Managing Winter Annual Weeds this Spring

Meaghan J. B. Anderson
Iowa State University, mjanders@iastate.edu

Robert G. Hartzler
Iowa State University, hartzler@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, and the Agriculture Commons

Recommended Citation
https://lib.dr.iastate.edu/cropnews/2611

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Managing Winter Annual Weeds this Spring

Abstract
After another relatively wet fall, late harvest season, and mild winter, early weed management may be important this spring for those who have persistent issues with winter annuals such as field pennycress and horseweed/marestail in no-till. Winter annuals resume growth soon after the arrival of warm temperatures, so as soon as fields are fit, the weeds will be susceptible to spray.

Disciplines
Agricultural Science | Agriculture

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/cropnews/2611
Managing Winter Annual Weeds this Spring

March 20, 2020

After another relatively wet fall, late harvest season, and mild winter, early weed management may be important this spring for those who have persistent issues with winter annuals such as field pennycress and horseweed/marestail in no-till. Winter annuals resume growth soon after the arrival of warm temperatures, so as soon as fields are fit, the weeds will be susceptible to spray.
A common winter annual, horseweed/marestail, prior to bolting in the spring.

Applications made prior to planting increase the consistency of control of these weeds, particularly horseweed. Many of these weeds are either flowering or beginning to bolt,
where the stems elongate, at the time of planting. Achieving full control of weeds at these stages becomes difficult.

Effective burndown treatments should follow herbicide label suggestions for carrier type, carrier volume, nozzle type, and environmental considerations. Treatments made on sunny days with warm daytime and nighttime (>40°F) temperatures will generally be more successful than those in cooler conditions.

When selecting burndown treatments, consider the likelihood of resistant horseweed biotypes in the field. Herbicide group (HG)\(^1\) 9 (glyphosate) and HG 2 (ALS) resistant populations are widespread across the state. Including 0.5 lb a.e. 2,4-D LVE, 0.25-0.5 lb a.e. dicamba (HG 4) or 1 oz Sharpen (HG 14) or another saflufenacil product to glyphosate will increase the consistency of horseweed control, even in fields without glyphosate resistance.

Check pesticide labels for planting restrictions; most 2,4-D labels have a 7-14 day planting restriction for corn or soybean following a 2,4-D application. Ester formulations of 2,4-D allow for a shorter interval to crop planting than amine formulations. In addition, esters often perform better under the cool conditions commonly encountered with spring applications. Dicamba can also be used preplant in soybean, but has longer replant restrictions than 2,4-D (14 days at 0.25 lb a.e. and 28 days for 0.50 lb a.e.). When dicamba or 2,4-D resistant soybean varieties are planted, a dicamba or 2,4-D product that is registered for use on those varieties can be used preplant without any planting delay.

The use of an effective early burndown against winter annual and early spring weeds is an important first step to achieving a clean field for crop planting. By including a product with residual activity, fields should remain weed-free and will allow for a delay in the next herbicide application until after crop planting. While this application is not necessary in many fields, those no-till fields with known winter annual weed issues may be good targets for an early burndown this spring.

\(^1\)The Group number refers to the site of action of a herbicide. The Group number is displayed on the first page of the herbicide label, and is important information for developing resilient weed management programs less likely to select resistant weeds.

Links to this article are strongly encouraged, and this article may be republished without further permission if published as written and if credit is given to the author, Integrated Crop Management News, and Iowa State University Extension and Outreach. If this
Managing Winter Annual Weeds this Spring | Integrated Crop Management

article is to be used in any other manner, permission from the author is required. This article was originally published on March 20, 2020. The information contained within may not be the most current and accurate depending on when it is accessed.

Category: Weeds

Tags: winter annuals annual weeds weed management spring horseweed burndown treatment herbicide resistant weeds

Authors:

Meaghan Anderson Field Agronomist in Central Iowa

Meaghan Anderson is a field agronomist in central Iowa and an extension field specialist at Iowa State University Extension and Outreach. Educational programming is available for farmers, agribusinesses, pesticide applicators, certified crop advisors, and other individuals interested in...

Bob Hartzler Professor of Agronomy

Dr. Bob Hartzler is a professor of agronomy and an extension weed specialist. He conducts research on weed biology and how it impacts the efficacy of weed management programs in corn and soybean. Dr. Hartzler also teaches undergraduate classes in weed science and weed identification...