and the graph of Qb(y) intersects the line y = x at

least twice in the open interval (0,d∗).

Once we have found out our candidate Qb(y) we take constant multiples of it to get a smooth fit

solution. In order to achieve our target for each b > 0 we introduce the function Qb(y) defined on

(−∞,b] as

Qb(y) = bEy[e−
∫ τb

0 (ρ+ψ(u))du] (3.43)

where

τb =

 inf{t ≥ 0 : Y (t) /∈ (−∞,b]

∞, if the above set is empty
(3.44)

In the next Lemma we show some qualitative properties of the function Qb(y). We also show that

Qb(y) is the unique solution to the boundary value problem L Qb(y) = 0, for all y < b, Qb(b) = b and

lim
y→−∞

Qb(y) = 0.

Lemma 3.7. Let b > 0 and Y (t) satisfies (3.15). We now introduce the stopping times τn by
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τn =

 inf{t ≥ 0 : Y (t) /∈ [−n,b]

∞, if the above set is empty
(3.45)

Define

Qn(y) = bEy[e−ρ
∫

τn
0 (ρ+ψ(Y (s))ds1{ω:Y (τn)=b}] (3.46)

for each y≤ b. Then we get the following results:

(i) Qn(y) is the unique solution to the boundary value problem L Qn(y) = 0 for all y ∈ (−n,b),

Qn(b) = b and Qn(−n) = 0.

(ii) Qn(y) has no local extrema and, Q′n(y)> 0 on the interval (−n,b).

(iii) for any fixed y < b, {Qn(y)}∞
n=1 is strictly increasing in n.

(iv) lim
n→∞

Qn(y) = Qb(y) for each y≤ b where Qb(y) is given by (3.43).

Proof. Since σ̃2(y), (µ̃(y)+ψ(y)) are continuous, and ρ +ψ(y) > 0 , we know from the theory of

differential equations that there exists a unique solution to the boundary value problem L Qn(y) = 0,

Qn(b) = b, Qn(−n) = 0. This unique solution is given by Qn(y) = bEy[e−ρ
∫

τn
0 (ρ+ψ(Y (s))ds1{ω:Y (τn)=b}].

It can be verified by applying Ito’s lemma to e−ρ
∫ t

0(ρ+ψ(Y (s))dsQn(Y (t)). This completes the proof of

part (i).

(ii) It’s clear from part (i) that Qn(y) ≥ 0 on (−n,b). Continuity of Qn(y) is guaranteed since it

is a solution to a second order ODE. Suppose there exist a local maximum at ỹ such that Q′n(ỹ) = 0,

ỹ ∈ (−n,b). From L Qn(y) = 0 it follows that 1
2 σ̃2(ỹ)Q′′b(ỹ)− (ρ +ψ(ỹ))Q(ỹ) = 0, since ρ , Q(ỹ),

σ̃2(ỹ) and ψ(ỹ) are all strictly positive it follows that Q′′b(ỹ)> 0, contradicting the fact that ỹ is a local

maximum. Similar argument holds for the case of a local minimum. Since Qn(−n) = 0 and Qn(b) = b

and Qn(y) is continuous with Qn(y)> 0, (since there doesn’t exist any local max or min) it follows that

Qn(y) is increasing over (−n,b). Also note it is bounded above by b. This completes the proof of part

(ii).

(iv) To show that Qn(y)’s are strictly increasing on the open interval (−∞,b) it suffices to show it

is true for any y ∈ (−n,b). By induction we can show that this holds for any y < b. By construction

Qn+1(b) = Qn(b) = b. Let us verify Qn+1(−n) > Qn(−n) = 0. We prove by contradiction. Suppose

Qn+1(−n)≤ 0 This is not possible, since Qn+1(y)> 0 for−(n+1)< y< b. Now L (Qn+1−Qn)(y) = 0
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on y ∈ (−n,b). Invoking the Maximum principle, we have Qn+1 > Qn for all y ∈ (−n,b). Since n was

arbitrary by induction it follows that Qn+1 > Qn, for y < b.

(iv) In order to complete the proof of part (iv) we do the following trick. We introduce the scale

function S(·) associated with the diffusion Y (t). Namely

S(y) =
∫ y

0
e
−2
σ̃2
∫ z

0 (µ̃(u)+ψ(u))dudz

thus

Py[Yτn = b] =
S(y)−S(−n)
S(b)−S(−n)

(3.47)

Since lim
y→−∞

ψ(y) = ∞ it follows that lim
n→∞

S(−n) =−∞. and thus by (3.47) we have lim
n→∞

Py[Yτn = b].

Let ϕn = be−ρ
∫

τn
0 (ρ+ψ(Y (s))ds1{Y (τn)=b}. Then clearly ϕn increases to ϕ a.e Py, where ϕ = e−

∫ τb
0 (ρ+ψ(u))dub.

Also 0≤ ϕn ≤ 1. Thus by bounded convergence theorem we have Qn(y) goes to Qb(y) for every y < b.

In the next proposition, we derive some properties of Qb(y).

Proposition 3.3. Given Qd(y) = bEy[e−
∫ τb

0 (ρ+ψ(u))du] for each y ∈ (−∞,b], y > 0 then the following

results hold

(i) Qb(y) satisfies L Qb(y) = 0 for all y < b.

(ii) Qb(y)> 0 and Q′b(y)> 0 for all y < b. Also Qb(y) is bounded on (−∞,b].

(iii) Qb(y) is the unique bounded solution to the boundary value problem L Qb(y) = 0 for all y < b

with the boundary conditions Qb(b) = b and lim
y→−∞

Qb(y) = 0.

Proof: The proof of part (i) is almost similar to part(i) of proposition 12.

(ii) This is similar to that in proposition 12 and thus omitted.

(iii) Note Qb(y) is non-negative and strictly increasing thus lim
y→−∞

Qb(y) exists and is finite, say `. We

have to show that l = 0. In order to show lim
y→−∞

Qb(y) = 0, we do the following trick. Note L Qb(y) = 0

can be written as Q′′(y)+ 2(µ̃(y)+ψ(y))
σ̃2(y) Q′(y)− 2(ρ+ψ(y))

σ̃2(y) Q(y) = 0. Since µ̃(y) and σ̃2(y) are bounded

and ψ(y) is strictly increasing it follows that 2(µ̃(y)+ψ(y))
σ̃2(y) ≥ M > 0, for all y ≤ y0. Hence it follows

that Q′′(y)+MQ′(y)≤ 2(ρ+ψ(y))
σ̃2(y) Q(y), for all y≤ y0. Since σ̃2(y)≥ δ0,(follows from the boundedness

criterion) it follows that Q′′(y)+MQ′(y)≤ δ0(ρ +ψ(y))Q(y), for all y≤ y0. Since µ̃(y)< K2 we have

Q′′(y)+ [K2 +ψ(y)]Q′(y) ≥ δ0(ρ +ψ(y))Q(y) or Q′′(y)
[K2+ψ(y)] +Q′(y) ≥ δ0

(ρ+ψ(y))
[K2+ψ(y)]Q(y). By integration,
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we see that
∫ y0

y
Q′′(x)

[K2+ψ(x)]dx+Q(y0) ≥ l + l(y0− y). Here we used the fact that as y takes very large

negative value Q(y)' l. Note that

Q(y0)+
∫ y0

y

Q′′(x)
[K2 +ψ(x)]

dx

= Q(y0)+
Q′(y0)

[K2 +ψ(y0)]
− Q′(y)

[K2 +ψ(y)]
−
∫ y0

y
Q′(u)

d
du

(
1

[K2 +ψ(u)]
)du

≥ l + l(y0− y)

Consequently,

Q(y0)+
Q′(y0)

[K2 +ψ(y0)]
≥ Q′(y)

[K2 +ψ(y)]
+
∫ y0

y
Q′(u)

d
du

(
1

[K2 +ψ(u)]
)du+ l + l(y0− y)

Note the left hand side is a finite positive number, as y goes to −∞ the right hand side tends to

infinity, a contradiction. Thus `= 0. This implies that lim
y→−∞

Qb(y) = 0. Q.E.D.

Our next goal is to extend each Qb(y) to R so that it satisfies the differential equation L Qb(y)= 0 for

all y∈R. Each such Qb(y) is positive and strictly increasing over R. Also Qb(b)= d and lim
y→−∞

Qb(y)= 0.

The proofs of these facts runs along similar lines to that in part (ii) of Lemma 11. In the next proposition

we show that there exists a curve Qb1(y) among the family of solutions to L Qb(y) = 0 such that it

intersects the line y = x at least twice in the interval (0,b∗) where b∗ is defined below.

Proposition 3.4. There exists a function Qb1(y) such that it intersects the line y = x at least twice in the

interval (0,b∗] where Q′b1
(b∗)> 1, Qb1(b∗) = b∗ , y ∈ (b1,b∗), and Qb1(y)< y.

Proof. We first give a brief outline of how to proceed. Since Qb(b) = b, each function Qb(·) has

one common point with the line y = b. Next we intend to find a point b∗ = inf{y : Qb(y) ≥ y and

Q′b(y)> 1}. Having obtained a point like b∗ we show that the curve Qb(y) intersects the line y = x twice

in the interval (0,b∗]

Step 1: Let b1 be the first point of intersection of the curve Qb1(y) with the y = x line. Since Qb1(y)

is increasing therefore at b∗ slope of Qb1(y) is less than 1. By continuity there exists a point y0 to be

defined below such that Qb1(y0) < y0. Let us choose a function F(y) = C1eC2y such that it satisfies
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the following conditions (i) F ′(y0) = C1C2eC2y0 = k < Q′b1
(y0) (ii) Qb(y0) = F(y0). We now state the

methods by which y0 and the constants C1, C2 are chosen.

Rule 1 : Since h(y) is bounded above on (0,∞), and ψ(·) is a decreasing function we can choose

y0 > 0 such that

σ2

2
h2(y)+ µ̃(y)+ψ(y) = µh(y)+(1−h(y))r0 +ψ(y)≤M

for all y ∈ [y0,∞). We now choose C2 small enough such that

σ2

2
h2(y)C2

2 +(µ̃(y)+ψ(y))C2 ≤ ρ < (ρ +ψ(y))

such a choice of C2 is possible since σ2

2 h2(y)+ µ̃(y)+ψ(y) is bounded. | σ2

2 h2(y)+ µ̃(y)+ψ(y) |≤

M. Call C5 the C2 that satisfies this condition. Also C2 must satisfy F ′(y0) =C2Qb(y0). Call it C6. For

C2 < min{C5,C6}=C∗2 both of them holds simultaneously.

Rule 2: Let C1 be such that

C1eC2y0 = Qb(y0)

Step 2: Introduce the differential operator L = σ2

2 h2(y) d2

dy2 +(µ̃(y)+ψ(y)) d
dy − (ρ +ψ(y)). Now

L F = [σ2

2 h2(y)C2
2 + (µ̃(y) + ψ(y))C2 − (ρ + ψ(y))]F(y) < 0. This follows from the boundedness

criterion mentioned in Rule 1 and the fact that F(y) is greater than 0. Now L (Qb1 −F) = −L F > 0

for all y ≥ y0. Define η(y) = Qb1(y)−F(y). Clearly at y0, η(y0) = 0. We claim that for all y ≥ y0,

Qb1(y) > F(y) holds. Once we have shown this we are done. Since Qb1(y) lies above an exponential

curve and it intersected the y = x line where it’s slope was less than 1, it follows that thereafter if it

intersects y = x line then it’s slope would be greater than 1.

Now we prove Qb1(y)> F(y), for all y > y0. Suppose not, then there exist, y1 such that Qb1(y1)≤

F(y1) and y1 > y0. Since at y0, Qb1(y0) = F(y0) and Q′b1
(y0) > F(y0) therefore for y0 < y < y0 +δ we

have F(y)<Qb1(y), thus y1 > y0+δ . Define z= inf{y : y> y0 : F(y)≥Qb1(y)}. Clearly y0+δ < z≤ y1.

By continuity of F(y) and Qb1(y), F(z) = Q(z). Also F(y)< Q(y) on the interval (y0,z). Thus we have

η(y0) = 0 and η(z) = 0 and L η > 0, for all y≥ y0. Hence we conclude L η > 0 for all y∈ (y0,z). Thus

by the Maximum Principle η < 0 on the interval (y0,z). Hence Q(y)< F(y) on (y0,z), a contradiction
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to the fact that Q(y)> F(y) on (y0,y0 +δ ). Thus Q(y)> F(y) for all y≥ y0. Thus Q(y) intersects the

straight line twice in the interval (b1,b∗). This completes our proof.

Once we have established the existence of a curve like Qb1(y) that intersects the line y at least twice

we are almost done. We give a road map of what we intend to do. In step1 we show that there exists a

curve that lies above Qb1(y) that intersects the y = x at least twice. In step 2 we take constant multiples

of it until we reach a point of tangency between one such curve and the line y = x. This determines the

optimal threshold or the free boundary. The next proposition aptly demonstrates this fact.

Theorem 3.6. (i) There exists a point y∗ ∈ (b1,b∗) and a strictly positive function Qy∗(y) defined on R

such that Qy∗(y∗) = y∗, Qy∗(y)> y for all y ∈ R/{y∗} and Q′y∗(y) = 1, L Qy∗(y) = 0 for all y ∈ R.

(ii) There exists a function Q̂ : R→ R+ that satisfies all the conditions of (19). Moreover the thresh-

old y∗ and the function Q̂ are unique.

Proof. The proof of this is identical with Theorem 14 and hence omitted.

Lemma 3.8. If b > 0 and consider the function Qb(·) extended to (−∞,∞). If ρ > µ1. Where µ1 =

1
2 σ̃2 + µ̃ . Then

Q́b−Qb ≥
∫ y

−∞

e−
∫ y

z (1+
2

σ̃2 µ̃+ 2
σ̃2 ψ)du 2

σ̃2 (ρ−µ1)Qb(z)dz for every y ∈ R (3.48)

Proof. The differential operator associated with Qb is given by Lψ = 1
2 σ̃2(y) d2

dy2 +(µ̃(y)+ψ(y)) d
dy−

(ρ +ψ(y)) with Qb(−∞) = 0 and Qb(b) = b. Introduce the function Hb(y) = Q́b(y)−Qb(y). Substitut-

ing this in (3.48) and rearranging terms we get

H b́ +(1+
2

σ̃2 µ +
2

σ̃2 ψ)Hb =
2

σ̃2 (ρ−µ1)Qb(y)

Multiplying the above equation by the integrating factor e−
∫ y

c (1+
2

σ̃2 µ̃+ 2
σ̃2 ψ)du we obtain

d(Hb(y))e
∫ y

c (1+
2

σ̃2 µ+ 2
σ̃2 ψ)du

= e
∫ y

c (1+
2

σ̃2 µ+ 2
σ̃2 ψ)du

[
2

σ̃2 (ρ−µ1)Qb(y)]du

Integrating we have

Hb(y) = Hb(c)e
−
∫ y

c (1+
2

σ̃2 µ+ 2
σ̃2 ψ)du

+
∫ y

c
e−

∫ y
z (1+

2
σ̃2 µ+ 2

σ̃2 ψ)du
[

2
σ̃2 (ρ−µ1)Qb(y)]du
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Now, Hb(c) = Q́b(c)−Qb(c). Thus Hb(c)+Qb(c)> 0. This implies Hb(c)>−Qb(c). By letting c

tend to −∞, it follows

lim
c−→−∞

e−
∫ y

c ((1+
2

σ̃2 µ+ 2
σ̃2 ψ)duHb(c)≥− lim

c−→−∞
Qb(c)e

−
∫ y

c (1+
2

σ̃2 µ+ 2
σ̃2 ψ)du

= 0

As c tends to −∞ we have Qb(−∞) = 0. Thus it follows that

Hb(y) = Q́b−Qb ≥
∫ y

c
e−

∫ y
z (1+

2
σ̃2 µ+ 2

σ̃2 ψ)du
[

2
σ̃2 (ρ−µ1)Qb(y)]du

From the above equation it follows that Q́b−Qb ≥ 0 if ρ > µ1. This completes the proof.
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CHAPTER 4. NUMERICAL ANALYSIS

4.1 Numerical Results

In this chapter, we show numerically the impact of change in parameters on optimal threshold and

value function. We also verify and illustrate numerically the monotonicity of the optimal exercise

boundary and the value function with respect to the default intensity. The theory of dynamic program-

ming for optimal stopping problems suggests that the optimal stopping problem is a smooth solution of

HJB equation given in (3.17). This is the starting point of our numerical method. The optimal exercise

boundary y∗ and the value function V (y) are calculated numerically by solving the following boundary

value problem.

1
2

σ̃
2(y)Q′′(y)+(µ̃(y)+ψ(y))Q′(y)− (ρ +ψ(y))Q(y) = 0

Q(y) = y and limQ(y)
y−→−∞

= 0

We use the Matlab boundary value problem solver (bvp4c or bvp5c) to solve the problem. These solvers

decompose the differential equation into a system of first order ODE’s and use the collocation method to

solve the differential equations and are quite robust in solving both linear and non-linear ODE’s. In the

following set of examples unless otherwise stated, we assume volatility parameter σ = 0.5, r0 = 0.05

(risk free interest rate), µ = 0.25 (mean rate of return), and the rate of discount ρ = 1. The portfolio

process is chosen h(y) = 1
2(

2
π

arctan(exp(y))+1). Our initial interest is to study the effect of a change

in volatility of the stock price on the optimal threshold and value function.

4.1.1 Effect of a change in volatility σ

Here we summarize the effect of change in volatility of stock price on the optimal threshold and the

value function. Keeping other things fixed numerical tests shows that as volatility increases the optimal
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threshold also increases. This is captured in the Table 1 below.

σ r0 µ ρ y∗

0.5 0.05 0.25 1 0.530253

0.9 0.05 0.25 1 0.605261

3.0 0.05 0.25 1 0.848685

4.0 0.05 0.25 1 0.894289

Table 1

Figure 1. Effect of σ on optimal threshold.

Figure 1 plots the value functions for the corresponding values of volatility. We see that both

the optimal threshold and the value function monotonically increases with volatility. The economic

interpretation of the above findings is the following : as volatility of stock price increases agents want

to quit from the stock market early as a result stock price tends to fall which in turn increases the default
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intensity ψ(·) . The rise in intensity of default increases the drift coefficient of the SDE governing the

wealth process. On this count agents wants to hold their position in stock market a little longer but the

discount factor also increases by the same factor propelling the agents to quit from the stock market

early. This is what makes the intensity modelling interesting. It turns out that in the parameter range

that we have chosen the effect of a rise in effective drift coefficient µ̃(·)+ψ(·) more than offsets the rise

in effective discount rate ρ +ψ(·). This explains why optimal threshold and value function increases

with volatility. The next example gives a completely different picture. Here we measure the effect of

volatility on optimal threshold taking into consideration that the mean return of the stock increased from

0.25 to 4. Table 2 presents optimal thresholds for various levels of volatility.

σ r0 µ ρ y∗

0.5 0.05 2 1 1.782778

0.9 0.05 2 1 1.649165

3 0.05 2 1 1.151115

4 0.05 2 1 1.090309

Table 2

To our surprise we see a diametrically opposite picture. As volatility increases optimal threshold

falls. Again this can be explained via the counteractive forces. The rise in mean return of stock price

coupled with an increase in volatility causes the stock price to be highly volatile than the previous

scenario. This causes a fall in stock price which in turn increases the default intensity thereby causing

a forward drift. It turns out in this case that the rise in discount rate more than offsets the positive effect

from the drift term. Fig 2 shows an inverse relationship between value function and volatility.
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Figure 2. Effect of σ on threshold given µ = 2.

4.1.2 Effect of a change in mean return µ

In this section we address the issue of an increase in mean rate of return µ of the stock on optimal

threshold and pay-off. As mean return increases we see from Table 3 that optimal threshold increases.

σ r0 µ ρ y∗

0.5 0.05 0.25 2 0.371437

0.5 0.05 0.8 2 0.50185

0.5 0.05 1.5 2 0.711871

0.5 0.05 2 2 0.894889

Table 3

This is quite intuitive. For as mean return of the stock increases keeping other things fixed µ̃(·) in-

creases thus agents tend to hold their position in the stock market for a longer time. Consequently there

is a positive monotone relationship between value function and mean rate of return. Fig 3.illustrates

this view.
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Figure 3. Effect of µ on threshold.

4.1.2.1 Effect of a change in interest rate r0 and discount factor ρ

These effects are pretty much counterintuitve and we sum them up in the findings of Table 4 and

Table 5.

σ r0 µ ρ y∗

0.5 0.05 0.25 1 0.530053

0.5 1 0.25 1 0.609861

0.5 2 0.25 1 0.690544

0.5 4 0.25 1 0.839134

σ r0 µ ρ y∗

0.5 0.05 0.25 0.09 1.429143

0.5 0.05 0.25 0.2 1.044904

0.5 0.05 0.25 1 0.530253

0.5 0.05 0.25 1.5 0.433043

Table 4 Table 5

We see from Table 4 that as interest rate increases optimal threshold also increases. This is obvious

since as interest rate rises the drift term µ̃(·) increases which allows the agent to wait a little longer

so that one can reap the benefits of higher expected return. This is illustrated in figure 4 below. On

the contrary when ρ increases the mirror opposite holds true. From Table 5 we observe that there is

an inverse relation between the discount factor and the optimal threshold. We can argue this along the



78

following lines. As ρ increases the discounted present value of utility falls and also the mean return

from the wealth process ( as ρ increases µ̃(·) falls). Thus agents don’t have a tendency to wait long

as waiting is costly and hence we observe a fall in optimal threshold as the discount factor increases.

Figure 5 illustrates this graphically.

Figure 4. Effect of r0 on threshold.
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Figure 5. Effect of ρ on threshold.

4.1.2.2 Effect of p on optimal threshold.

In this section, we numerically verify the monotonicity result obtained in section 5. We consider

a family {e−py} of default intensity functions parametrized by p and investigate the influence of it on

the boundary y∗. We intend to answer the following question. How does the default intensity function

ψ(x) affect the optimal threshold y∗ and the value function V (y). From Table 6 we see that y∗ obtained

from any jump-to default model is always higher than the no-default model. Also we see that for

ψ3(y)> ψ2(y) we have y∗ψ3
> y∗ψ2

and Vψ3(y)>Vψ2(y). This reassures the validity of the monotonicity

results numerically.

Default Intensity y∗

ψ1(y) = 0 0.513051

ψ2(y) = e−0.6y 0.68146

ψ3(y) = e−y 1.391539

Table 6



80

Figure 6. Effect of ψ(·) on threshold.

4.2 Discussion and Future Research

• The results of our numerical analysis provide further insights into the linkages between optimal

threshold boundary, value function and relevant policy variables. In particular, we show that there

is a positive monotone relationship between optimal threshold boundary and volatility. This leads

to future research questions. Can we show theoretically whether optimal threshold increases with

volatility. Does value function increases with volatility for a given set of parameter choices. Also

we intend to find a sequence of portfolio choices {pn(y)}n≥1 and try to find out numerically the

optimal trading strategy. This would be of considerable importance from a practitioner’s point of

view as it would determine the optimal buy and hold strategy.

• Throughout our analysis chapter 3, we have taken the market rate of interest to be fixed. One

can relax the assumption of a fixed rate of interest and instead allow the interest rate to follow

a short rate model. In particular, we can assume that interest rate evolves according to Ho-

Lee model in mathematical finance. In financial mathematics, the Ho–Lee model is a short rate

model widely used in the pricing of bond options, swaptions and other interest rate derivatives,

and in modeling future interest rates. Under this model, the short rate follows a normal process

dr(t) = θ(t)dt +σdW (t). Here θ(t) represents time dependent drift term. An optimal portfolio

process in this framework with finite time horizon has been explicitly dealt by Korn and Kraft

(2001). One can try to extend it in the infinite time horizon incorporating default in an investor’s

wealth.

• Another direction for future work would be to find an optimal stopping rule among the class of

all stopping times under a regime switching model. Regime switching models refers to the case

where we model stock price movements as a geometric Brownian motion coupled by a finite

state space Markov chain. For a detailed analysis of regime switching models one can refer to

Yin and Zhu [2010], X.Guo [2001]. Such models can incorporate the behavior of stock-prices

during market cycles and thus making it more realistic. We plan to work on optimal portfolio

investment problems related to this model. We are interested in addressing this issue since, in
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finance literature generally stock price movements are modeled as geometric Brownian motion

(GBM) with deterministic coefficients. But this has serious limitations due to its insensitivity to

random parameter changes such as changes in market trends.

• A passport option grants its holder the right to engage in a short/long trading strategy of his own

choice, while obligating the option writer to cover any net losses on the strategy. Passport option

has been studied by Hyer et.al. [1997], Andersen et.al. [1998], Henderson and Hobson [1999],

Delbaen and Yor [1999] and Nagayama [1999]. Heyer et. [1997] provide a closed form solution

of the value function in absence of transaction costs. In contrast to previous papers Shreve and

Vecer [2000] using probabilistic techniques found the value of the option, the optimal strategy of

the buyer in absence of transaction costs. Our interest stems from the fact that such an optimal

strategy derived in Shreve and Vecer [2000] cannot be implemented in the presence of transaction

costs since there will be infinite no of transactions. Hence such a strategy is not optimal in the

presence of transaction costs. We would like to consider how the optimal strategy is in presence

of proportional transaction cost.
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