Alfalfa Weevils Active throughout Southern Iowa

Ashley Dean
iowa State University, adean@iastate.edu

Erin W. Hodgson
iowa State University, ewh@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, and the Agriculture Commons

Recommended Citation
https://lib.dr.iastate.edu/cropnews/2682

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Alfalfa Weevils Active throughout Southern Iowa

Abstract
Adult alfalfa weevils become active and start laying eggs as soon as temperatures exceed 48°F. Like other insects, the development of alfalfa weevil depends on temperature, and we can use accumulation of growing degree days (GDD) to predict activity. Alfalfa weevil egg hatching begins when 200-300 GDD (base 48°F) have accumulated since January 1.

Disciplines
Agricultural Science | Agriculture

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/cropnews/2682
Alfalfa Weevils Active throughout Southern Iowa

April 12, 2021

Adult alfalfa weevils become active and start laying eggs as soon as temperatures exceed 48°F. Like other insects, the development of alfalfa weevil depends on temperature, and we can use accumulation of growing degree days (GDD) to predict activity. Alfalfa weevil egg hatching begins when 200-300 GDD (base 48°F) have accumulated since January 1.

Based on accumulated temperatures since January, alfalfa weevils may be active in the southern half of the state (Figure 1). In Iowa, fields south of Interstate 80 should be scouted beginning at 200 GDD and fields north of Interstate 80 should be scouted beginning at 250 degree days. Areas in northern Iowa have lower GDD accumulation and may not see activity yet, but with forecasted temperatures we could see activity by the end of April.
Figure 1. Accumulated growing degree days (base 48°F) in Iowa from January 1 – April 8, 2021. Map courtesy of Iowa Environmental Mesonet, ISU Department of Agronomy.

Biology

Alfalfa weevil is an important defoliating pest in alfalfa. Heavy infestations can reduce tonnage and forage quality. Alfalfa weevil larvae typically cause the majority of plant injury. Newly hatched larvae can be found feeding on terminal leaves, leaving newly expanded leaves skeletonized. Maturing larvae (Photo 1) move down the plant and begin feeding between leaf veins. Peak larval activity occurs around 575 GDD. Silken pupal cases are often attached to leaves in the lower canopy or in leaf litter.
Photo 1. Mature alfalfa weevil larvae have a dark head and pale green body with a white stripe down the back. Fully-grown larvae are about 5/16 inches long. Photo by John Obermeyer, Purdue University Extension.

The time it takes to reach the adult stage is dependent on temperature but is usually around eight weeks. Adults (Photo 2) cause less plant injury than larvae. They feed along the leaf margin, leaving irregular notches. Female alfalfa weevils can lay 800-4,000 eggs in a lifetime and insert 5-20 eggs at a time into alfalfa stems. A heavily infested field will look frosted or silver (Photo 3).
Photo 2. Alfalfa weevil adults have an elongated snout and elbowed antennae. Their wings and body are mottled or brown. Photo by Clemson University – USDA Cooperative Extension Slide Series, Bugwood.org.

Scouting and Management

After reaching benchmark degree days (200 in southern Iowa and 250 in northern Iowa), use a sweep net to sample for adults and larvae. South-facing slopes warm up faster and may be a place to start sampling. Once the first larvae are collected in your sweep net, you need to know four pieces of information to decide if the economic threshold has been reached in that field:

1. Market value of the hay ($/ton).
2. Control costs ($/acre).
3. Plant height (inches).
4. Number of larvae.

The last two pieces of the economic threshold determination can be gathered by scouting the field. Collect six alfalfa stems from 5 random locations throughout the field (total of 30 stems) by breaking them off at the base, making sure to be gentle so as not to lose larvae during the process. Measure the height of these plants. Most of the larvae can be dislodged by vigorously shaking the stems into a bucket. Small larvae can be difficult to separate from the plant, so the plants should also be carefully inspected after shaking. Take the average plant height and count the total number of larvae per 30 stems, then use Table 1 to determine if an insecticide application is warranted.

Cutting alfalfa is an effective management tool for alfalfa weevil larvae, and an insecticide application may be avoided if harvesting occurs within a few days of reaching the economic threshold. Harvesting is preferred to chemical treatments once plants are 16 inches tall.
Table 1. Economic threshold of alfalfa weevil, based on the total number of larvae in a 30-stem sample (Originally published by John Tooker, Penn State Extension).

<table>
<thead>
<tr>
<th>Hay value ($/ton)</th>
<th>Plants 12-18 inches AND Control costs ($/acre)</th>
<th>Plants 18-24 inches AND Control costs ($/acre)</th>
<th>Plants 24-30 inches AND Control costs ($/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$12</td>
<td>$14</td>
<td>$16</td>
</tr>
<tr>
<td>$120</td>
<td>68</td>
<td>79</td>
<td>91</td>
</tr>
<tr>
<td>$140</td>
<td>59</td>
<td>68</td>
<td>77</td>
</tr>
<tr>
<td>$160</td>
<td>51</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>$180</td>
<td>45</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>$200</td>
<td>41</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>$220</td>
<td>37</td>
<td>43</td>
<td>49</td>
</tr>
<tr>
<td>$240</td>
<td>34</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>$260</td>
<td>31</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>$280</td>
<td>29</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>$300</td>
<td>27</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>$320</td>
<td>26</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>$340</td>
<td>24</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>$360</td>
<td>23</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>$380</td>
<td>22</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>$400</td>
<td>20</td>
<td>24</td>
<td>27</td>
</tr>
</tbody>
</table>

For more information on how to interpret the table, click here.

Category: Insects and Mites

Links to this article are strongly encouraged, and this article may be republished without further permission if published as written and if credit is given to the author, Integrated Crop Management News, and Iowa State University Extension and Outreach. If this article is to be used in any other manner, permission from the author is required. This article was originally published on April 12, 2021. The information contained within may not be the most current and accurate depending on when it is accessed.

Crop:

Biomass and Forage

Tags: alfalfa weevil insect pest southern Iowa egg laying weevil alfalfa weevil adult
Authors:

Ashley Dean
Education Extension Specialist
Ashley is an education extension specialist for field crop entomology at Iowa State University. She coordinates the Iowa Moth Trapping Network, develops educational resources for field crop pests in Iowa, and aids in the research efforts of the

Erin Hodgson
Professor
Dr. Erin Hodgson started working in the Department of Entomology at Iowa State University in 2009. She is an associate professor with extension and research responsibilities in corn and soybeans. She has a general background in integrated pest management (IPM) for field crops. Dr. Hodgson's curre...