Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures

Thumbnail Image
Date
2012-01-01
Authors
Liu, Rui
Major Professor
Advisor
Joseph Shinar
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Physics and Astronomy
Abstract

Organic light emitting diodes (OLEDs) have advanced dramatically since they exhibit great promise in various applications such as displays, solid-state lighting, and (bio)chemical sensing. In this dissertation, multiple approaches were employed to enhance the performance of OLEDs and OLED-based sensing platforms. Comprehensive investigations were conducted on electroluminescence (EL) spikes and tails in charge trapping guest-host OLEDs and their influence on OLED-based sensor performance. Novel microstructures and device architectures were developed to construct OLED sources with spectrally selective and enhanced emission. The peak emission wavelength of the multicolor microcavity devices with MoO3 as the HIL/spacer was tunable from 493 to 639 nm. The controlled microporous structures formed by polystyrene (PS):polyethylene glycol (PEG) was able to enhance the forward light extraction of the OLED by up to ~60%. The combination of the PtOEP:PS:PEG sensing film coupled with the multicolor microcavity OLEDs and the appropriate OPD, and the possibility to combine time- and intensity-domain analyses have shed light on the opportunities to realize simple, compact, potentially disposable sensors for the detection of O2, pH and other (bio)chemical analytes and parameters.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2012