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Figure 9.3: Hardware and software read-mapping function run-time comparison for 50 million base genome with
varying number of reads.
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Figure 9.4: Speedup of the hardware-implemented read-mapping function for 50 million base genome with
varying number of reads.
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Figure 9.5: Hardware-implemented read-mapping function run-time for 50 million base genome with varying
number of reads.
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Figure 9.6: Improvement in the original RMAP software performance with the hardware read mapping function
for 50 million base genome with varying number of reads.



60

2) Varying genome size. Figure 9.7, Figure 9.8 and Figure 9.9 show the impact on performance

of varying genome sizes for a fixed number of reads. Figure 9.7 illustrates that with increas-

ing genome size, the execution time of the hardware-implemented read mapping function is

less than a software implementation. Figure 9.9 shows variation in time taken by the read

mapping function in hardware with respect to genome size. This substantiates the analysis

in Section 9.1 (refer Figure 9.2) that the genome size has significant impact on hardware

run-time.

Figure 9.8 shows speedup of ∼2x with hardware design over the software read mapping

function for increasing genome size. The speedup observed here is less than that observed

in the experiment with varying number of reads. This is because the hardware run-time

increases with genome size. Also, for the real datasets used in this experiment, many of

the read-keys have more than 100 reads associated with them. This leads to filling up the

CAM quickly, causing the design to wait for a free slot. The wait for a read ID to be cleared

from CAM, in order that the processing of the same read ID starts again, is higher for these

datasets. This further contributes towards reduced speedup.

For this experiment, an estimate of the improvement in the original RMAP software perfor-

mance by replacing its read mapping function with the hardware-implemented read mapping

function was determined using Equation 9.1. The results are shown in Figure 9.10.

The inference from this set of experiments is that more computationally intensive the map-

ping process, greater the gains obtained by implementing it on hardware.

Bottleneck analysis. This section shows the results of the experiments run for bottleneck

analysis.

1) Varying number of mapping sites on the reference genome. Table 9.1 shows the effect on

run-time for 1) no reads mapping and 2) reads mapping, on the reference genome. When

there are no reads mapping on the genome, it indicates that the Keysearcher unit could not

find a match for chromosome keys. For such a case, the number of search requests sent for

each chromosome key is “log n”, where ‘n’ is the size of the read-keys table. This leads to

increased data fetches from memory, resulting in increased hardware time, as compared to
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Figure 9.7: Hardware and software read-mapping function run-time comparison for 41 million reads with varying
genome size.
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Figure 9.8: Speedup of the hardware-implemented read-mapping function for 41 million reads with varying
genome size.
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Figure 9.9: Hardware-implemented read-mapping function run-time for 41 million reads with varying genome
size.
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Table 9.1: Effect of varying number of mapping sites on hardware design run-time for a 50 million base genome
with 55 million reads.

No. of mapping
sites

Time sending
‘X’ requests
(secs)

Time sending
‘2X’ requests
(secs)

0 25.563 16.94
33221272 12.444 11.424

the case with reads mapping on the reference genome.

The Keysearcher sends a certain number of search requests. It is stalled until the requested

search data is received back, following which more search requests are issued. Table 9.1

shows the impact of sending more search requests on run-time. Following is a description

of the columns:

• Time sending ‘X’ requests - indicates run-time of the design when the Keysearcher unit

issues 250 requests, and is stalled until some of the requested data is received.

• Time sending ‘2X’ requests - indicates run-time of the design when the Keysearcher

unit issues 500 requests, and is stalled until some of the requested data is received.

The results of this experiment substantiate the analysis of Chrom key search unit in Section

9.1. In case 2, where there are reads mapping on the genome, the complete hardware design

runs. For case 1, Reads process unit and Best maps process unit do not function due to no

match being found in the Chrom key search unit. However, the hardware run-time of case 1

is more than case 2. Thus, the Chrom key search unit could become a bottleneck depending

on the search complexity and the number of search requests it can issue.

2) Binary search. Table 9.2 shows the convey performance report when executing the binary

search without modifications to the search requests. Columns, “Stall LD” and “Stall ST”

represent load and store stall cycles respectively. For this implementation, maximum stalls

occur on Memory Controller 7, as seen in “Stall LD” column of Table 9.2. The reason for

this is that the root node of binary search falls on this MC. Table 9.3 shows the convey

performance report for the design sending search requests to the different addresses in order

to align them on different memory controllers. For this implementation, no stall is observed

on any MC as the search requests are distributed.
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Table 9.2: Performance report for design with no modifications to search requests.

Memory controller Loads Stores Stall LD Stall ST
mc0 e 25,414,973 6,820,733 2059 0
mc0 o 156,701,006 13,641,584 2058 0
mc1 e 25,414,192 6,821,437 0 0
mc1 o 171,505,741 13,641,399 0 0
mc2 e 25,415,920 6,820,703 0 0
mc2 o 157,031,459 13,641,500 0 0
mc3 e 25,414,655 6,820,555 457 0
mc3 o 194,177,891 13,642,129 456 0
mc4 e 25,415,221 6,820,841 0 0
mc4 o 158,988,995 13,641,338 0 0
mc5 e 25,415,188 6,820,901 0 0
mc5 o 170,757,663 13,642,722 0 0
mc6 e 25,415,083 6,820,642 0 0
mc6 o 158,277,608 13,641,422 0 0
mc7 e 25,414,532 6,821,249 114,087,990 0
mc7 o 193,668,167 13,641,992 114,087,612 0

Table 9.3: Performance report for design with modifications to search requests.

Memory controller Loads Stores Stall LD Stall ST
mc0 e 781,271 0 0 0
mc0 o 159,657,183 0 0 0
mc1 e 781,269 0 0 0
mc1 o 159,638,953 0 0 0
mc2 e 781,267 8 0 0
mc2 o 159,723,163 0 0 0
mc3 e 781,271 8 0 0
mc3 o 159,703,473 0 0 0
mc4 e 781,271 0 0 0
mc4 o 159,738,353 0 0 0
mc5 e 781,274 0 0 0
mc5 o 159,673,182 0 0 0
mc6 e 781,289 0 0 0
mc6 o 159,726,429 0 0 0
mc7 e 781,288 0 0 0
mc7 o 159,673,060 0 0 0
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Table 9.4: Effect of varying CAM size on hardware-implemented read mapping function run-time for a 50 million
base genome with 20 million reads.

Cam Size Time(seconds)
50 10.035
100 9.883
150 9.878

No CAM 9.801

Table 9.5: Virtex-5 LX330 resource usage for the hardware-implemented read mapping function design having
CAM size of 100.

FPGA Resource Available Used(%)
Lookup Tables 207,360 39

Flip Flops 207,360 45
Block RAM (36 Kbit) 288 34

3) CAM size. In Table 9.4, it can be observed that the CAM size has little effect on hardware

run-time. This substantiates the reasoning stated in analysis of Reads process unit in Section

9.1.

9.3 Resource usage

This section lists the usage statistics of resources such as FPGA logic, memory controllers,

and global memory for the implemented design.

FPGA logic. Table 9.5 lists the percentage of the total LUTs, Flip-Flops, and BRAMs

available on the Virtex 5 LX330, used for the hardware design. A significant portion of the

resources is occupied by Convey’s memory controller interface and hardware-software interface.

Memory controller. The Convey HC-1 system has 8 memory controllers, with two ports

each. The read mapping function on the coprocessor uses 6 memory controllers with both ports,

effectively using 12 memory controllers. Of these, 3 are used for storing best maps data for

each read while the remaining are used for fetching data from memory. The memory controllers

used for stores use the “write complete interface”.

Global memory. The host processor and coprocessor are associated with 256 GB and 64 GB

of the global memory respectively. The memory layout is such that, due to physical proximity,

it provides the host processor and coprocessor fastest access to their respective memory spaces.
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Table 9.6: Memory usage of the RMAP hardware-software co-design for 50 million base genome with varying
number of reads.

Reads (million) Host Memory(GB) Coprocessor Memory(GB)
1.4 0.3 0.18
28 5.8 2.7
55 11.6 5.3
83 17.4 7.9
111 23.2 10.6
139 29 13.2

Table 9.7: Memory usage of the RMAP hardware-software co-design for 41 million reads with varying genome
size.

Genome (million) Host Memory(GB) Coprocessor Memory(GB)
50 11.4 5
70 11.4 5.1
100 11.4 5.4
117 11.4 5.6
150 11.4 5.9

For the hardware-software RMAP design on the HC-1 system, data allocated on the host

processor memory is solely dependent on the number of reads. However, coprocessor memory

usage is dependent on both number of reads and genome size. The read mapping function in

hardware uses only coprocessor memory. Tables 9.6 and 9.7 show the amount of coprocessor

memory used while the mapping function is running in hardware, indicated in the “Coprocessor

Memory” column.

Table 9.6 lists the memory usage for the experiment where the number of reads are varied

with the genome size constant, described in Section 8.2. The increase in coprocessor memory

usage with increasing number of reads can be attributed to several reasons. Firstly, each read

is associated with 8 pieces of data: 1) upper, 2) lower, 3) bads, 4) score1, 5) score2, 6) chrom

ID1, 7) chrom ID2, and 8) strand of the chromosome. Each of these occupy 8-bytes. Next, the

memory allocated to read-keys table is also dependent on the number of reads. Table 9.7 lists

the memory usage for the experiment where the genome size is varied with the number of reads

constant, described in Section 8.2. The small increase in coprocessor memory usage is due to

increase in genome size as the genome array is allocated on the coprocessor memory.
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9.4 Pending Issues and Concerns

This section puts forth some open issues pertaining to the hardware design.

Performance runs for large datasets. The datasets used here for the performance exper-

iments are relatively small compared to real world datasets that RMAP is typically used to

run. The design implemented on the coprocessor has an unresolved bug which prevents it

from running on datasets larger than the ones shown. Based on the results of the throughput

evaluation experiments, a speedup of at least 2x is expected for large datasets.

Binary search. The experiments performed for identifying bottlenecks in the binary search

process, described in Section 9.2, determines the effect of distributing search requests evenly

across all 8 memory controllers. The design modified for this purpose results in very few

matches in the Chroms key search unit for the dataset used. This dataset, otherwise, results

in matches for 60% of the chromosome keys. This prevents the Reads process unit and the

Best maps process unit from being called into action, making them almost redundant for this

case. Hence, this experiment should be conducted with a design which, along with not causing

traffic on a particular MC, also results in significant matches during the chromosome key search

process. This will enable the Reads process unit and the Best maps process unit to function,

allowing the analysis to incorporate their effect.

Bandwidth utilization. The coprocessor design does not operate at the full bandwidth of 20

GB/s, available to an AE (FPGA) of the Convey HC-1 system. In order to fully utilize this,

the design needs to make one request per clock cycle to each MC port (odd and even). There

are mainly three reasons which prevent the design from achieving full bandwidth utilization:

1) MC Stalls - These arise because of the MCs not being able to service requests at the rate

at which they are sent from the design.

2) Idle cycles - These correspond to the cycles during which the MCs are idle (i.e. when they

are not servicing requests). One of the possible reasons for this is that the design does not

allow data requests larger than the size of the fifos, which store the requested data, until

some of the data is read from the fifos, resulting in idle cyles. The other possible reason is

the Reads process unit taking 3-4 cycles to send each fetch request for the data associated
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with the read IDs, because of its finite state machine (FSM) based design. This contributes

towards idle cycles, during which fetch requests are not being sent for the read’s data.

3) Unused crossbar MCs - Full bandwidth utilization requires the use of all (16) crossbar MCs

available to the AE. However, the design uses only a subset of the MCs, thus impacting the

percentage of the peak bandwidth utilized.
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CHAPTER 10. Conclusion and Future Work

This chapter concludes the thesis and discusses some areas of future work in order to further

accelerate RMAP.

10.1 Conclusion

This work has described a technique to accelerate the short-read mapping function of the

RMAP short read mapping tool. As a first step, RMAP was profiled to determine the execution

time of each of its functions. Based on the results of this profiling, short-read mapping was

found to be the most computatonally intensive function, and hence was chosen for acceleration.

To achieve the acceleration, the read mapping function was implemented on the reconfig-

urable hardware (FPGA) of a Convey HC-1 system. The hybrid feature of the HC-1 platform

provided a highly abstract way of designing a hardware-software co-design solution for RMAP,

with the read mapping function running on the reconfigurable fabric of the coprocessor, and the

remaining RMAP functions running on the host processor. RMAP was modified to separate

the read mapping function for porting, and to align it with the HC-1’s hybrid architecture.

The hardware was designed in the form of a pipelined architecture implementing the mapping

function.

Experiments were performed to observe the speedup of the read mapping function im-

plemented on the custom hardware architecture, and for finding potential bottlenecks in the

hardware design. For throughput evaluation, data was collected using different datasets by 1)

varying the number of reads for a fixed genome size, and 2) varying genome size for a fixed

number of reads. The first experiment showed a speedup of ∼5x for 139 million reads (the

largest reads dataset used in this experiment) with a 50 million base genome, as compared to
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a software implementation of the read mapping function. The second experiment showed a

speedup of ∼2x for 150 million base genome (the largest genome size used in this experiment)

with 41 million reads. For bottleneck analysis, experiments were run to determine the impact

of the chromosome key search process and the size of the content addressable memory unit

used, on coprocessor design run-time. It was determined that the search process could be a

bottleneck affecting performance. However, variation in memory unit size proved to have no

significant impact on performance.

10.2 Future Work

Three possible directions for future work to further increase the performance of the read

mapping function implemented in hardware are suggested in this section.

1) Splitting the genome across four FPGAs. This work makes use of only one FPGA

of the HC-1 system out of the four that are available. For further speedup, all the four

FPGAs, also called as Application Engines (AEs), could be used. In order to achieve this,

the reference genome, input to the design, could be divided across the four AEs. Each AE

would perform the same function of 1) processing the genome, 2) searching the chromosome

key in the read-keys table, 3) scoring the matches, 4) determining the best maps for each

read based on the score, and 5) storing the best maps result. The read-keys table and the

Content addressable memory unit (CAM) would be common to all the four AEs. Each AE

would place the read IDs, that are being processed, in the CAM. If there is a contention

in writing to the CAM, priority would be given to the AE which streams the first division

of genome, and so on. Memory load/store contentions would be taken care of by the HC-1

“coprocessor memory ordering” feature.

2) Binary search data buffering. Based on the results of Section 9.2, the binary search

process in the Chroms key search unit could be a bottleneck. Performing the search for

each chromosome key in the hardware design involves accessing the same middle elements

multiple times, with the root node of the binary search tree (i.e. the read-keys table) always

being accessed. The workaround for this could be, 1) a data buffer or cache in the AE for

storing the inital N middle elements, or 2) replicating the first N levels of the binary search
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tree in the AE. This could eliminate the need for fetching the middle element from memory

for each chromosome key, which could be in millions to billions in number depending on the

reference genome size. For workaround 1), a BRAM could be used as a cache to save these

middle elements. An address-mapping function could be used to map the binary search

address on to the BRAM address. When a search for a chromosome key is under process,

the addresses involved can be checked to determine if they map with the BRAM addresses,

and then the the data in the BRAM can be used. For workaround 2), the initial stages of

the search for a chromosome key would be on the AE. The later stages, requiring access

to the read-keys table outside the first N levels, would be transferred to the coprocessor

memory.

3) Software optimization. In this work, RMAP was modified for implementation on the HC-

1 hybrid platform. The functions of RMAP that run on the host processor are not optimized.

Also, the host processor operates on some of the arrays stored on the coprocessor side of

memory. Hence, the total run-time of the RMAP implementation on the HC-1 system

turns out to be more than the original optimized version of RMAP. The software functions

running on the host processor with this hybrid design could be optimized to take equal or

lesser amount of time than the original RMAP’s software functions. Thus, speedup for the

overall RMAP hardware-software co-design could be targeted.
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