Ultrasonic Characterization of Fatigue Behavior in Metal-Matrix Composites

Thumbnail Image
Date
1997
Authors
Nuñez, R.
Wahnschaffe, J.
Salama, K.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

In the past decades, the incorporation of ceramic reinforcement in metal-matrix composites (MMC’s) brought about considerable improvements in elastic modulus, strength, wear resistance, structural efficiency, reliability and control of physical properties (e.g. density and coefficient of thermal expansion) thereby providing for improved mechanical performance in comparison to the unreinforced matrix [1–4]. S-N curves for materials such as steels are available elsewhere [5–6] whereas are limited for MMC’s. Studies on the elastic constants behavior for MMC’s as a function of temperature, volume fractions of reinforcement and applied stresses had already been conducted [7–8]. However, the fatigue behavior of elastic constants in MMC’s is not well understood. Further, the trend now is aimed at nondestructive evaluation (NDE) of materials which in the past years gained significant attention over the conventional destructive tests since the former is capable of determining the usefulness, serviceability or quality of a part or material without limiting its usefulness, which is not possible in the latter’s case [9–10]. In view of the above discussion, a result of the study on the fatigue behavior and ultrasonic characterization of monolithic aluminum and aluminum MMC’s will be discussed here.

Comments
Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 1997