Scout Now for Palmer Amaranth

Meaghan J. B. Anderson
Iowa State University, mjanders@iastate.edu

Robert G. Hartzler
Iowa State University, hartzler@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/cropnews

Part of the [Agricultural Science Commons](https://lib.dr.iastate.edu/cropnews) and the [Agriculture Commons](https://lib.dr.iastate.edu/cropnews)

Recommended Citation
https://lib.dr.iastate.edu/cropnews/2575

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Scout Now for Palmer Amaranth

Abstract
Now is a great time to scout for Palmer amaranth (Amaranthus palmeri) in Iowa cropfields. As of late 2018, this species had been identified in over half of Iowa's 99 counties. While new identifications have waned since the widespread introductions in 2016, Palmer amaranth is a species to watch out for in virtually any Iowa crop field. A native of the American southwest, Palmer amaranth is more competitive than common waterhemp (Amaranthus tuberculatus), a pigweed native to Iowa. Both species are known for fast development of herbicide resistance, prolific seed production (>500,000 seeds/plant possible), and prolonged emergence.

Disciplines
Agricultural Science | Agriculture

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/cropnews/2575
Now is a great time to scout for Palmer amaranth (*Amaranthus palmeri*) in Iowa crop fields. As of late 2018, this species had been identified in over half of Iowa’s 99 counties. While new identifications have waned since the widespread introductions in 2016, Palmer amaranth is a species to watch out for in virtually any Iowa crop field. A native of the American southwest, Palmer amaranth is more competitive than common waterhemp (*Amaranthus tuberculatus*), a pigweed native to Iowa. Both species are known for fast development of herbicide resistance, prolific seed production (>500,000 seeds/plant possible), and prolonged emergence.

The addition of Palmer amaranth to Iowa’s noxious weed law as of July 1, 2017 highlights the importance of this weed to Iowans and its potential impact on Iowa agriculture. Early identification is key to eradicating this weed from Iowa fields. Eradication cannot happen without vigilance, early detection, and appropriate response soon after it invades an area. Palmer amaranth is reaching the growth stage where distinguishing it from waterhemp is easier due to the presence of flowers. In addition to fields where Palmer amaranth has been found previously, other priority areas to scout include farms that utilize feed and bedding from southern states, fields receiving manure from those farms, and farms where out-of-state equipment has been used.

Palmer amaranth and waterhemp lack pubescence (hair) on plant parts like stems, petioles, and leaves, while other common amaranth (pigweed) species have hair on stems and/or leaves. Early in the growing season, Palmer amaranth is difficult to differentiate from waterhemp due to the high variability in both species. Leaves on Palmer amaranth often have a petiole that is longer than the leaf blade, this is the most reliable vegetative trait to differentiate the two species (Figure 1). Leaves on Palmer amaranth are often clustered tightly at the top of the plant. People often observe Palmer amaranth as a denser-canopied weed as well (Figure 2).
Once they flower, Palmer amaranth and waterhemp produce male and female flowers on separate plants. Identifying males from females should be relatively simple due to the small, black seed produced by female flowers or the presence of pollen on male plants. Female Palmer amaranth are easy to distinguish from waterhemp due to their long, sharp bracts (Figure 3) surrounding the flowers on tall terminal inflorescences (Figure 4). If you discover this weed, steps should be taken to remove all plants to prevent seed production.
Figure 3. Comparison of a female Palmer amaranth flower and a female waterhemp flower.

Figure 4. Female Palmer amaranth with long terminal inflorescences.
Continued vigilance is imperative to slow the speed with which Palmer amaranth invades our state. If you observe a plant that you think may be Palmer amaranth, please don’t hesitate to contact Bob Hartzler at 515-294-1164 or hartzler@iastate.edu or Meaghan Anderson at 319-331-0058 or mjanders@iastate.edu.

Category: Weeds

Links to this article are strongly encouraged, and this article may be republished without further permission if published as written and if credit is given to the author, Integrated Crop Management News, and Iowa State University Extension and Outreach. If this article is to be used in any other manner, permission from the author is required. This article was originally published on August 1, 2019. The information contained within may not be the most current and accurate depending on when it is accessed.

Crops:
Corn Soybean

Tags: palmer amaranth characteristics of palmer amaranth Palmer Amaranth and Waterhemp Palmer amaranth identification weed identification

Authors:

Meaghan Anderson Field Agronomist in Central Iowa
Meaghan Anderson is a field agronomist in central Iowa and an extension field specialist at Iowa State University Extension and Outreach. Educational programming is available for farmers, agribusinesses, pesticide applicators, certified crop advisors, and other individuals interested in...

Bob Hartzler Professor of Agronomy
Dr. Bob Hartzler is a professor of agronomy and an extension weed specialist. He conducts research on weed biology and how it impacts the efficacy of weed management programs in corn and soybean. Dr. Hartzler also teaches undergraduate classes in weed science and weed identification...