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3. (r,l) If (3.25) Intersects U at one point; 

4. (0,r^) and (r^, l) if (3.25)intersects either L at 

two points or U at two points; 

5. (0,1) if (3.25) intersects L and U each at two 

points or no intersections exist. 

For the example that (x^,Xg) = (II.5, 6.0), we see from 

Figure 5 that _q = .26 and p = .86. 

It is interesting to note that if p < .5 < p, a confi

dence interval obtained based on the interpolation tests is 

always shorter than one based on two-sided UMPTJ tests. 

However, the same statement may or may not be true if either 

p < .5 or _£ > .5. 

To compare the results obtained with Figures 4 and 5, 

we compute the unweighted average length of confidence 

intervals for a total of 55^5 sample points (x^^xg) in the 

shaded area Sq of Figure 1. These sample points consist 

of x^ = 8.0(0.5)60.0 and Xg = 3.0(0.5)x^, where x^ is the 

largest value of Xg that satisfies Xg < x^ - Cj~T for any 

given x^. The confidence limits were computed by numerical 

method, giving a much better precision than one would have 

by obtaining the limits directly from the Figures. The 

results (Table 7) show that for x^ not too large, the gain 

by the interpolation tests is considerable. 

4. Generalization of the procedure 

We shall consider the, use of the graphical method in 

some more general situations. 
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Table 7. Average length of confidence intervals for 
8 < < 60f C < Xg < x^-C where C = 1.96/^ 

X, 

Number 
of 

Sample 
Points 

Average length 
based on 

TÎ1 
Interpolation 

tests 

(21 
Two-sided 
UMPU tests 

X 100 

8 < ^1 < 10 15 .7010 . .1919 87.86 

10 < X3_ < 15 105 .5148 .5615 91.68 

15 < X3_ < 20 205 .3813 .4073 93.62 

20 < x^ < 25 305 .3034 .3189 95.14 . 

25 < x^ < 30 405 .2517 .2621 96.02 

30 < X3_ < 35 505 .2152 .2225 96.71 

35 < x^ < 4o 605 .1881 .1934 97.27, 

4o < x^ < 45 705 .1671 .1710 97.74 

45 < x^ < 50 805 .1504 .1532 98.14 

50 < x^ < 55 905 .1367 .1389 98.48 

55 < x^ < 60 

0
 

1—
1 

.1254 .1269 98.79 

If a ^ 1^ the same graphs in Figures 4 and 5 can be 

used if the observed values of x^ and Xg are divided by the 

2 
known standard deviation a. If CT is unknown but an 

2 o 
independent estimate s of o with df degrees of freedom is 

available, a set of L and U-function can be obtained by 

setting = 1 and replacing the normal deviates, I.96 and 

1.645 for example, by appropriate Student t values. In 

determining confidence limits x^ and Xg are first divided by s, 
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For n > 3, let a linear ratio estimator of p be r = 

Xg/Xi^ where 

n-1 n-1 
=: I %2 = % 

n-1 
and w. are independent of y. such that S w, =0. With 

1 
error assumption defined in (2.7) and normality, x. is 

• n-1 , 
normal with mean X- = g. Z w^p and variance Var(x. ) = 

2 n-1 g 1 n-1 1 
a Z w., Xp is normal with mean = g S w,p and variance 

1 2 n-1 „ 1 
Var(xJ = a S w.. We also have 

Covfx^jXg) = cr S • 

It follows that z = Xg-X^p is normal with mean 

Z = Xg-X^p = 0 

and variance 

Var(z) = a^[W^(l+p^)-2pW ] 

n-1 2 n-2 
where W^ = S w^ and Wg = S It is obvious that all 

previous discussion for the construction of confidence 

intervals holds for the more general case. No further 

elaboration is therefore necessary. 

Finally, assume that the parameter space of p is the 

interval (0,K), K ̂  1. Our procedure still applies if we 

make the following modifications. 

(l) In Figures 4 and 5, replace the line p = 1 by the 

line p = K and let = Xg - Kx^. The two points Pq(0,Zq) = 

PgfOjXg) and P^(K,z^) = P^fKjXg-Kx^) will determine the 
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required straight line (3.42) 

z = Xg - x^p 

which is then used to determine the confidence limits. 

(2) In all rules concerning the determination of 

confidence limits, replace the value 1 by K. 

Although the parameter space (0,K) for K > 1 is 

irrelevant for the parameter p of the exponential model, it 

is of great interest for some other ratio estimators. Its 

application is seen in areas such as hioassay. 
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IV. ANALYSIS OP ROTATION EXPERIMENTS 

A. Principles of Rotation Experiments 

In agricultural practice a class of cropping systems 

known as crop rotation is characterized by growing in cyclic 

sequence several crops on the same land. Experiments which 

are conducted to investigate the characteristics of various 

rotations are referred to as rotation experiments. Agronom-

ically, the main objective of a rotation is to provide 

natural control over one or more of the factors such as weeds, 

pests, diseases and soil fertility. Rotation experiments have 

therefore been designed to evaluate, in terms of crop yields, 

the effectiveness of various rotation systems. 

In the literature, rotation experiments are often 

divided into two types: 

(a) experiments comparing the effects of different 

treatments on the crops of a rotation, and 

(b) experiments comparing the effects of different 

rotations. An experiment of type (a) is also known as a 

fixed-rotation experiment because only one rotation is 

involved. The problem thus is to study the treatment effects 

of certain fertilization or cultivation practices. 

Patterson (23) has reported a fixed-rotation experiment 

in which four manurial treatments were applied to a barley-

sugar beet-potatoes rotation over a period of 19 years. In 

experiments of type (b), several rotations are usually 
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included in one experiment, and one major objective is to 

compare the yield of the same crop in different rotations. 

A well-known example is the rice-pasture experiment discussed 

by Yates (4o). Many rotation experiments are, however, a 

combination of types (a) and (b), namely, the treatments 

consist of different fertilization or cultivation practices 

applied to more than one rotation. Most of the rotation 

experiments conducted by Iowa Agricultural Experiment Station, 

including the one reported by Puller and Cady (9)j belong to 

this category. 

Short-term, relatively simple rotation experiments are 

possible if information is needed only for some restricted 

area. Rotation experiments of more general nature are mostly 

complex long-term experiments. One factor affecting the 

duration of a rotation experiment is the length of rotation 

or cropping cycle. Assuming one crop per year, the length 

of the rotation corn-oats (C-O) is two years and that of 

the rotation corn-corn-oats-meadow-meadow-meadow, six 

years. Continuous corn can be regarded as a special case 

of rotation with length one. A rotation experiment may 

be defined by the cyclic order of the crops included. For 

convenience, one of the crops is usually assigned to head 

the cycle and hence a basic rotation is specified. For any 

rotation, phase denotes the position of a particular crop in 

the basic rotation. In the rotation C-O, for example, corn 
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is of phase one, and oats of phase two.. 

Basically there are two wp.ys to start a rotation 

experiment. One may start a rotation experiment by including 

all pltiases of all rotations in the first year of experiment 

and follow the cyclic sequences in the subsequent years. 

Alternatively one may start with a .set of all basic rotations 

in the first .year, and add a new basic rotation for each 

rotation system in each of. the subsequent years till all 

phases of the rotation are represented. When the latter is 

adopted, an assumption is that the soil fertility can be 

maintained at a fixed level by appropriate handling of the 

experimental field so that the basic rotations started in 

different years are subject to the same initial soil 

fertility. 

As an example, let a rotation experiment consist of two 

rotations, C^-Cg-O and C^-C^-O-M. If all phases are included 

in the first year of the experiment, the crops that appear on 

the plots in the first four years are 

Plot 

Year 1 2 3 4 5 6 7 

1 "l ^2 0 ^3 C4 0 M 

2 ^2 0 ^1 C4 0 M C. 

3 0 "l ^2 0 M 
^3 

4 ^1 ^2 
0 M 

^3 C4 0 

If the experiment is initiated with a set of all basic 

rotations, we then have 
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Year 
Plot 

1 2 3 4 5 6 7  

1 

2 

3 

4 
Cl 0 C4 Cg 

Cg M 0 C_ 

The concept of cycle is a useful one In describing 

rotation effects. Consider any rotation system with a certain 

crop. Regardless of the condition of the initial soil 

fertility, if the same cultivation is practiced, the rotation 

effect will tend to stabilize in the long run. In terms of 

yield this means that the crop, yield will approach a limiting 

value as the cycles advance. The change in yield from cycle 

to cycle has long been used to measure rotation effects. 

Cochran (3) has demonstrated the use of linear and quadratic 

terms to represent the trend of yield changes. The same 

approach is still being used (25). However, we prefer to 

look upon the change of crop yield from cycle to cycle as the 

realization of a growth process, with the rate of change 

depending upon the rate at which a rotation system improves 

or deteriorates the soil fertility till a theoretical 

equilibrium is finally reached. 

As our measurement of rotation effects will be based 

on the observed change in yields from cycle to cycle, it is 

desirable to know when a rotation starts its first cycle. 

Different definitions of the first cycle can be obtained 
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depending on the way an experiment is started, the nature of 

rotations and the interpretation of cycles. Cycle 1 of a test 

crop can be defined as the year following the completion of a 

full term of the non-test crops. Thus in a corn-soybean-corn-

oats basic rotation, cycle 1 of corn after oats occurs in the 

fifth year and cycle 1 of corn after soybean in the seventh 

year of the experiment. The corn in the first and third 

years of the experiment are of cycle zero. If an.experiment 

is initiated with a set of all basic rotations, cycle 1 can 

equally well be defined as the first time a test appears. 

A fundamental principle in designing a rotation experi

ment is that all phases of all rotations should occur in each 

year. Following this principle the number of plots required 

for a complete replicate is then equal to the sum of the 

number of phases of-al-1 rotations. If complete blocks are 

used, the experiment is said to have a basic design. Unfor

tunately, a basic design results in blocks of large size if 

the rotations are lengthy, or if the number of rotations is 

relatively large. Therefore, the use of incomplete block 

designs is sometimes necessary. Incomplete block designs 

used in rotation experiments are reduced designs and phase-

confounded designs. For a discussion of these designs see 

Patterson (25). 
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B. Conventional Statistical Analysis 

Statistical analysis of experimental data consisjts of 

the formulation of a statistical model and the estimation of 

parameters and hypothesis testing. Strictly speaking the _ 

formulation of a model is a basis for the design of experiment 

and will not enter the picture of analysis unless a unique 

model is .not specified. The estimation of parameters in the 

model therefore constitutes the major part of analysis, 

although in some areas of study it is customarily followed by 

hypothesis testing. For the linear model (1.2) with some 

necessary assumptions these can be cpnviently carried out with 

minimum efforts. There exists a number of problems in the 

analysis of rotation experiments, however. One problem is 

the construction of a suitable model for the estimation of 

treatment effects. But the major difficulty lies in the 

error structure. That the error structure poses a problem is 

understandable. For it is only logical to reject the usual 

assumption of independent errors in view of the particular 

nature of experimentation. Me shall examine these problems 

in the following paragraphs as we review Patterson's paper 

(25), which is the most comprehensive article on the subject 

of the analysis of rotation experiments. 

As pointed out by Patterson (25), the conventional 

method of the analysis of rotation experiments consists of 

estimating mean effects over the years and fitting polynomial 

curves to determine the trend of rotation effects. This 
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is the method demonstrated in the pioneer paper "by Cochran 

(3)J and is also the general approach adopted by Patterson 

in his paper. 

1. The statistical model 

The analysis presented by Patterson has been developed 

for rotation experiments of type (b) in terms of what he 

calls model I. Only a slight modification is needed for the 

analysis of rotation experiments of type (b) with other 

cultivation treatments. 

Let a test crop, or test, be a crop which is included in 

different basic rotations and on which the rotation effects 

are to be compared. Let y^^^ and T^^. be the observed and 

true mean yield for test j in year i, T^ be the true mean 

yield for test j, and 

^im " ̂im " V , m = 1,2,...,q 

where x^^ is the m-th seasonal or trend variate in year i 

and x^ is the mean of x^^ over the years. Then model I is 

represented by 

- + M ^jm^îm ^ij + ̂ ij' t 
HI J — M 

where for example xj^ might be polynomials in time, and 

Yjj, If 1.1' 
E(u u )  = /  JJ'  (4.2)  

J J I 0 otherwise 
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If 1=1'' 

r 

2 
^p If 1^1', but and y^,j, 

^ occur on the same plots. 

0 otherwise (4.3) 

where r Is the number of replicates. The experimental errors 

as defined in (4.3) is the sum of two components: One is the 

2 
plot error constant over the years with variance and the 

2 other the plot x year error with variance a^. Note also that 

u^j represent residual seasonal variations which are 

correlated for observations appearing in the same year. These 

also might be called "year" or weather effects. Notice that 

these are visualized as a vector of (correlated) random 

variables. 

Let the Kronecker product of two matrices A and B be 

denoted by A ® B. Let be the t x t identity matrix. The 

model (4.1) can then be expressed in matrix notation as 

follows 

y = K^T + + u (4.4) 

where y = (y^, y^^...,y^)' 

y. is the N x 1 matrix of the mean yield j. .,^=1,2,... 
J J 

T = (T^, Tg,...,Tt)' 

6 ~ ^2' • • ' ) ) ' 

Bj ~ ^ ̂ Jl''^j2''* ' * •* * •* ^ 
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" ~ ("il + '"'il' "^21 '*'21'• • ""Nt ^Nt' 

Kt = It® In 

S = It® X 

X is the N X q matrix of elements x^^. 

To determine the covarlanoe matrix V of y, usual procedure 

of finding E(uu') suffices except that the evaluation of 

P 
elements involving o-^/r when 1/1' will tend to be tedious. 

Patterson accomplishes this by introducing the N x p incidence 

matrix . If test j is on plot k in year 1 then the k-th 

element in row 1 of is equal to 1 and all other elements 

in row 1 are zero. Let 
• ̂  

Kp = (Hj_, 

then the covariance matrix of y is 

K K'œ^ a® 
V = J-E-E + ySIjj (4.5) 

where y Is the t x t matrix of the Yjj-i • 

The analysis is carried out in two steps: the estimation 

2 2 
of a and a and.the estimation of rotation effects and 

P w 

regression coefficients. 

2. Estimation of variance components 

Patterson recommends the use of the analysis of variance 

2 2 
method for the estimation of a and CT, . because for some. 

p w 

ratios of the méthod gives high efficiencies for the 
p w 

2 2 
linear functions of 0 and he investigates. Following 

p w 

the usual procedure of estimating variance components from 

an analysis of variance table, this method consists of 
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obtaining plot and plot x year error mean squares^ equating 

the mean squares to their expected values, and solving for 

the estimates. Several procedures are available for obtaining 

the plot mean square, we shall review the method of solving 

normal equations. 

We wish to find the sum of squares due to plot, elimin

ating year effects. Let be the estimated year effect for 

year i and p^ the estimate of the effect of plot k, k = 1,2, 

...,p, in replicate h. Then for the h-th replicate, h = 1,2, 

...,r, we have the set of N+p normal equations: 

Z n^^Ai + Z = %knik2ïjkh 

(4.6) 

Pkh' P ^ik^i + f "ik^kh ^.^ik^ijkh 
1 1 1 f J 

where y^^^^ = the yield of test j on plot k in replicate h 

in year i 

nik = 1 if the test crop appears on plot k in year i 

= 0 otherwise. 

Note that if n^^ = 0, the observation y^^^^ does not exist. 

Since S n., = t, eliminating A. in ( 4 . 6 )  leads to the set of 
k 

normal equations for Pj^ in matrix notation 

0Pt, = Ph (4.7) 

where pj^ = 

0 = ) is a p X p matrix such that 
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s »ik - i Z "L If k.k' 

- i I "ik"lk' " k/ k' 

~ where 

^kh " ^Ik^ijkh ~T ^ ^ik^ik'^ljk'h' 
l^J X^J^K 

It is clear that 0 is not of full rank. Let v "be the rank of 

0. If V = (p-l), a unique solution of (4.7) can be obtained 

by imposing the side condition S p^j^ = 0, i.e. 

Ph = (f + SJp)-^Ph 

where Jp is a p x p matrix of. unit elements and g is any 

scalar. This is in fact a special case for solving the 

normal equations X'Xg = X'y subject to the condition Hg = 0, 

where X'Xisapxp matrix of rank r < p, and for t > p-r,• 

H is a p X t matrix satisfying certain general conditions 

(see for example Scheffé (30,pp. 15-19)). For v < p-1. 

Equations 4.7 fall into p-v independent groups. Patterson 

suggests that each group be solved separately and the results 

pooled. The plot error sum of squares is then given by 

g -  i  g PA g  

If we calculate the total sum of squares for error over all 

years, the plot x year error sum of squares can be obtained 

by substraction. The expected values of the error mean 

squares are as follows : 
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Plot 

Plot X year 

Total 

d.f. 

(r-l)v 

E(MS) 

2 ̂  N(t-l) 2 + 
V 

(r-l)[N(t-l)-v] 
w 

N(r-l)(t-l) 

can be obtained as 

2 ^ 2  
"w + "p 

Estimates c.., of y.. 
J J j u 

c . ̂.1.;' " ̂ fi'o 
JJ' (N-q-lJ 

Where ) • (y^, - - Xb^,) 

Sjjig is the estimate of 

r 
J 

and F = = IP - X(X'X)',^X' . 

3. Estimation of rotation effects and regression coefficients 

The parameters T and g in (4.4) may be estimated by 

simple least squares procedure. The normal equations are 

Hh  Hh  

[HS  I  

t^ 
' h '  

/ b , 
/ W, 

y 

where t and b are the simple least squares estimates of T and 

g. We find that 

-1 
N 

0 1^0 (X'X) 
-1 

(4.8) 

Hence the solution of (4.8) is 
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t' 

U j  

N" 

I. ®[(X'X)"^X<y] 

(4.9) 

It is seen from (4.9) that the same results would have been 

obtained If one estimates T. and g. separately for each test 
J J 

Because of the error assumptions In (4.2) and (4.3), 

the expression In (4.8) does not describe a covarlance matrix 

for the estimates. Recall from (4.5) that 
K K'a2 ^2 

cov(y) . V . P/ P + veim + ̂  It® 

the covarlance of (t'b')' is 

Gov 

11 

N 

^0 I^®(X'X)"^/ 

fit 0 \ 
N 

V(Kt Kj,) 

y 
Hi  

0 I^®(X'X)'y 

M. 11 

^i2 

M 12 

M 22/ 

where 

Mil = 

= & (^t® 4)Vp (^t® ^ It + y)' 
N 

Mgg = [I^® (X'X)"^]K^VK^[I^® (X'X)-^] 

= ̂  [I^® (X'X)"^X']KpK^ [It®X(X'X)-l] 

r-1. 

+ (%r^ I+. + Y)CD(X'X) 
- 1  
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12 

= 3 KpK' [It8X(X'X)-l]. 

Note that is the covariance matrix of t, the co-

variance matrix of b, and represents the covariances 

"between t and b. It follows therefore that 

2 2 

Cov(t . J t . , ) = —p l^H .HI , 1^ —^ + M ( S n 1 I IT" + Yili)j 
3' J 2 -"N J j'^N r J J '  r  

p2 
Cov(b.,b.,) = (X'X)"^HjH^.,X(X'X)'^ ̂  

' JJ 

. + + Yjj,)(X'X)-l, 

2 
Oov(tj,bj) . 1 ^ , 

where 5.., = 1 if J=J*' 
J J 

= 0 if jVj' 

and 1^ is an N-vector with unit elements. 

Patterson assumes that the estimate t^ is efficient if 

the cycles of the rotation that includes test j are complete, 

namely, N is a multiple of the length of the test. The 

estimates of regression coefficients are, however, inefficient 

whether the cycles are complete or not. Fully efficient 

t and b can be obtained by generalized least squares procedure 

by solving the normal equations 

fK'\ 

Hi 

(Et Kb) 

-p 

' S '  

i ' ^ l  

v'ly. 
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I.e. 

/M KJV-ly 

\ b j 

Since the covariance matrix V is usually unknown, the 

2 2 
variance components and Yj^i are in practice replaced 

by thin respective estimates. 

4. M alternative approach 

We shall let the vector T be absorbed by the vector g. 

Without loss of generality, we let x^^ = 1 and = Tj 

for all i and all j. Further, let v^ . = + e^ k = 1,2, 
ij 'Ijk' 

. . . , p ,  and 

'k^k 
if k = k' 

= 0 if k ̂  k' 

2 
^^®i 1k®i' 1 'k'^ "" ^ ^ ~ j ' -) ^ — k' 'ijk 

= 0 otherwise, 

then model (4.1) can be written 

^ijk " ̂  ̂ jm^lm + ̂ ij + ̂ k + ®ijk* (4.10) 

Next let g^ be a b-vector of estimable functions of g^^, 

Ô a d-vector of estimable functions of u^^, and P a p^-vector 

of estimable functions of P^. We then have the reparameter-

ized model 

y = X^g^ + XgÔ + XgP + e 

= X'9 + e 

where 0 = ( gô ' P')' and X = (X^X^X^) is the coefficient 
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matrix resulted from the reparametrizatlon of model ( 4.10). 

The simple least squares estimate of 0 is given by 

= (x'x)-lx'y 

'2i 

î = Ô 

^12 ^13 1 

^21 ^22 ^23 
X:y 

\^31 ^32 ^33 

where is that block of (X'X)"^ associated with and so 

on, and the sura of squares due to fitting P, eliminating 

and Ô, is 

In constructing'the vector P, we may assume 1 P' = 0. 
Pi 

We also assume that 

P = (P - P) + e 
P 

where E(p - P)(P - P)' = Ca^/r and E(e^e^) = Tg^cr^/r so that 
p' ' P P 

Côv(P) = Vi = Oog/r + 

Hence 

EfP'T'gP) = trfT^g Vi) 
-1 

- tr[Tgg (CCp/r + T^^a^r)] 

= tr(T-l Co^/r + lo^/r) 

= tr(T-i CcTp/r) + Pi^/r . 

A parallel discussion for 6 leads to the result that sum 

A — 1^ 
of squares due to 6 eliminating others is ô'Tg^Ô and 

—I'jx 4 /rn^l-r EfS'T-gS) = tr(T;JV^) 
22'2' 
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= trfTg^D^) + trfT-^Dg) 

2 2 
where D. has elements of a and a and has elements of 

• X P . W c 

j. The exact form of and Dg will depend on the rotations 

included in the experiment. Equating P'T^^ P and ô'T"^ 6 

to their expected values, one can obtain the estimates of 

2 2 
a . a and y... It follows that the generalized least 
W ^ J_ J 

/N 
squares estimate of 3^, where V is replaced by its estimate V, 

is 

Bi = 

and 

cov(a^) = . 

5. A particular type of transformation 

We shall digress to consider one type of transformations 

that we shall use in a later stage. Recall that if y = Xp + e 

and E(ee') = V, the transformation 

z = Ty = TXp + Te (4.11) 

where T satisfies E(Tee'T') = TVT' = <jj, leads to the fully 

efficient generalized least squares estimate of g 

# = (X'V~^X)~^X'V"V (4.12) 

If the matrix V in (4.12) is replaced by its estimate V, 

the g is consistent and asymptotically efficient. When the 

number of observations is large, the operation of inverting 

the covariance matrix V may be tedious. For some special 

forms of V the use of the following simple transformations is 

equivalent to the generalized least squares procedure, but 
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eliminates the need for the inversion of V. 

Assume that 

Cov(y^.,y^,.,) = = Ca + 1=1'; J=j' 

= pcr^ = cr^ if i/i', j=J' 

= 0 otherwise 

where i = 1,2,...,n and j = 1,2,...,m, then for 

^ = ] l+~{Ll)p " " I ̂ i/" 

the transformed variables 

^13 = ^IJ + (4.13) 

are such that 

Var(Zi^.) = Var(y^j + Ky.^.) 

= (l-p)a^ 

2 
= Ca 

Cov(z^j,z^,j) = Cov(z^j,z^,j,) = 0, if^i ', ' 

If 

Cov(yij,yi,^,)•= CT^ i = i', J = j' 

= p^cr^ i = i ', 3 7^ y 

= pgO^ i i ', j = j' 

= 0 i. ̂  i', j j' 

and 

t, = /Z^TPiZZ, 1, 
1 / l+(m-ljp^-pg 

^ I  i-Pi-Pz ~ , 
2 y l-p-]_+(n-l)p2 ^ 
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T, = I ^71 : "2 - (1 + Ti + Tg). 
J 1 + (m-l)p^ + (n-l)pg 

Then for > 0, pg > 0 and 1 - p^ - pg > 0, the variables 

^13 = ^13 + Vl. + V.J + v.. (4.14) 

?!. = E z y..==,̂  
J J 

have variance (l-p^ - pgja^ and zero covariances. 

One application of the transformation (4.13) is related 

to experiments with split-plot design. Usual procedure in 

analyzing data from such experiments.is to perform analysis 

of variance and test hypotheses concerning the main effects 

and interactions. Instead of the experimental design model, 

howeverj_one may wish to investigate the functional relation

ship between the observed outputs and the treatments if the 

latter are quantitative. The transformation (4.13) will 

remove the correlations among the observations belonging to 

the same whole plot and enables the use of simple least 

squares procedure. Since 

'a ' 

the constant K is estimated as 

= ii /Error B ^ = 'Error A ~ ^ 

where errors A and B are the whole plot and sub-plot error 

mean squares obtained from the analysis of variance table. 

An example of the application of the transformation 
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(4.l4) has been given "by Puller (8). 

C. The Growth Process of Rotations and 

the Exponential Model 

We have suggested that rotation effect# be viewed as the 

realization of growth processes. The limiting value of the 

growth process of a rotation is clearly the information sought 

in a rotation experiment because it indicates the long-term 

performance one may expect from the rotation. The rate of 

change, on the other hand, is useful in determining the 

duration required for the experiment to provide reliable 

information on the limiting value. The question therefore 

arises as to how one may estimate the limiting value and the 

rate at which a rotation approaches it. 

As we have noted earlier, a linear statistical model is 

assumed in the conventional analysis of rotation experiments. 

The usual assumption is that, apart from random variation, 

the yield of a rotation is the sum of the true mean and trend 

effects, the latter being approximated by polynomials of. 

various degrees. The true mean is often estimated as the 

average yield of several cycles. Whether such an estimate 

is informative in suggesting the long-term performance of a 

rotation is questionable. The trend as approximated by 

polynomials may provide some additional information. However, 

as a polynomial does not have a limiting value, its inclusion 

gives little Indication as to what limiting value the 
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rotation may eventually attain. 

In view of the discussion above, it is logical to 

formulate a statistical model that will provide a limiting 

value for rotation effects. Since we consider rotation 

effects as growth processes, a natural choice for a statistical 

model is the exponential model discussed earlier in this 

manuscript. Such a model, with parameters for the limiting 

value and the rate of change, offers a more meaningful 

explanation of the mechanism of rotation effects. It may also 

have the following advantage. ; • 

As the ultimate purpose of rotation practice is 

invariably to maximize farming profits on a long-term basis, 

there is no doubt that economic analysis on the net return 

will be a helpful guide in selecting the most profitable 

rotation. That such study has not been reported in literature 

may partly be accounted for by the lack of a suitable model 

for rotation effects. Although we shall not pursue this 

matter further, we should point out that, perhaps by the use 

of exponential models, economic study may be encouraged or 

may eventually become ah integral part of rotation study. 

1. Formulation of a rotation model 

We shall now discuss the analysis of rotation experiments 

with exponential models. We first express our model in the 

general functional form 

y = f(x,0) (4.15) 
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where y is an observed yield, f(x,e) may be a simple 

exponential model or a combination of exponential and linear 

models. With appropriate form Equation 4.15 will be 

referred to as a rotation model. 

While we hypothesize growth processes for rotation 

effects, there seems to be no reason to assume an error 

structure different from that of conventional analysis. We 

shall, therefore, assume that the error associated with the 

observation in (4.15) consists of the plot error and plot x 

year error defined in (4.3). The residual seasonal variations 

assumed in (4.2) will be accounted for either as contrasts in 

the model, or as deviations from the model. This is possible 

because the functional relationship (4.15) fits rotation 

experiments remarkably well. 

Our first step then is to estimate the plot and plot x 

year error variances. Although plot variations have been 

found to exist (22, for example), it is interesting to note 

that a small negative value was estimated for the plot error 

variance for two rotation experiments conducted by Iowa 

Agricultural Experiment Station. If plot variance is non-

zéro, the transformation (4.11) is carried out before further 

analysis. 

A rotation experiment may have as treatments several 

rotations and several fertilization practices. Although our 

development herein will be for the analysis of experiments of 
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this type, the application of the procedure elsewhere will 

present little difficulty. 

A common type of fertilization practices consists of 

different levels of applied nitrogen. The treatments form 

factorial combinations, and, when a split-plot design is used, 

the rotations are often handled as whole plot treatments. 

The transformation (4.13) is useful in analyzing such experi

ments to remove the correlated errors introduced by the split-

plot design. 

In the following development we shall assume that all 

required transformations have been performed for y and x. 

Therefore we may write our model as 

y = f(x,0) + e (4.16) 

where the errors are independent, identically distributed 
p 

normal variables with mean zero and variance tj . 

Let us first consider a rotation without fertilization 

treatments. We may express the yield by 

y = ttQ + 3q e (4.17) 

or 

y = a + 3(1 - e"^^) (4.l8) 

where x = 1,2,... denote cycles of the rotation. The models 

(4.17) and (4,18) are functionally related in that Og = a+g 

and gg = -p. I Model (4.l8) has a more convenient form, for 

if we have t rotations, we may write 
-ax. 

y j = a + g j ( l - e  ) J  j  =  l , . . . , t .  (4.19) 
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Then all rotations start with the same yield but rotation 

J has a + p. as its limiting value or yield. The term 
-axJ 

6.(1 - e ^) represents the rotation effect. 
J 

Next, suppose that in a rotation experiment s levels of 

nitrogen fertilizer are applied to each rotation. Since 

the combination of a particular rotation and a fixed level 

of nitrogen can be considered as an integral part of a 

treatmentJ or a unique rotation practice, we would be 

inclined to regard the effect of such a treatment combination 

as.rotation effect. It follows that model (4.19) will suffice 

for rotations with the same nitrogen level. To have a common 

model for all treatment combination, however, we shall need 

some modifications. 

Consider the response of a crop to s nitrogen levels. 

Following the general procedure of response surface study, 

we may describe the response function by a polynomial. 

Alternatively, we may represent the response with an 

exponential model, i.e. 
-BN, 

y^ = K + A e ^ k = 1,...,s (4.20) 

where is the quantity of nitrogen fertilizer applied, and 

y, the corresponding response. It is true that as 

increases, y^ will attain a maximum and then decreases. 

However, within the limit of nitrogen levels that are 

practical or of interest in the present stage of experimenta

tion, it has been found that Equation 4.20 provides satisfac

tory fit to responses. In fact it is generally true that 
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(4.20) approximate the response over a wider range than does 

the quadratic. 

¥e now combine (4.19) and (4.20) into a single model 

-BN, -ax. 
= G + Ae + ) (4.21) 

where N^ is replaced by N^^ if the nitrogen levels vary with 

rotations. With this model, treatment Jk starts with the 
-BN -BN. 

yield a + Ae and has-a limiting yield of a + Ae "'"^jk* 

Note that instead of g^ we have gas the limiting rotation 

effect. This is because that the effect of a rotation may 

vary with the applied nitrogen levels. By using we have 

included the rotations x nitrogen interaction in the rotation 

effects, and when we speak of a rotation, we shall often refer 

to it as rotation jk. 

There has been no allowance for year effects in the 

rotation models above. Because of the lack of a more 

satisfactory approach, the usual procedure is to assign 

dummy variables for years and estimate year effects by the 

coefficients of these variables (3j 22, 40), with a similar 

procedure for years by treatments interaction. Thus, for 

example, in the analysis of variance for a 12-year rice-

pasture experiment by Yates (4o), there are 11 degrees of 

freedom for the variation due to years ignoring treatments. 

In another example, Yates (4o) partitions the year to year 

variations into two portions: one is the years within series 

variation (For any rotation, plots with different phases 
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occurring in the same year are said to belong to different 

series. A rotation of length three has three series.), 

and the other is the among series variation. It should be 

noted that the years within series variation also measures, 

under the concept of growth process, the- effects of rotations. 

Little note has been made of this in the literature. A 

conventional analysis one seems to be more concerned with the 

comparison of rotation performance averaged over all cycles, 

rather than the change from cycle to cycle and the limiting 

values of various rotations. 

If a rotation has gone through c cycles of length n, 

one can estimate part of the year effect by estimating 

variation among years within cycles, with c(n-l) degrees of 

freedom. The concept of growth process implies that yields 

of the same cycle receive the same rotation effect so that 

this portion of year variation is free from rotation effects. 

One might therefore be tempted to use cycle averages for 

statistical analysis. Unfortunately the use of cycle average 

will reduce considerably the number of parameters one can 

estimate, and more seriously it rules out the possibility 

of investigating year x treatment interactions, which are 

often present in a rotation experiment. When cycles are not 

complete, or when rotations of unequal length are involved, 

even the estimation of that portion of year effects, that is 

free from rotation effects may be impossible. In fact, 

unless all cycles are represented each year, rotation and 



104 

year effects will at best be partially confounded. 

Denoting the effect of year i, i = 1,2,by a^, 

the year x nitrogen interaction by (aN)., , and the variable 
-yx. 

for year x rotation effect Interaction by a^3j^(l - e )(9)j 

model (4.21) is extended to 

-BN, -yx. 
^IJk = G + + Ae + 

+ (^)lk 
-ax. 

+ G[aiBjk(l-e ^)] (4.22) 

The model (4.22) will not be a suitable model for all rotation 

experiments. For example, if the inspection of data indicates 

the presence of years x quadratic nitrogen interaction, the 
p 

term (aN )^^^ should be included in the model. The statement 

holds true for other factors, such as meteorological informa

tion, cultivation practices, and many others, that are known 

to contribute to the variation in yield. In brief, with due 

caution any pertinent factor may be considered and included in 

the model in a convenient but appropriate form. 

An example of the use of the rotation model (4.22) is 

the analysis of a rotation-fertility experiment by Fuller and 

Cady (9), who used a transformation different from that of 

(4.13). The experiment was conducted at Carrington-Clyde . 

Experimental Farm by- Iowa Agricultural Experiment Station 

over a period of twelve years, 1952 to 1963. Since a 

sizeable increase in stand levels occurred during the 

experimental period, a term denoted by S^M^ was added to 
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model (4.22) for the linear nitrogen by stand interaction. 

The last nine years were used in their analysis since 

all treatments were present. Model (4.20) was first fitted 

to the average yields for the nine years, to give the 

response function for cycle zero 

-0.4N 
yjk = 114 + Ae ' (4.23) 

The full model was then • . 
-0.4N., -ax. 

Fljk - 114 = + Ae J + J) 

-ax. 
+ (aN)^^ + C[a^3^.^(l-e J ) 1+D(S^M^. ). (4.24) 

The models (4.23) and (4.24) were estimated by iterative 

least squares procedure, under the restrictions 

S a. = 0, Z ( aN ). -i^ = S ( aN )., = 0, 
i i k ^ 

S s. = 0, s s 3 . ,  = 0. 
i J K J 

2. alternative model 

In this section we shall construct a different rotation 

model and demonstrate the statistical procedure by analyzing 

a rotation-fertility experiment at Clarion-Webster Experimental 

Farm conducted by the Iowa Agricultural Experiment Station. 

The Clarion-Webster experiment was initiated in 1954 

with two replicates, five basic rotations of length four, and 

four sub-plot nitrogen treatments at levels 0, 30, 60 and 120 

pounds per acre. The basic rotations are C-C-C-0, C-S-C-0,. 

C-C-O-M and C-O-M-M and continuous corn. The notations 
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represent C - corn, 0 - oats, S - soybean and M - meadow. 

The corn crops in different basic rotations as well as those 

at different phases in the same basic rotations are considered 

as different 'rotations' or tests. For example, the first 

and second year corn in C-C-O-M are different rotations and 

denoted by C-C-O-M and C^C-O-M respectively. Continuous 

corn was considered as four rotations in the preliminary 

analysis, but was treated as one rotation in the final 

analyses. 

The 1958-64 data were included in the analysis. The 

plot errors were assumed to be zero because estimated plot 

error variance was a small negative number. The whole plot 

and sub-plot mean squares obtained from regular analysis of 

variance are , 

Whole plot mean square = 182.98 

Sub-plot mean square = 91.15. 

All analyses were carried out on transformed data and 

results were converted to individual observation basis for 

presentation. The analysis of variance for the transformed 

data is shown in Table 8. 

With this background information, we now proceed to 

discuss our hypotheses and models. 

In the study of a cause-and-response relationship of 

natural occurring phenomena or experimental results, the first 

requirement of a model is that it provides close fit to the 

data. For a more basic study, it is also desirable that the 
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Table 8. Analysis of variance for the Clarion-Webster 
rotation-fertility experiment, 1958-1964 

Source d.f. 8.8. M.8. 

Years 

Rotations 

Years x Rotations 

Nitrogen 

Years x Nitrogen 

Rotations x Nitrogen 

Years x Rotations x Nitrogen 

Error 

6 66986 , 11164 

11 75153 6832 

66 19366 293 

3 71037 23679 

18 7253 403 

33 50330 1525 

198 18722 • 95 

335 30534 91 

model gives meaningful approximation to the mechanism of the 

behavior under investigation. With this in mind, our proposal 

of rotation model has been an attempt to bring to light the 

more basic aspect of a rotation experiment, the growth process 

of rotation effects. Further, one may formulate a certain 

hypothesis and seek to verify it by constructing a suitable 

model that will fit the data well when the hypothesis is 

valid. It is in this laj:t.er sense our model in this section 

is unique and different from that of the previous section. 

It is clear that limiting value varies with rotations. 

It is however not clear whether the differences in rotation 

effects result from differences in the nutrients supplied to 

crop plant or other factors. Rotations affect crop yield in 

a number of ways. In addition to providing some control 

over diseases and pests, they improve soil fertility by 
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Improving water and nutrient availability, and, as meadow 

Is often Included In a rotation system, further by returning 

a large amount of organic matter and nutrients to the soil. 

If soil fertility Is the major factor that produces rotation 

effects, an Interesting question Is therefore: Can we use 

a common growth process to describe the differences? 

To answer this question l.t Is hypothesized that all 

rotation effects follow a common growth curve and that 

rotation effects can be expressed In fertilizer nitrogen 

equivalence. We express this In the model 

where N Is the total nitrogen available to crop plant when 

the rotation effect tends to its limiting value. Let 

denote the sum of the Initial soil fertility and the gain in 

soil fertility due to rotation practice, we must have 

N = N_,+ 

(4.25) 

Hence 
a(Nj + Nj^) 

— cc 4" 6 j e 

= a 

(4.26) 

where g. < 0. When no fertilizer nitrogen is applied, the 
J 

limiting value of rotation j is then a + gj. 

^This was first hypothesized by Dr. W. D. Shrader and 
communicated to Dr. W. A. Puller and Dr. P. B. Cady (31). 
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Our hypothesis of a common growth process Implies that 

all rotations have the same value for the parameter a in 

model (4.26.)J although may be different. In estimating 

the parametersJ the model 

. . .  
yjk - G + 2 V® ^ ~ ̂  If m - j (4.27) 

= 0 if m y j 

is therefore fitted. 

The results obtained by fitting the rotation model 

(4.27) for the Clarion-Webster experiment are shown in Tables 

9 and 10. The were coded in the analysis as = 0, 

Ng = 1, = 2 and = 4. Note that the corrected 8.8. 

for y^^ consists of the variations due to treatments 

(rotations, nitrogen and their interaction) with a total of 

47 d.f. In fitting model (4.27), these are partitioned 

into variation that is accounted for by the model and that 

by deviations from the model. An F-test can be performed to 

test the adequacy of the model by dividing the deviations 

M.8. by the error M.S. obtained in the analysis of variance. 

A non-significant result at a predetermined significant 

level would lead to the acceptance of the model. 

In the model we have set 3g = 0 for the rotation _C-0-M-M 

because a small positive value was first estimated for pg. 

Therefore ten parameters were estimated and the corrected 

model 8.8. has nine d.f., leaving 38 d.f. for deviations 8.8. 

The P value computed as l.l4 is not significant at 5^ level. 
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Table 9. Analysis of variance for the model y^^ = a+Ep^e 

for the Clarion-Webster experiment, 1958-1964 

Source d.f. 8.8. M.S. 

Treatments 47 196520 

Model 9 192584 21398 

Deviations 38 3936 io4 

Error (Table 8) 335 30534 91 

Table 10. Estimates of nitrogen model for the Clarion-
Webster experiment, 1958-1964 

Rotation Parameter Estimate standard deviation 

a 115.7 o.a 
C—C—C—0 Pi -14.6 2.8 

C.-C-C-O $2 -43.7 2.8 -

C-C-C-0 @3 -57.3 

0
0
 O

J 

Ç-S-C-0 64 -10.0 2.8 

C-S-C-0 : -17.3 

0
0
 O

J 

C—C—0—M ^6. - 3.0 

C
O

 O
J 

C-C-O-M 37 -20.9 2.8 

C-0-M-M& P8 0.0 

Cont. corn 39 -66.3 1.6 

a - 0.38 0.024 

was set equal to zero. 
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We have accepted model (4.27), or equivalently model 

(4.25), to describe the common growth process for all 

rotations. Before taking a closer examination of this result, 

however, we choose to complete the analysis by investigating 

the years by treatments interaction. 

Model (4.26) when used for an individual year is 

aN, 
+ SiJ ® (4.28) 

where y^^^ is yield of rotation jk in year i. If we fit 

model (4.28) for each year and find the sum of regression 

8.8., the quantity obtained will be equal to the model 8.8. 

plus 3. X years interaction 8.8. Hence the g. x years 
J J 

interaction 8.8. can be obtained by difference. 

For the Clarion-Webster experiment, the sum of regression 

8.8. was computed to be 213419. 8ince eight g.. were 
J 

estimated for each of the seven years, the eight were 

estimated in model (4.27), the degrees'of freedom for 

gj X years interaction are 48. 

It is seen from the analysis of variance in Table 6 

that there are a total of (66 + 18 + 198) = 282 d.f. for 

years by treatments interaction. When Equation 4.28 is used 

to represent the interactionj that portion of variation that 

belongs to the 282 d.f. but is not accounted for by Equation 

4.28 may be called deviations from Equation 4.28. To avoid 

confusion the deviations from model (4.27) will be referred 

to as deviation-1, and the deviations from Equation 4.28, 
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deviatlon-2. Devlation-2 S.S. is obtained by substracting 

the gj X years 8.8. from the sum of interaction 8.8. asso

ciated with the 282 d.f. of years by treatments interactions. 

It can also be obtained as the difference between the sum of 

the seven residual 8.8. and deviation-2 8.8. An F-test of 

deviation-2 M.8. against the error M.S. is not significant 

at 5^ level, indicating that years by treatments interaction 

is sufficiently accounted for by p. x years interaction. 
J 

The complete analysis of variance based on models (4.27) 

and (4.28) is given in Table 11. 

While the gj x years interaction provides a satisfactory 

explanation for the years by treatments interaction, one 

would want to explore further the pattern of the interaction. 

The first possible source of variation one may consider is 

whether the changes in p. over years are in the same direction, 
J 

namely, all g. are larger in some years and smaller in others. 
J 

To obtain this information we fit the following model for 

multiplicative effect 

aN, 
^iik = °i + 6, eu e (4.29) 
^ a% 

with the estimated g^ e ^ as independent variables. The sum 

of regression 8.8. for fitting the multiplicative effect 

model, estimated to be 203571, is the sum of the model (4.27) 

8.8. and the multiplicative effect 8.8. The latter with 6 

d.f. is therefore obtained by difference. 

It is seen that the 6 d.f. multiplicative effect 



Table 11. Complete analysis of variance for the Clarion-Webster experiment, 
1958-1964 

Source d.f. 8.8. M.8. 

Years 6 • 66986 III65 

Treatments 4? 196520 4l8l 

Model 9 192584 21398 

Deviation-1 38 3936 104 

Treatments x years 282 45342 161 

p. X years 48 20835 434 m 
J . 

Multiplicative 6 8717 1453 ^ 

Remainder 42 12118 289 

Deviation-2 234 24507 105 

Error 335 30534 91 ^ 
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explained a large share of the x years interaction. The 

remainder 8.8. may be further partitioned if other constrasts 

are included in the model (4.29). 

We now return to the model (4.25) we fitted for the 

Clarion-Webster experiment. The model is 

y^^ = 115.7 - 115.7 e-°"38N^ (4.30) 

where N is in 40 pound units of fertilizer nitrogen. The 

curve is plotted in Figure 6. 

The acceptance of model (4.27) indicates that we can 

place all rotations on the same growth curve. The position 

of a treatment combination on the curve is determined by its 
aN 

limiting yield, the estimate of a+g^e . For example, 

-0.38N, 
^Ik = 115.7 - 14.6 e (4.31) 

The limiting yield in pounds per acre for the first year corn 

in the rotation _C-C-C-10 with zero level of nitrogen is 

^11 " 115.7 - 14.6 = 101.1 

which is the ordinate of the point on the curve that is 

associated with rotation 11. 

We can also locate the same point by first, determining 

the abscissa. Recognizing from (4.25) and (4.27) that for 

rotation jk 

we find the abscissa to be 

N = [log(-Bj) - log a], (4.32) 



Figure 6. Corn-nitrogen response for the Clarion-Webster 
experiment, 1958-1964 
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where log has base e. For rotation 11, we see that N = 5.5. 

It is interesting to note that estimates of N. can be 
J 

obtained from (4.32) by letting = 0. These estimates are 

given in Table 12. 

Table 12. Estimates of soil fertility in fertilizer nitrogen 
equivalence, in 40-pound units 

Rotation Soil fertility 

Ç-C-C-0 5.37 
C-C-C-0 2.52 
C-C-Ç-0 1.82 
C-S-C-0 6.35 
C-S-C-O 4.97 
C-C-O-M 9.47 
C-Ç-0-M 4.44 
Cont. corn 1.44 

The estimates of N. given in Table 12 were obtained from 
J 

(4.32) by letting = 0. These estimates measure soil 

fertility in 40-pound units of fertilizer nitrogen when 

limiting rotation effects are reached. 

We have seen that the results of the analysis strongly 

support the hypothesis that rotations can be placed on a 

common growth curve and that the measurable effect of rotations 

is nitrogen effect. The close fit of the model (4.30) to 

the long-term experiment is illustrated in Figure 6, where the 

rotation average yields were plotted along with their common 

growth curve. We were also able to show that the source of 
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treatments by years interaction is mainly the change of 

from year to year, and that a good share of this variation 

can be accounted for by only 6 d.f. of multiplicative effect. 

The evidence so far seems to indicate that the approach 

adopted offers an analysis for long-term rotation experiments 

which is relatively simple computationally and yields 

meaningful and interpretable results. 
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V. SUMMARY 

Standard statistical procedures do not always utilize 

the prior information on parameters under investigation. 

Development of theory to incorporate such information into 

statistical procedures has not yet yielded results that are 

readily applicable to a large class of situations. If a 

research worker acquires the prior information through 

experience in the area of study, the information may be vague 

and fragmentary, or may be rather well-defined. If the 

information is a direct consequence of the statistical model 

adopted, as in the case of the non-linear parameter p of an 

exponential model, the prior information can be formulated 

with certainty. 

Assume that the parameter 8 is uniformly distributed 

over the interval (0,K), and that the least squares estimate 

0 given 0 is N(0,l). It was shown that a gain in the 

efficiency in interval estimation in terms of expected 

length of confidence intervals can be achieved by constructing 

confidence intervals based on some interpolation tests. 

The interpolation tests are two-sided tests, the two 

rejection regions of which are of unequal size. 

The parameter space of the non-linear parameter p of 

the exponential model is the interval (0,l). If r is a 

linear ratio estimator of p, it was shown that Fieller's 

theorem can be modified to give real, finite confidence 
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Intervals for p based on r, that contains values of p 

belonging to the interval (0,l) only. Two graphical methods 

were suggested for the determination of such confidence 

intervals. For a particular region of the sample space, 

these procedures can be modified by using interpolation tests 

to give shorter average confidence intervals. Discussion 

was also made on the modification of the technique required 

when parameter space is (0,K) for K ̂  1. 

One class of.long-term experiments in agriculture is the 

,class of rotation experiments for the study of the effects 

of various systems of crop rotation. Rotation experiments 

have been conducted in many agricultural experiment institutes 

but the analysis of experimental results has not always been 

satisfactory. 

A characteristic of rotation effect is that it tends to 

level off in the long run. By hypothesizing a growth process 

for rotation effects, it was possible to include the 

exponential model as part of the statistical model for 

rotation effects. An alternative approach also using the 

exponential model was used to build a statistical model under 

the assumption that all rotation effects can be described by 

a common growth curve. Analysis based on these models is 

relatively simple computationally and offers meaningful and 

interpretable results. An example was given for the 

analysis of a rotation-fertility experiment at the Clarion-
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Webster Experimental Farm conducted by the Iowa Agricultural 

Experiment Station. 
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