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ABSTRACT

In a network that supports multiple unicast, there are several source terminal pairs; each

source wishes to communicate with its corresponding terminal. Multiple unicast connections

form bulk of the traffic over both wired and wireless networks. Thus, network coding schemes

that can help improve network throughput for multiple unicasts are of considerable interest.

In this dissertation, we consider the multiple unicast problem over directed acyclic networks

with unit-capacity edges when there are three source terminal pairs and two source terminal

pairs. For three unicast problem, we assume that the three si−ti pairs wish to communicate at

unit-rate via network coding. We define the connectivity level vector [k1 k2 k3] such that there

exist ki edge-disjoint paths between si and ti. We attempt to classify networks based on the

connectivity level. We identify certain feasible and infeasible connectivity levels [k1 k2 k3] for

unit rate transmission. For the feasible cases, we construct schemes based on linear network

coding. For the infeasible cases, we provide counter-examples, i.e., instances of graphs where

the multiple unicast cannot be supported under any (potentially nonlinear) network coding

scheme.

For two unicast problem, we assume that we only know certain minimum cut values for the

network, e.g., mincut(Si, Tj), where Si ⊆ {s1, s2} and Tj ⊆ {t1, t2} for different subsets Si and

Tj . Based on these values, we propose an achievable rate region for this problem using linear

network codes. Towards this end, we begin by defining a multicast region where both sources

are multicast to both the terminals. Following this we enlarge the region by appropriately

encoding the information at the source nodes, such that terminal ti is only guaranteed to

decode information from the intended source si, while decoding a linear function of the other

source. The rate region depends upon the relationship of the different cut values in the network.
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CHAPTER 1. INTRODDUCTION

In the past decade, network coding has emerged as an alternative to routing in data trans-

mission in both wired and wireless networks. In a traditional router network, each intermediate

node duplicates, stores, and forwards the receiving packets. Although this simple scheme is

easy to be implemented and widely used in the communication network, its inherent weakness

as viewing the packets as commodity flow but not as information packets has greatly limited

the capability of the network. Instead of simply forwarding the received packets at the interme-

diate node, a node in a network coded system processes the incoming flows in multiple different

operations: combining, extracting, copying, and forwarding. Because network coding can use

the network resources more efficiently, it has advantages over routing in various aspects, such

as increasing the throughput, reducing the resource usage, and improving network robustness.

In this chapter, we will briefly introduce several basic ideas of network coding.

It is well known that the maximum rate that one source terminal pair can achieve is equal

to the minimum cut value of their connection, and this rate can be achieved by routing [1].

However, for more general network connections in which the terminals require certain subsets

of messages available at the sources, routing cannot achieve the optimum solution in general.

A well known example is the case of multicast for butterfly network shown in Fig. 1.1. In this

network, s needs to transmit X1 and X2 to both t1 and t2 where X1 and X2 are independent

with H(X1) = H(X2) = 1. The capacity of each link is 1. The link v3−v4 acts as a bottleneck

under routing. However, if we transmit X1 +X2 on v3 − v4, both terminals can be satisfied.

The above example shows that the throughput of the network is increased by utilizing encoding

and decoding in the network.

The properties of network coding have been extensively studied for the multicast network
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Figure 1.1 The butterfly network, where there is no routing solution but

there exists a network coding solution.

in which a source S needs to transmit the same set of information to multiple terminals

t1, . . . , tn. It has been shown that rate h can be simultaneously supported for each S − ti pair

by linear network codes if the min-cut value between S and each receiver is greater than or

equal to h [2]. An algebraic approach [3] for network coding based multicast has been proposed

demonstrating that the messages received at each terminal is the source messages multiplied

by a transfer matrix with rank h. By inverting the transfer matrix, each terminal can recover

the source messages at rate h. A polynomial time deterministic code assignment procedure

for multicast network has been studied in [4]. Furthermore, a distributed code assignment

scheme is suggested in [5]. It is proved that the multicast capacity can be achieved with high

probability if the linear code coefficients are chosen randomly from a large enough field. As for

the cost consideration, it is mentioned in [6] that the minimum cost multicast connections can

be identified by solving a polynomial-time solvable optimization problem with a decentralized

algorithm.

1.1 Network coding for multiple unicast

Amultiple unicast network is defined as a network in which there are several source terminal

pairs, and each source wishes to communicate with its corresponding terminal. Since multiple
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unicast networks compose a large amount of real-world network, network coding schemes that

can help improve network throughput for multiple unicasts have received intensive research

efforts. However, it is well recognized that the design of constructive network coding schemes

for multiple unicasts is a hard problem, since at each terminal there exists undesired interference

from other sessions. Furthermore, it is proved in [7] that there are instances of network where

linear network coding is insufficient.

For undirected multiple unicast network, it has been conjectured by Li and Li [8] that

network coding does not provide any advantages over routing. For directed acyclic network,

because network coding can achieve higher throughput than routing in a butterfly network,

the work of [9] forms a linear program to find the achievable rate region by packing multiple

butterfly structures in the original graph. The works of [10] and [11] propose a sufficient and

necessary condition on the network structure for two unicast session unit rate transmission.

It is pointed out that besides the two edge disjoint paths structure and the butterfly struc-

ture, there exists another basic structure that can support unit rate transmission, namely, the

grail structure. For non-unit rate two session unicast problem, an achievable rate region is

constructed given the min-cut value between each source and terminal pair [12]. The second

part of this thesis extends their achievable region given more cut values of the network. A

recent work of [13] by Das et al. considers the multiple unicast problem with an interference

alignment approach (proposed in [14]). For three unicast problem, under certain algebraic con-

ditions, if the min-cut value for each source terminal pair is 1, then rate 1/2 can be achieved

simultaneously. Some further study of interference alignment approach is presented in [15]

and [16]. For the outer bound of the capacity region, the authors in [17] propose an outer

bound for general networks. This bound is hard to evaluate even for small networks due to the

large number of inequalities involved. An improved GNS bound over network sharing bound

has been suggested in [18]. It is proved that the GNS bound is the tightest bound that can be

realized using only edge-cut bounds. For two unicast session, the work of [19] also proposes an

outer bound that can be achieved by certain network structures using the cut-set bound.

In this dissertation, we consider linear network coding schemes for multiple unicast over
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directed acyclic networks with unit capacity edges. Specifically, we focus on the cases when

there are three unicast sessions and when there are two unicast sessions. For the three unicast

problem, there are source-terminal pairs denoted si − ti, i = 1, . . . , 3, such that the maximum

flow from si to ti is ki. Each source contains a unit-entropy message that needs to be commu-

nicated to the corresponding terminal. We characterize several feasible and infeasible values

of the connectivity level vector [k1 k2 k3] for unit rate transmission. For the feasible connec-

tivity level vectors, we construct schemes based on linear network coding. For the infeasible

connectivity level vectors, we provide instances of graphs where the multiple unicast cannot

be supported under any (potentially nonlinear) network coding scheme. For two unicast prob-

lems, our aim is to find the achievable region assuming that we only know certain minimum cut

values for the network, e.g., mincut(Si, Tj), where Si ⊆ {s1, s2} and Tj ⊆ {t1, t2} for different

subsets Si and Tj . We classify networks according to the relationship of the different cut val-

ues of the network. To find the achievable region, we first find a multicast region where both

sources can be multicast to the terminals. Subsequently, this region is extended according to

the specific class that the network belongs to. In both two unicast network and three unicast

networks, our achievability scheme uses random linear network coding (or modified random

linear network coding) and appropriate precoding at the sources.

1.2 Dissertation outline

The remainder of this dissertation is organized as follows:

Chapter 2 presents some background knowledge of multiple unicast network and discusses

several related works.

Chapter 3 considers the multiple unicast problem with three source-terminal pairs over

directed acyclic networks with unit capacity edges. The network coding model and the three

unicast problem formulation are first introduced. Next, several infeasible connectivity level

vectors for unit rate transmission are discussed with instances of graphs. Then the achievable

schemes for several feasible connectivity level vectors are presented. Finally, some simulation

results are shown to demonstrate that by packing our unit rate schemes, the throughput of
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some multiple unicast network with higher capacity edges can be improved. Part of this work

has appeared in [20] [21] and a revised version has been accepted for journal publication [22].

Chapter 4 investigates the multiple unicast problem with two source-terminal pairs over

directed acyclic networks with unit capacity edges. The network coding system model is first

presented, followed by the precise problem formulation for the two unicast problem. Then our

proposed achievable rate region is derived according to the different cut values. The comparison

between our achievable region and existing literature is also provided. The content of this

chapter has appeared in [23] and a revised version has been accepted for journal publication [24].

Finally, Chapter 5 summarizes our contributions and presents the ongoing and future work.
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CHAPTER 2. BACKGROUND AND RELATED WORK

In a multiple unicast connection, there are several source terminal pairs; each source wishes

to communicate with its corresponding terminal at certain rate. The achievable region for the

multiple unicast problem has been investigated for both directed acyclic networks [9] [10]

[17] [25] and undirected networks [8] in previous work. For directed acyclic network, several

works study the achievable region by identifying some special structures of the network. For

example, because the butterfly network shows an increment of throughput by network coding

over routing, the work of [9] attempts to increase the throughput by packing multiple butterfly

structures within the original graph using a linear optimization approach. A similar but

distributed scheme is suggested by Ho et al. in [26] which proposes back pressure algorithms

for finding achievable rates using XOR operation between pairs of flows. For two unicast

sessions, besides the butterfly structure and the two edge disjoint paths structure, there exists

another basic structure (grail structure) that supports unit rate transmission [10]. By analyzing

the three basic structures, the work of [10](also see [11]) proposes a necessary and sufficient

condition on the network structure such that unit rate transmission is guaranteed for two

unicast sessions. Instead of analyzing the network with combinatorial approaches, the work

of [27], provides an information theoretic characterization for directed acyclic networks. The

rate on each edge should satisfy certain inequalities which are derived from link connection

patterns. Hence, several bounds for the transmission rate can be generated. However, in

practice, evaluating these bounds becomes computationally infeasible even for small networks

because of the large number of inequalities that are involved. As for the undirected networks,

there is open conjecture as to whether there is any advantage to using network coding as

compared to routing [8].
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Multiple unicast in the presence of link faults and errors, under certain restricted (though

realistic) network topologies has been studied in [28] [29]. The underlying idea is to transmit

redundant network coded information over protection paths such that multiple unicast can be

simultaneously protected.

For the outer bound of the capacity region for the unicast network, an explicit outer

bound (Network Sharing bound) for multiple unicast problem is found in [30]. By analyzing

the constraints on the side information at the terminal, the Network Sharing bound provides

significant improvement over min-cut bound. A more improved outer bound (GNS bound)

is proposed in [18], and proved to be tight in some special structured network. It is also

suggested that the GNS bound is the tightest outer bound that can be realized using only

edge-cut bounds. Price and Javidi [19] also characterize an outer bound of the rate region in

two unicast session network using cut-set bound, and provided a class of network structure

in which the outer bound is the exact capacity region. By combining graph theoretic and

information theoretic techniques, the work of [17] proposes another outer bound that consists

of a series of information inequalities derived from the network structure. However, this bound

is hard to evaluate even for small sized networks due to the large number of inequalities involved

in the characterization.

Some recent work deals with the case of three unicast sessions, which is also the focus

of Chapter 3 of the dissertation. The work of [13] and [15] use the technique of interference

alignment (proposed in [14]) for multiple unicast. Roughly speaking they use random linear

network coding and design appropriate precoding matrices at the source nodes that allow

undesired interference at a terminal to be aligned. However, their approach requires several

algebraic conditions to be satisfied in the network. It does not appear that these conditions

can be checked efficiently. There has been a deeper investigation of these conditions in [16].

This dissertation is closest in spirit to these papers. Specifically, we also examine network

coding for the three-unicast problem. However, the problem setting is somewhat different.

Considering networks with unit capacity edges and given the maximum-flow ki between each

source (si) - terminal (ti) pair we attempt to either design a network code that allows unit-rate
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communication between each source-terminal pair, or demonstrate an instance of a network

where unit-rate communication is impossible. Our achievability schemes for unit rate are useful

since they can be packed into networks with higher capacity edges. Furthermore, these schemes

require vector network coding over at most two time units, unlike the work of [13] and [15],

that require a significantly higher level of time-expansion.

At the same time, several works have focused on the case of two unicast networks. For

instance, by examining every edge on a path that connects a source and terminal, the work

of [10] (see also [11]) presented a necessary and sufficient condition on the network structure for

the existence of a network coding solution that supports unit rate transmission for each si− ti

connection. These works further pointed out that if a two unicast network can support unit

rate transmission, an XOR coding scheme suffices. Reference [12] considered directed acyclic

networks and proposed an achievable rate region for non-unit rate two unicast problem based

on the number of edge disjoint paths for each si − ti connection. Their result suggested that

if the rate at one session needs to be increased by h, the rate at the other session needs to be

decreased by 2h. In this dissertation we also propose an achievable region for the two-unicast

problem using linear network codes based on some of the cut values. We consider directed

acyclic networks with unit capacity edges and assume that we know certain minimum cut

values for the network, e.g., mincut(Si, Tj), where Si ⊆ {s1, s2} and Tj ⊆ {t1, t2} for different

subsets Si and Tj . To find the achievable region, we first find a multicast region where both

sources can be multicast to the terminals. Subsequently, this region is extended according

to the relationship of the different cut values of the network. Our achievability scheme uses

random linear network coding and appropriate precoding at the sources. The achievable region

in [12] is contained in our achievable region given that we have more cut values. The following

results have appeared since the publication of our preliminary conference paper [23]. The

work of [31] treats the two unicast problem as an instance of a linear deterministic interference

channel and finds a network code that uses random linear network coding. By applying the

Han-Kobayashi scheme as splitting the information flow as the common part and the private

part, they derive the achievable region in terms of the rank of transmission matrices. Their
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region contains our proposed achievable region. The authors in [32] also derive an achievable

region by exploiting the equivalence with deterministic interference channels; their region is

completely specified by the cut values in the network (in contrast, in certain cases our region

is specified in terms of the rank of matrices that depend on the network code). However, for

some networks our scheme achieves a larger region.
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CHAPTER 3. NETWORK CODING FOR THREE UNICAST SESSIONS

3.1 Preliminaries

We represent the network as a directed acyclic graph G = (V,E). Each edge e ∈ E has

unit capacity and can transmit one symbol from a finite field of size q per unit time (we

are free to choose q large enough). If a given edge has higher capacity, it can be treated as

multiple unit capacity edges. A directed edge e between nodes i and j is represented as (i, j),

so that head(e) = j and tail(e) = i. A path between two nodes i and j is a sequence of edges

{e1, e2, . . . , ek} such that tail(e1) = i, head(ek) = j and head(ei) = tail(ei+1), i = 1, . . . , k − 1.

The network contains a set of n source nodes si and n terminal nodes ti, i = 1, . . . n. Each

source node si observes a discrete integer-entropy source, that needs to be communicated to

terminal ti. Without loss of generality, we assume that the source (terminal) nodes do not have

incoming (outgoing) edges. If this is not the case one can always introduce an artificial source

(terminal) node connected to the original source (terminal) node by an edge of sufficiently

large capacity that has no incoming (outgoing) edges.

We now discuss the network coding model under consideration in this paper. For the sake

of understanding the model, suppose for now that each source has unit-entropy, denoted by Xi

(as will be evident, in the sequel we work with integer entropy sources). In scalar linear network

coding, the signal on an edge (i, j) is a linear combination of the signals on the incoming edges

of i or the source signals at i (if i is a source). We shall only be concerned with networks that

are directed acyclic and can therefore be treated as delay-free networks [3]. Let Yei (such that

tail(ei) = k and head(ei) = l) denote the signal on edge ei ∈ E. Then, we have

Yei =
∑

{ej |head(ej)=k}

fj,iYej if k ∈ V \{s1, . . . , sn}, and
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Yei =

n∑
j=1

aj,iXj where aj,i = 0 if Xj is not observed at k.

The coefficients aj,i and fj,i are from the operational field. Note that since the graph is directed

acyclic, it is equivalently possible to express Yei for an edge ei in terms of the sources Xj ’s. If

Yei =
∑n

k=1 βei,kXk then we say that the global coding vector of edge ei is βei = [βei,1 · · · βei,n].

We shall also occasionally use the term coding vector instead of global coding vector in this

paper. We say that a node i (or edge ei) is downstream of another node j (or edge ej) if there

exists a path from j (or ej) to i (or ei).

Vector linear network coding is a generalization of the scalar case, where we code across the

source symbols in time, and the intermediate nodes can implement more powerful operations.

Formally, suppose that the network is used over T time units. We treat this case as follows.

Source node si now observes a vector source [X
(1)
i . . . X

(T )
i ]. Each edge in the original graph

is replaced by T parallel edges. In this graph, suppose that a node j has a set of βinc incoming

edges over which it receives a certain number of symbols, and βout outgoing edges. Under

vector network coding, node j chooses a matrix of dimension βout × βinc. Each row of this

matrix corresponds to the local coding vector of an outgoing edge from j.

Note that the general multiple unicast problem, where edges have different capacities and

the sources have different entropies can be cast in the above framework by splitting higher

capacity edges into parallel unit capacity edges and a higher entropy source into multiple,

collocated unit-entropy sources. This is the approach taken below.

An instance of the multiple unicast problem is specified by the graph G and the source

terminal pairs si − ti, i = 1, . . . , n, and is denoted < G, {si − ti}n1 , {Ri}n1 >, where the integer

rates Ri denote the entropy of the ith source. The si − ti connections will be referred to as

sessions that we need to support.

Let the sources at si be denoted as Xi1, . . . , XiRi . The instance is said to have a scalar

linear network coding solution if there exist a set of linear encoding coefficients for each node

in V such that each terminal ti can recover Xi1, . . . , XiRi using the received symbols at its

input edges. Likewise, it is said to have a vector linear network coding solution with vector

length T if the network employs vector linear network codes and each terminal ti can recover



12

[X
(1)
i1 . . . X

(T )
i1 ], . . . , [X

(1)
iRi

. . . X
(T )
iRi

]. If the instance has either a scalar or a vector network

coding solution, we say that it is feasible.

We will also be interested in examining the existence of a routing solution, wherever pos-

sible. In a routing solution, each edge carries a copy of one of the sources, i.e., each coding

vector is such that at most one entry takes the value 1, all others are 0. Scalar (vector) routing

solutions can be defined in a manner similar to scalar (vector) network codes. We now define

some quantities that shall be used throughout the paper.

Definition 3.1.1 Connectivity level. The connectivity level for source-terminal pair si − ti

is said to be β if the maximum flow between si and ti in G is β. The connectivity level

of the set of connections s1 − t1, . . . , sn − tn is the vector [max-flow(s1 − t1) max-flow(s2 −

t2) . . . max-flow(sn − tn)].

In this work our aim is to characterize the feasibility of the multiple unicast problem based

on the connectivity level of the si − ti pairs. The questions that we seek to answer are of the

following form - suppose that the connectivity level is [k1 k2 . . . kn]. Does any instance always

have a linear (scalar or vector) network coding solution? If not, is it possible to demonstrate a

counter-example, i.e, an instance of a graph G and si− ti’s such that recovering the i-th source

at ti for all i is impossible under linear (or nonlinear) strategies?

We conclude this section by observing that a multiple unicast instance< G, {si−ti}n1 , {1, 1, . . . , 1} >

with connectivity level [n n . . . n] is always feasible. Let Xi, i = 1, . . . , n denote the i-th unit

entropy source. We employ vector routing over n time units. Source si observes [X
(1)
i . . . X

(n)
i ]

symbols. Each edge e in the original graph G is replaced by n parallel edges, e1, e2, . . . , en. Let

Gα represent the subgraph of this graph consisting of edges with superscript α. It is evident

that max-flow(sα− tα) = n over Gα. Thus, we transmit X
(1)
α , . . . , X

(n)
α over Gα using routing,

for all α = 1, . . . , n. It is clear that this strategy satisfies the demands of all the terminals.

In general, though a network with the above connectivity level may not be able to support a

scalar routing solution.
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3.2 Network coding for three unicast sessions - Infeasible instances

It is clear based on the discussion above that for three unicast sessions if the connectivity

level is [3 3 3], then a vector routing solution always exists. We investigate counter-examples

for certain connectivity levels in this section.

Lemma 3.2.1 There exist multiple unicast instances with three unicast sessions, < G, {si −

ti}3i=1, {1, 1, 1} > such that the connectivity levels [2 2 2] and [1 1 3] are infeasible.

proof: The examples are shown in Figs. 3.1(a) and 3.1(b). In Fig. 3.1(a), the cut specified by

the set of nodes {s1, s2, s3, v1, v2} has a value of two, while it needs to support a sum rate of

three. Similarly in Fig. 3.1(b), the cut {s1, s2, v1} has a value of one, but needs to support a

rate of two. �

s1 s2 s3

t1 t2 t3

e1 e2

v1

v4v3

v2

(a)

s1 s2

t1t2

s3

t3

e1

v2

v1

(b)

Figure 3.1 (a) An example of [2 2 2] connectivity network without a net-

work coding solution. (b) An example of [1 1 3] connectivity

network without a network coding solution.

While the cutset bound is useful in the above cases, there exist certain connectivity levels

for which a cut set bound is not tight enough. We now present such an instance in Fig. 3.2.

This instance was also presented in [12], though the authors did not provide a formal proof of

this fact.

Lemma 3.2.2 There exists a multiple unicast instance, with two sessions < G, {s1 − t1, s2 −

t2}, {2, 1} > with connectivity level [2 3] that is infeasible.
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s1

t1

s2

t2

e11

e22

e12

e21

e20

1 2
[ , ]

n n
X X

3

n
X

Figure 3.2 An example of [2 3] connectivity network, rate {2, 1} cannot be

supported.

proof: The graph instance is shown in Fig. 3.2. Assume that in n time units, s1 ob-

serves two vector sources [X
(1)
1 . . . X

(n)
1 ] and [X

(1)
2 . . . X

(n)
2 ], s2 observes one vector source

[X
(1)
3 . . . X

(n)
3 ]. The sources are denoted as Xn

1 , X
n
2 and Xn

3 and are independent. The n sym-

bols that are transmitted over edge (i, j) are denoted by Y n
ij . Suppose that the alphabet ofXi is

X . Since the entropy rates for the three sources are the same, we assume H(Xi) = log |X | = a.

Also, since we are interested in the feasibility of the solution, we assume that the alphabet

size of Yij is also the same as X , and H(Yij) ≤ log |X | = a by the capacity constraint of the

edge. At terminal t1 and t2, from Y n
11, Y

n
12, Y

n
21 and Y n

22, we estimate Xn
1 , X

n
2 and Xn

3 . Let the

estimate be denoted as X̂n
1 , X̂

n
2 and X̂n

3 . Suppose that there exist network codes and decoding

functions such that P ((X̂n
1 , X̂

n
2 ) ̸= (Xn

1 , X
n
2 )) → 0 as n → ∞. For successful decoding at t1,

using Fano’s inequality, we have

H(Xn
1 , X

n
2 |X̂n

1 , X̂
n
2 ) ≤ nϵn. (3.1)

where nϵn = 1 + 2nPe log(|X |), Pe = P ((X̂n
1 , X̂

n
2 ) ̸= (Xn

1 , X
n
2 )) and ϵn → 0 as n → ∞. The

topological structure of the network implies that X̂n
1 , X̂

n
2 are functions of Y n

12 and Y n
22. Hence,

we have

H(Xn
1 , X

n
2 |Y n

12, Y
n
22) = H(Xn

1 , X
n
2 |X̂n

1 , X̂
n
2 , Y

n
12, Y

n
22)

≤ H(Xn
1 , X

n
2 |X̂n

1 , X̂
n
2 ) ≤ nϵn.

(3.2)
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Since H(Y n
12, Y

n
22) ≤ 2an, using eq. (3.2) and the independence of Xn

1 , X
n
2 and Xn

3 , by Claim

B.0.1 (see Appendix), we have

an− nϵn ≤ H(Xn
3 |Y n

12, Y
n
22) ≤ an, and (3.3)

H(Y n
12, Y

n
22|Xn

3 ) ≥ 2an− 2nϵn. (3.4)

Next, we have

H(Y n
21, Y

n
22)

(a)
= H(Xn

3 , Y
n
21, Y

n
22)−H(Xn

3 |Y n
21, Y

n
22)

(b)
= H(Xn

3 , Y
n
21)−H(Xn

3 |Y n
21, Y

n
22)

(c)

≤ 2an−H(Xn
3 |Y n

21, Y
n
22, Y

n
20, Y

n
12, X

n
1 , X

n
2 )

(d)
= 2an−H(Xn

3 |Y n
22, Y

n
20, Y

n
12, X

n
1 , X

n
2 )

(e)
= 2an−H(Xn

3 |Y n
22, X

n
1 , X

n
2 , Y

n
12)

(f)
= 2an−H(Xn

3 |Y n
22, Y

n
12) + I(Xn

3 ;X
n
1 , X

n
2 |Y n

22, Y
n
12)

≤ 2an−H(Xn
3 |Y n

22, Y
n
12) +H(Xn

1 , X
n
2 |Y n

22, Y
n
12)

(g)

≤ 2an− an+ nϵn + nϵn = an+ 2nϵn,

(3.5)

where (a) follows from the chain rule, (b) holds because Y n
22 is a function of Xn

3 and Y n
21, (c)

follows from the capacity constraints and the fact that conditioning reduces entropy, (d) follows

as Y n
21 is a function of Y n

12 and Y n
20, (e) is due to the fact that Y n

20 is a function of Xn
1 and Xn

2 ,

(f) follows from the definition of mutual information, and (g) is a consequence of eq. (3.2) and

eq. (3.3). The above inequalities indicate that e21 and e22 need to carry the same information

asymptotically for successful decoding at t1.

From the network, we know that Y n
12 is a function of Y n

11 and Xn
3 . This implies that

H(Y n
11, Y

n
21, Y

n
22|Xn

3 ) = H(Y n
11, Y

n
21, Y

n
22, X

n
3 |Xn

3 )

≥ H(Y n
12, Y

n
21, Y

n
22|Xn

3 )

≥ H(Y n
22, Y

n
12|Xn

3 )
(a)

≥ 2an− 2nϵn,

(3.6)
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where (a) is due to eq. (3.4). Finally, we have

H(Xn
3 |Y n

11, Y
n
21, Y

n
22)

= H(Y n
11, Y

n
21, Y

n
22|Xn

3 ) +H(Xn
3 )−H(Y n

22, Y
n
21, Y

n
11)

(a)

≥ 2an− 2nϵn + an−H(Y n
22, Y

n
21)−H(Y n

11|Y n
22, Y

n
21)

(b)

≥ 3an− 2nϵn − an− 2nϵn −H(Y n
11|Y n

22, Y
n
21)

(c)

≥ 2an− 4nϵn − an = an− 4nϵn,

(3.7)

where (a) is due to eq. (3.6), (b) is because of eq. (3.5) and (c) holds because of the capacity

constraint on Y n
11. This implies that t2 cannot decode Xn

3 with an asymptotically vanishing

probability of error. �

Corollary 3.2.3 There exists a multiple unicast instance with three sessions, and connectivity

level [2 3 2] that is infeasible.

proof: Consider the instance < G, {s′i − t′i}31, {1, 1, 1} >, where G is the graph in Fig. 3.2. The

sources s′1 and s′3 are collocated at s1 (in G), and the terminals t′1 and t′3 are collocated at

t1 (in G). Likewise, the source s′2 and terminal t′2 are located at s2 and t2 in G. The three

sessions have connectivity level [2 3 2]. Based on the arguments in Lemma 3.2.2, there is no

feasible solution for this instance. �

The previous example can be generalized to an instance with two unicast sessions with

connectivity level [n1 n2] that cannot support rates R1 = n1, R2 = n2 − 3n1/2 + 1 when

n2 ≥ 3n1/2 and n1 > 1.

Theorem 3.2.4 For a directed acyclic graph G with two s − t pairs, if the connectivity level

for (s1, t1) is n1, for (s2, t2) is n2, where n2 ≥ 3n1/2 and n1 > 1, there exist instances that

cannot support R1 = n1 and R2 = n2 − 3n1/2 + 1.

proof: Provided in the Appendix A. �

3.3 Network coding for three unicast sessions - Feasible instances

It is evident that there exist instances with connectivity level [2 2 3] (and component-wise

lower) that are infeasible. Therefore, the possible instances that are potentially feasible are
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[1 3 3] and [1 2 4], or their permutations and connectivity levels that are greater than them.

In the discussion below, we show that all the instances with the connectivity levels [1 3 3],

[2 2 4] and [1 2 5] are feasible using linear network codes. Our work leaves out one specific

connectivity level vector, namely [1 2 4] for which we have been unable to provide either a

feasible network code or a network topology where communicating at unit rate is impossible.

As pointed out by the work of [3], under linear network coding, the case of multiple unicast

requires (a) the transfer matrix for each source-terminal pair to have a rank that is high enough,

and (b) the interference at each terminal to be zero. Under random linear network coding, it

is possible to assert that the rank of any given transfer matrix from a source si to a terminal

tj has w.h.p. a rank equal to the minimum cut between si and tj ; however, in general this is

problematic for satisfying the zero-interference condition.

Our strategies rely on a combination of graph-theoretic and algebraic methods. Specifically,

starting with the connectivity level of the graph, we use graph theoretic ideas to argue that the

transfer matrices of the different terminals have certain relationships. The identified relation-

ships then allow us to assert that suitable precoding matrices that allow each terminal to be

satisfied can be found. A combination of graph-theoretic and algebraic ideas were also used in

the work of [33], where the problem of multicasting finite field sums over wired networks was

considered. However, there are some crucial differences. Reference [33] considered a multicast

situation; thus, the issue of dealing with interference did not exist. As will be evident, a large

part of the effort in the current work is to demonstrate that the terminals can decode their

intended message in the presence of the interfering messages.

We begin with the following definitions.

Definition 3.3.1 Minimality. Consider a multiple unicast instance < G = (V,E), {si −

ti}n1 , {1, . . . , 1} >, with connectivity level [k1 k2 . . . kn]. The graph G is said to be min-

imal if the removal of any edge from E reduces the connectivity level. If G is minimal, we will

also refer to the multiple unicast instance as minimal.

Clearly, given a non-minimal instance G = (V,E), we can always remove the non-essential

edges from it, to obtain the minimal graph Gmin. This does not affect connectivity. A network
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code for Gmin = (V,Emin) can be converted into a network code for G by simply assigning the

zero coding vector to the edges in E\Emin.

Definition 3.3.2 Overlap edge. An edge e is said to be an overlap edge for paths Pi and Pj

in G, if e ∈ Pi ∩ Pj.

Definition 3.3.3 Overlap segment. Consider a set of edges Eos = {e1, . . . , el} ⊂ E that forms

a path. This path is called an overlap segment for paths Pi and Pj if

(i) ∀k ∈ {1, . . . , l}, ek is an overlap edge for Pi and Pj,

(ii) none of the incoming edges into tail(e1) are overlap edges for Pi and Pj, and

(iii) none of the outgoing edges leaving head(el) are overlap edges for Pi and Pj.

Our solution strategy is as follows. We first convert the original instance into another structured

instance where each internal node has at most degree three (in-degree + out-degree). We

then convert this new instance into a minimal one, and develop the network code assignment

algorithm. This network code, can be converted into a network code for the original instance.

Following [34] we can efficiently construct a structured graph Ĝ = (V̂ , Ê) in which each

internal node v ∈ V̂ is of total degree at most three with the following properties.

(a) Ĝ is acyclic.

(b) For every source (terminal) in G there is a corresponding source (terminal) in Ĝ.

(c) For any two edge disjoint paths Pi and Pj for one unicast session in G, there exist two

vertex disjoint paths in Ĝ for the corresponding session in Ĝ.

(d) Any feasible network coding solution in Ĝ can be efficiently turned into a feasible network

coding solution in G.

In all the discussions below, we will assume that the graph G is structured. It is clear that

this is w.l.o.g. based on the previous arguments.
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3.3.1 Code assignment procedure for instances with connectivity level [1 3 3]

We begin by showing some basic results for two-unicast. The three unicast result follows

by applying vector network coding over two time units and using the two-unicast results.

Lemma 3.3.4 A minimal multiple unicast instance < G, {s1 − t1, s2 − t2}, {1,m} > with

connectivity level [1 m+ 1] is always feasible.

proof: Denote the path from s1 to t1 as P1 = {P11}, and the m + 1 paths from s2 to t2 as

P2 = {P21, . . . , P2m+1}. The information that needs to be transmitted from s1 is X1, and the

information that needs to be transmitted from s2 isX21, . . . , X2m. We assume that P11 overlaps

with all paths in P2. Otherwise, if P11 overlaps with n paths in P2 where 0 ≤ n < m + 1,

w.l.o.g, assume they are P21, . . . , P2n. Then X2n, . . . , X2m can be simply transmitted over

the overlap free paths P2n+1, . . . , P2m+1, and the problem reduces to communicating X1 and

X21, . . . , X2n−1 over P11 ∪ P21 ∪ · · · ∪ P2n, which corresponds to the statement of the theorem

with m replaced by n− 1. Hence, we focus on the case that P11 overlaps with all paths in P2.

We assume that the local coding vectors for each edge are indeterminates for now. Source

s2 uses a precoding matrix Θ; the rows of Θ specify the coding vectors on the outgoing edges

of s2. The choice of the local coding vectors and Θ is discussed below. The transmitted

symbol on the outgoing edge from s2 belonging to P2i is [θi1 · · · θim][X21 · · · X2m]T where

i = 1, . . . ,m+ 1. Let θj = [θ1j · · · θ(m+1)j ]
T where j = 1, . . . ,m.

As P11 overlaps with all paths on P2, there will be many overlap segments on P11. Let Eos1

denote the overlap segment that is closest to t1 (under the topological order imposed by the

directed acyclic nature of the graph) along P11 and suppose that it is on P21. A key observation

is that Eos1 is also the overlap segment on P21 that is closest to t2. Indeed if there is another

overlap segment E′
os1 that is closer to t2 along P21, then it implies the existence of a cycle in

the graph. Let the coding vectors at each intermediate node be specified by indeterminates

for now.

The overall transfer matrix from the pair of sources {s1, s2} to t1 can be expressed as

[M11 | M12] = [α1 | γ11 · · · γ1(m+1)].
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Similarly, the transfer matrix from the pair of sources {s1, s2} to t2 can be expressed as

[M21 | M22] =



α1 γ11 · · · γ1(m+1)

α2 γ21 · · · γ2(m+1)

...
...

. . .
...

αm+1 γ(m+1)1 · · · γ(m+1)(m+1)


.

The received vector at terminal ti is therefore [Mi1 | Mi2]

 X1

Θ[X21 · · ·X2m]T

. The variables

α′
is and γ′ijs in the above matrices depend on the indeterminate local coding vectors and are

therefore undetermined at this point.

We emphasize that the first row of [M21 | M22] is the same as [M11 | M12]. As there exists a

single path between s1 and t1, it is clear that α1 is not identically zero. Similarly, as there are

m+1 edge-disjoint paths between s2 to t2, we have that det(M22) is not identically zero. Now

suppose that we employ random linear network coding at all nodes. Using the Schwartz-Zippel

lemma [35], this implies that α1 ̸= 0 and det(M22) ̸= 0 w.h.p. We assume that α1 ̸= 0 and

det(M22) ̸= 0 in the discussion below. Next we select θij , i = 1, . . . ,m+ 1, j = 1, . . . ,m such

that they satisfy the following equation.

M22[θ1 · · · θm] =



0 · · · 0

a1 · · · 0

...
. . .

...

0 · · · am


(3.8)

where a1, . . . , am are non-zero values. Note that such [θ1 · · · θm] can be chosen since M22 is

full-rank.

Terminal t1 can decode, since M12[θ1 · · · θm] = [0 · · · 0] and α1 ̸= 0, and t2 can decode,

since X1 is available at t2, and rank(M22[θ1 · · · θm]) = m (from eq. (3.8)). Finally, we note

that there are q − 1 choices for each θj . �

We remark that the main issue in the above argument is to demonstrate that the choice

of Θ works simultaneously for both t1 and t2. The observation that Eos1 is overlap segment

closest to t1 and t2 along P11 and P21 respectively allows us to make this argument.
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The result for three unicast sessions with connectivity level [1 3 3] now follows by using

vector linear network coding over two time units, as discussed below.

Theorem 3.3.5 A multiple unicast instance with three sessions, < G, {si − ti}31, {1, 1, 1} >

with connectivity level at least [1 3 3] is feasible.

proof: W.l.o.g. we assume that the connectivity level is exactly [1 3 3]. We use vector linear

network coding over two time units. For facilitating the presentation we form a new graph

G∗ where each edge e ∈ E is replaced by two parallel unit capacity edges e1 and e2 in G∗.

The messages at source node si are denoted [Xi1 Xi2], i = 1, . . . , 3. Let the subgraph of G∗

induced by all edges with superscript i be denoted G∗
i . In G∗

1, there exists a single s1 − t1

path and three edge disjoint s2 − t2 paths. Therefore, we can transmit X11 from s1 to t1 and

[X21 X22] from s2 to t2 using the result of Lemma 3.3.4. Similarly, we use G∗
2 to communicate

X12 from s1 to t1 and [X31 X32] from s3 to t3. Thus, over two time units a rate of [1 1 1] can

be supported. �

3.3.2 Code assignment procedure for instances with connectivity level [2 2 4]

Our solution approach is similar in spirit to the discussion above. In particular, we first

investigate a two-unicast scenario with connectivity level [2 4] and rate requirement {2, 1}

and use that in conjunction with vector network coding to address the three-unicast with

connectivity level [2 2 4].

Lemma 3.3.6 A minimal multiple unicast instance < G, {s1 − t1, s2 − t2}, {2, 1} > with con-

nectivity level [2 4] is feasible.

proof: Let P1 = {P11, P12} denote two edge disjoint paths (also vertex disjoint due to the

structured nature of G) from s1 to t1 and P2 = {P21, P22, P23, P24} denote the four vertex

disjoint paths from s2 to t2. Let the source messages at s1 be denoted by X1 and X2, and the

source message at s2 by X3. We color the edges of the graph such that each edge on P11 is

colored red, each edge on P12 is colored blue and each edge on a path in P2 is colored black.
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As the paths in P1 and P2 are vertex-disjoint, it is clear that a node with an in-degree of

two is such that its outgoing edge has two colors (either (blue, black) or (red, black)). The path

further downstream continues to have two colors until it reaches a node of out-degree two.

Such an overlap segment with two colors will be referred to as amixed color overlap segment.

We shall also use the terms red or blue overlap segment to refer to segments with colors (red,

black) and (blue, black) respectively. Note that by our naming convention path Pij is a path that

enters terminal ti. Under the topological order in G we can identify the overlap segment on Pij

that is closest to ti. In the discussion below this will be referred to as the last overlap segment

with respect to path Pij . Two overlap segments Eos1 and Eos2 are said to be neighboring

with respect to Pij if there are no overlap segments between them along Pij . An example of

neighboring overlap segments is shown in Fig. 3.3(a).

Claim 3.3.7 Consider two neighboring mixed color overlap segments Eos1 and Eos2 with re-

spect to path P1i ∈ P1. Then Eos1 and Eos2 cannot lie on the same path P2j ∈ P2.

proof : W.l.o.g., assume that Eos1 = {e1, . . . , ek1} and Eos2 = {e′1, . . . , e′k2} are such that ek1

is upstream of e′1. Now assume that both Eos1 and Eos2 are on P2j . Note that head(ek1) has

two outgoing edges, one of which belongs to P1i and the other belongs to P2j (denoted by

e∗). We claim that e∗ can be removed while the connectivity level remains the same. This is

because e∗ does not belong to P1i and P2k, ∀k ̸= j. Moreover, after the removal, P2j can be

modified to the path specified as path(s2, head(ek1))− path(ek1 , e
′
1)− path(head(e′1), t2) where

path(ek1 , e
′
k2
) is along P1i. The new P2j is vertex disjoint of P2k, ∀k ̸= j, since Eos1 and Eos2

are neighboring mixed color overlap segments along P1i which means that path(ek1 − e′1) is

either purely blue or purely red. This contradicts the minimality of the graph. �

Likewise, two neighboring mixed color overlap segments with respect to P2i, cannot lie on

the same path P1j .

To explain our coding scheme, we first denote the last red (blue) overlap segment with

respect to P11 (P12) by Er (Eb). If there is no Er, then X1 can be transmitted along P11.

According to Lemma 3.3.4, X2 and X3 can be transmitted to t1 and t2 respectively. A similar
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t2 t1

s1 s2

E3

E4

E2

E5

E6

E1

P12
P11

P21 P22 P23

(a)

Er
(Eos1)

Eos3Eb Eos4

s2
s1

t2 t1

P21

P22 P23 P24

P11 P12

(b)

Figure 3.3 (a) An instance of network where there are several pairs of

neighboring overlap segments. E1 and E3 are neighboring over-

lap segments along P21, E1 and E2 are neighboring overlap seg-

ments along P12. E1 and E4 are not overlap segments along

any paths. (b) A network with connectivity level [2 4] and rate

{2, 1}. The coloring of the different paths helps us to show that

a linear network coding solution exists.

argument can be applied to the case when there is no Eb. Hence, we assume that both Er and

Eb exist. Based on their locations in G, we distinguish the following two cases.

• Case 1: Er and Eb are on different paths ∈ P2.

W.l.o.g. we assume that Er and Eb are on paths P21 and P22. If there are no mixed color

overlap segments on either P23 or P24, X3 can be transmitted to t2 through the overlap free

path, and X1, X2 can be routed to t1. Therefore, we focus on the case that there are mixed

color overlap segments on both P23 and P24. Let Eosi denote the last mixed color overlap

segments with respect to P2i, i = 1, . . . , 4 (see Fig. 3.3(b)).

Our coding scheme is as follows. SymbolXi is transmitted over the outgoing edge from s1 over

P1i, i = 1, 2; symbols θjX3 are transmitted over the outgoing edges of s2 over P2j , j = 1, . . . , 4

respectively. The values of θj ∈ GF (q) will be chosen as part of the code assignment below.

Let the coding vectors at each intermediate node be specified by indeterminates for now. The
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overall transfer matrix from the pair of sources {s1, s2} to t1 can be expressed as

[M11 | M12] =

 α1 β1 γ11 γ12 γ13 γ14

α2 β2 γ21 γ22 γ23 γ24

 ,

such that the received vector at t1 is [M11 | M12][X1 X2 | θ1X3 . . . θ4X3]
T . Recall that Er

and Eb are the last mixed color segments with respect to P11 and P12. Thus, they carry the

same information as the incoming edges of t1 which implies that the row vectors of [M11 |M12]

are the coding vectors on Er and Eb respectively. Similarly, the transfer matrix from {s1, s2}

to the edge set {Er, Eb, Eos3, Eos4} can be expressed as

[M e
21 | M e

22] =



α1 β1 γ11 γ12 γ13 γ14

α2 β2 γ21 γ22 γ23 γ24

α3 β3 γ31 γ32 γ33 γ34

α4 β4 γ41 γ42 γ43 γ44


where we use the superscript e to emphasize that these transfer matrices are to the edge set

{Er, Eb, Eos3, Eos4} and not to the terminal t2.

Note that the entries of the transfer matrices above are functions of the choice of the local

coding vectors in the network which are indeterminate. Thus, at this point, the Mij and M e
ij

matrices are also composed of indeterminates.

As there exist two edge disjoint paths from s1 to {Er, Eb}, the determinant of M11 is not

identically zero. Similarly, since the edges Er, Eb, Eos3 and Eos4 lie on different paths in P2,

there are four edge disjoint paths from s2 to the edge subset {Er, Eb, Eos3, Eos4}, and the

determinant of M e
22 is not identically zero. This implies that their product is not identically

zero. Hence, by the Schwartz-Zippel lemma [35], under random linear network coding there

exists an assignment of local coding vectors so that rank(M11) = 2 and rank(M e
22) = 4. We

assume that the local coding vectors are chosen from a large enough field GF (q) so that this

is the case. For this choice of local coding vectors we propose a choice of θ = [θ1 θ2 θ3 θ4]
T

such that the decoding is simultaneously successful at both t1 and t2.

Decoding at t1: As M11 is a square full-rank matrix, we only need to null the interference

from s2. Accordingly, we choose θ from the null space of M12, i.e.,
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M12θ = 0. (3.9)

There are at least q2 − 1 such non-zero choices for θ as M12 is a 2× 4 matrix.

Decoding at t2: The primary issue is that one needs to demonstrate that the choice of θ

allows both terminals to simultaneously decode. Indeed, it may be possible that our choice

of θ along with a specific network topology may make it impossible to decode at t2. The key

argument that this does not happen requires us to leverage certain topological properties of

the overlap segments, that we present below.

Claim 3.3.8In G either one or both of the following statements hold. (i) Er is the last

overlap segment w.r.t. P21. (ii) Eb is the last overlap segment w.r.t. P22.

proof: Assume that neither statement is true. This means that there is a blue overlap segment

E′
b below Er along P21, and there is a red overlap segment E′

r below Eb along P22. Thus, E
′
r

is upstream of Er and E′
b is upstream of Eb. However, this means that edges E′

r, Er, E
′
b and

Eb form a cycle, which is a contradiction. �

In the discussion below, w.l.o.g., we assume that Er is the last overlap segment on P21. The

argument above allows us to identify edges Er, Eos3 and Eos4 that carry the same symbols as

those entering t2. We show below that the X1 and X2 components can be canceled by using

the information on Eos3 and Eos4 while retaining the X3 component.

Let γ
i
represent the vector [γi1 γi2 γi3 γi4]

T , i = 1, . . . , 4 in the discussion below. Note that

if [α3 β3] and [α4 β4] are linearly independent, there exist δ3 and δ4 such that

[α1 β1] = δ3[α3 β3] + δ4[α4 β4],

where δ3 and δ4 are not both zero. Thus, t2 can recover [−γ
1
+ δ3γ3 + δ4γ4]

T θX3. Note that

γT
1
θ = 0, by the constraint on θ above, thus we only need to pick θ such that [δ3γ3+δ4γ4]

T θ ̸=

0. To see that this can be done, we note that M22 is full rank which implies that the matrix

[γ
1

γ
2

(δ3γ3 + δ4γ4)]
T is full rank. Therefore, there exist at most q choices for θ such that

[γ
1

γ
2

(δ3γ3 + δ4γ4)]
T θ = 0. Hence, there are at least q2 − q − 1 > 0 non-zero choices for θ

that allow decoding at t1 and t2 simultaneously.
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If [α3 β3] and [α4 β4] are dependent, decoding can be performed simply by working only with

the received values over Eos3 and Eos4 using a similar argument as above.

• Case 2: Er and Eb are on the same path P2i.

W.l.o.g., assume that Eb is downstream of Er along P21. Then Eb will be the last overlap

segment w.r.t. P21. Let E′
b denote the blue overlap segment that is a neighbor of Eb w.r.t.

P12. Note that E′
b cannot be on P21 according to Claim 3.3.7. If E′

b does not exist, it implies

that there is only one blue overlap segment (namely, Eb) in the network. Therefore, there

only exist red overlap segments on P23 and P24; using Lemma 3.3.4, X1 and X3 can be

transmitted to t1 and t2 respectively over P11 ∪ P23 ∪ P24, and X2 can be routed along P12

to t1.

We now focus on the case when an E′
b exists and assume (w.l.o.g.) that it is on P22. The

main difference is that instead of using random coding over the entire graph, we modify our

coding scheme such that random coding is performed over the graph except at Eb and all

the edges downstream of Eb. At Eb, deterministic coding is performed such that Eb carries

the same information as the incoming edge of it along P12. The information on Eb is further

routed to all the downstream edges of Eb. Note that by the deterministic coding, Eb carries

the same information as E′
b.

Decoding at t1: Using the arguments developed in Case 1, it is clear that X1 and X2 can be

decoded from the information on E′
b and Er. The code assignment ensures that Eb and E′

b

carry the same information, thus t1 is satisfied.

Decoding at t2: In Case 1, we showed that X3 can be decoded from the information on Er,

Eos3 and Eos4. A similar argument can be made that X3 can be decoded from the information

on E′
b, Eos3 and Eos4. Since Eb carries the same information as E′

b and Eb is the last overlap

segment on P21, terminal t2 can decode X3 by the information on Eb, Eos3 and Eos4.

�

By using the result of Lemma 3.3.6 and the idea of vector network coding, we have the

following theorem when the connectivity level is [2 2 4].
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Theorem 3.3.9 A multiple unicast instance with three sessions, < G, {si − ti}31, {1, 1, 1} >

with connectivity level at least [2 2 4] is feasible.

proof: It can be seen that the line of argument used in the proof of Theorem 3.3.5, namely

using vector network coding over two time units and use the result of Lemma 3.3.6 gives us

the desired result. �

3.3.3 Code assignment procedure for instances with connectivity level [1 2 5]

We now consider network code assignment for networks where the connectivity level is

[1 2 5]. The code assignment in this case requires somewhat different techniques. In particular,

the idea of using a two-session unicast result along with vector network coding does not work

unlike the cases considered previously. At the top level, we still use random network coding

followed by appropriate precoding to align the interference seen by the terminals. However, as

we shall see below, we will need to depart from a purely random linear code in the network in

certain situations.

As before, we consider a minimal structured graph G and let Xi be the source symbol at

source node si for i = 1, . . . , 3 and P1 = {P11} denote the path from s1 to t1, P2 = {P21, P22}

denote the edge disjoint paths from s2 to t2, P3 = {P31, P32, P33, P34, P35} denote the edge

disjoint paths from s3 to t3.

Our scheme operates as follows: X1 is transmitted over the outgoing edge from s1 along

P11 , ξiX2 are transmitted over the outgoing edges of s2 along P2i, i = 1, 2, and θjX3 are

transmitted over the outgoing edges of s3 along P3j , j = 1, . . . , 5 where ξ = [ξ1 ξ2]
T and

θ = [θ1 . . . θ5]
T are precoding vectors chosen from a finite field with size q.

Let Mi = [Mi1 | Mi2 | Mi3] denote the transfer matrix from {s1, s2, s3} to terminal ti.

Each Mij corresponds to the transformation from source sj to terminal ti, i.e., the number of

columns in Mij is 1, 2 and 5 for j = 1, 2 and 3 respectively. Similarly, the number of rows in

Mij is 1, 2 and 5 for i = 1, 2 and 3 respectively.

In the discussion below we will need to refer to the individual entries of M1 and M2.
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Accordingly, we express these matrices explicitly as follows.

M1 = [M11 | M12 | M13] =
[
α1 | βT | γT

]
= [α1 | β1 β2 | γ1 γ2 γ3 γ4 γ5] ,

M2 = [M21 | M22 | M23] =

 α′
1 β′T

1
γ′T

1

α′
2 β′T

2
γ′T

2


=

 α′
1 β′

11 β′
12 γ′11 γ′12 γ′13 γ′14 γ′15

α′
2 β′

21 β′
22 γ′21 γ′22 γ′23 γ′24 γ′25

 ,

where the entries of the matrices above are functions of indeterminate local coding vectors.

The cut conditions imply that det(Mii) is not identically zero for i = 1, . . . , 3, and furthermore

that their product det(M11) det(M22) det(M33) is not identically zero.

Our solution proceeds as follows. We first identify a minimal structured subgraph G′ of G

with the following properties.

(i) There exists a path P ′
11, from s1 to t1,

(ii) vertex disjoint paths P ′
21 and P ′

22 from s2 to t2,

(iii) path P ′
1→2 from s1 to t2 and

(iv) path P ′
2→1 from s2 to t1.

Again, G′ is said to be minimal if the removal of any edge from it causes one of the above

properties to fail. We note that it is possible that there do not exist any paths from s1 to t2

or from s2 to t1 in G. These situations are considered below.

Our analysis depends on the following topological properties of G′.

Case 1: The graph G′ is such that

• there is no path from s1 to t2 in G′, i.e., P ′
1→2 = ∅ (this happens only if there is no path

from s1 to t2 in G), or

• there is no path from s2 to t1 in G′, i.e., P ′
2→1 = ∅ (this happens only if there is no path

from s2 to t1 in G), or
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• there are paths P ′
1→2 and P ′

2→1 in G′, and there are overlap segments between P ′
11 and

P ′
21 ∪ P ′

22.

Case 2: The graph G′ is such that

• there are paths P ′
1→2 and P ′

2→1 in G′, and P ′
11 does not overlap with either P ′

21 or P ′
22.

We emphasize that together Case 1 and Case 2 cover all the possible types of subgraphs for

G′. Specifically, either P ′
1→2 = ∅ or P ′

2→1 = ∅. If both P ′
1→2 and P ′

2→1 exist in G′, then either

there are overlaps between P ′
11 and P ′

21 ∪ P ′
22 or there are not.

Theorem 3.3.10 A multiple unicast instance with three sessions, < G, {si − ti}31, {1, 1, 1} >,

with connectivity level [1 2 5] is feasible.

P’11

s2s1

t2t1

P’21 P’22

G’

(a)

P’11

s2s1

t2t1

P’21 P’22

G’

(b)

Figure 3.4 (a) Subgraph G′ when P ′
11 overlap with P ′

21. (b) Subgraph G′

when P ′
11 overlap with both P ′

21 and P ′
22.

proof: We break up the proof into two parts based on type of the subgraph G′ that we can

find in G.

Proof when there exists a subgraph G′ that satisfies the conditions of Case 1

We perform random linear coding over the graph G over a large enough field. In the discussion

below, we will leverage the fact that multivariate polynomials that are not identically zero,

evaluate to a non-zero value w.h.p. under a uniformly random choice of the variables. This is
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needed at several places. By using standard union bound techniques, we can claim that our

strategy works w.h.p.

In particular, in the discussion below, we assume that the matrices Mii, i = 1, . . . , 3 are full

rank and design appropriate precoding vectors ξ and θ.

Decoding at t1: For t1 to decode X1, we need to have α1 ̸= 0 and the precoding constraints

[β1 β2]ξ = 0, and (3.10)

[γ1 γ2 γ3 γ4 γ5]θ = 0. (3.11)

There are at least q−1 non-zero vectors ξ and q4−1 non-zero vectors θ that can be selected

from the field of size q such that eq. (3.10) and eq. (3.11) are satisfied.

Decoding at t2:

We begin by noting that since rank(M22) = 2, M22ξ ̸= 0, as long as ξ ̸= 0. Next, we argue

according to the topological structure of G′. The following possibilities can occur.

(i) There is no path from s1 to t2 in G′, i.e., P ′
1→2 = ∅. This implies that α′

1 = α′
2 = 0 and

in G, interference at t2 only exists from s3. Next, at least one component of M22ξ will be

non-zero, based on the argument above; w.l.o.g. assume that it is the first component. We

choose θ to satisfy

γ′
T

1
θ = 0. (3.12)

It is evident that there are at least q3 − 1 non-zero choices of θ that satisfy the required

constraints on θ (eqs. (3.11) and (3.12)). Hence t2 can decode.

(ii) There exists a path P ′
1→2 from s1 to t2, i.e., P ′

1→2 ̸= ∅.. This means that M21 is not

identically zero. Here, we first align the interference from s3 within the span of interference

from s1 by selecting an appropriate θ. We have the following lemma.

Lemma 3.3.11If M21 ̸= 0, there exist at least q4 − 1 choices for θ such that

M23θ = cM21 (3.13)

where c is some constant.
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proof: First, w.l.o.g., we assume α′
2 ̸= 0. Hence, there exists a full rank 2×2 upper triangular

matrix U such that UM21 = [0 α′
2]
T . Next, define

[1 0]UM23 = γ̃
′T
1

(3.14)

and choose θ to satisfy γ̃
′T
1
θ = 0 and set c = γ

′T
2
θ/α′

2. Upon inspection, it can be verified that

this implies that UM23θ = cUM21. As U is invertible, and there is only one linear constraint

on θ, we have the required conclusion. �

Thus, under this choice of θ, the interference from s3 is aligned within the span of the

interference from s1 at t2. Let X = [X1 X2 X3]
T . The received signal at t2 is

[M21 M22ξ M23θ]X = [M21 M22ξ]

 X1 + cX3

X2

 . (3.15)

The following claim concludes the decoding argument for t2.

Claim 3.3.12If M21 is not identically zero, under random linear coding w.h.p., there exists

a ξ such that rank[M21 M22ξ] = 2 and [β1 β2]ξ = 0.

proof: We will show that there exists an assignment of local coding vectors such that

det[M21 M22ξ] ̸= 0. This will imply that w.h.p. under random linear coding, this prop-

erty continues to hold.

Suppose that there is no path from s2 to t1 in G, i.e., P ′
2→1 = ∅ and [β1 β2] is identically

zero. This does not impose any constraint on ξ. Next, M22 is full rank w.h.p. Hence, we can

choose a ξ such that required condition is satisfied.

If there exists a path P ′
2→1 from s2 to t1 in G′, [β1 β2] is not identically zero. W.l.o.g.,

we assume that β1 is not identically zero. By Lemma C.0.2 (see Appendix), proving that

det[M21 M22ξ] ̸= 0, is equivalent to checking that the determinant in (C.1) is not identically

zero. Now we demonstrate that there exists a set of local coding vectors such that the

determinant in (C.1) is non-zero. We consider the subgraph G′ = P ′
11∪P ′

21∪P ′
22∪P ′

1→2∪P ′
2→1

(identified above) - our choice of the coding vectors on all the other edges will be assigned
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to the zero vector. As both P ′
1→2 ̸= ∅ and P ′

2→1 ̸= ∅, we only consider the case where P ′
11

overlaps with P ′
21 ∪ P ′

22. We distinguish the following cases.

1.P ′
11 overlaps with either P ′

21 or P ′
22. W.l.o.g., assume it is P ′

21. First note that when P ′
11

overlap with one of P ′
21 and P ′

22 in G′, there is a path from s1 to t2 and a path from s2

to t1 in P ′
11 ∪ P ′

21 ∪ P ′
22. Hence, G′ can be completely represented by P ′

11 ∪ P ′
21 ∪ P ′

22.

This is shown in Fig. 3.4(a). It is evident that we can choose coding coefficients such

that

[β1 β2] = [1 0], and

[M21 M22] =

 1 1 0

0 0 1

 . (3.16)

By substituting them into eq. (C.1), the determinant of [M21 M22ξ] is not zero.

2.P ′
11 overlaps with both P ′

21 and P ′
22. Using a similar argument as above, G′ can be

completely represented by P ′
11 ∪ P ′

21 ∪ P ′
22 if P ′

11 overlaps with both P ′
21 and P ′

22. Note

that there will be one overlap between P ′
11 and each of P ′

21 and P ′
22. Otherwise, assume

there are two overlaps between P ′
11 and P ′

21, then some edges can be removed without

contradicting the minimality of the graph G′. This is shown in Fig. 3.4(b). Assume P ′
11

overlap with P ′
21 first. We can find a set of coding coefficients such that

[β1 β2] = [1 1] and

[M21 M22] =

 1 1 0

1 1 1

 . (3.17)

By substituting them into eq. (C.1), the determinant of [M21 M22ξ] is not zero.

In both cases, therefore the required condition holds w.h.p. under random linear coding. �

Terminal t2 can decode since it can solve the system of equations specified by in eq. (3.15).

Decoding at t3: At t3, we need to decode X3 in the presence of the interference from s1 and s2.

The prior constraints on θ, namely (3.11) and (3.12) for case (i), or (3.11) and (3.13) for case

(ii) allow at least q3 − 1 choices for it. As M33 is full-rank, this implies that there are at least
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q3 − 1 corresponding distinct M33θ vectors. Next, for t3 to decode X3, from Lemma D.0.3, we

need to have

M33θ /∈ span([M31 M32ξ]). (3.18)

Since there are at most q2 vectors in span([M31 M32ξ]), there are at least q3 − q2 − 1 > 0

choices for θ such that all the required constraints on θ are satisfied.

Proof when there exists a subgraph G′ that satisfies the conditions of Case 2

As before, our overall strategy will be to use random linear network coding, however in certain

cases we will need to make modifications to the code assignment. We argue based on the

properties of the minimal structured subgraph G′. Recall that under Case 2, paths P ′
1→2 and

P ′
2→1 exist and P ′

11 does not overlap with P ′
21 ∪ P ′

22. As the graph is structured, this implies

that P ′
11, P

′
21 and P ′

22 are all vertex disjoint.

Our first goal is to show that G′ is topologically equivalent to one of the graphs shown in

Figs. 3.5(a), 3.5(b) and 3.5(c). Towards this end, we color P ′
11∪P ′

21∪P ′
22 black, the path P ′

1→2

red, and the path P ′
2→1 blue. In this process, certain edges will get a set of colors (which are a

subset of {red, blue, black}). Note that there cannot be any edge that has the color {blue, red}.

To see this, assume otherwise: then one could find a new path from s1 to t1 that overlaps P
′
1→2

and P ′
2→1 and delete at least one edge from P ′

11, contradicting the minimality of G′. By similar

arguments, P ′
1→2 and P ′

2→1 cannot overlap on P ′
21 ∪ P ′

22. Hence, paths P ′
1→2 and P ′

2→1 can

only overlap if they also overlap with P ′
11.

Next, we identify certain special edges in G′. As there is only one path going out of s1, P
′
11

and P ′
1→2 will overlap. A similar argument shows that P ′

11 and P ′
2→1 will overlap. Likewise,

P ′
1→2 and P ′

2→1 will overlap with P ′
21 or P ′

22. Consider, the overlap between P ′
11 and P ′

1→2.

Using the minimality of G′ it can be seen that there can be exactly one overlap segment

between them; we identify the edge ∈ P ′
11 ∩ P ′

1→2 at the farthest distance from s1, such that

it has two outgoing edges belonging to exclusively P ′
11 and P ′

1→2, and call it e1. Similarly, we

identify the edge ∈ P ′
11 ∩ P ′

2→1 that is closest to s1, and call it e3.

Next, consider the overlap between P ′
1→2 and P ′

21∪P ′
22. Once again, by minimality it holds

that there is exactly one contiguous overlap segment between P ′
1→2 and P ′

21 ∪ P ′
22, that can
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either be on P ′
21 or P ′

22. We identify e4 as the edge in P ′
1→2 ∩ (P ′

21 ∪ P ′
22) that is closest to s1.

In a similar manner, e2 is identified as the edge P ′
2→1 ∩ (P ′

21 ∪ P ′
22) that is farthest away from

s2.

We now consider the possible orders of the edges e1, . . . , e4. As e1 and e3 belong to P ′
11,

one of them has to be downstream of the other along P ′
11. Consider the following cases.

• e3 is downstream of e1 along P ′
11. If edges e2 and e4 lie on the same path ∈ {P ′

21, P
′
22},

we first note that e4 has to be downstream of e2 (by minimality, otherwise the segment

between e1 and e3 along P ′
11 can be removed); the graph G′ is topographically equiv-

alent to Fig. 3.5(a). If e2 and e4 lie on different paths ∈ {P ′
21, P

′
22}, the graph G′ is

topographically equivalent to Fig. 3.5(b).

• e1 is downstream of e3 along P ′
11, or e1 = e3. In this case e2 and e4 have to lie on different

paths ∈ {P ′
21, P

′
22}. To see this, assume they both lie on P ′

21: if e4 is downstream of e2, the

minimality of G′ does not hold (segment between e2 and e4 along P ′
21 can be removed),

whereas if e2 is downstream of e4, the acyclicity of G′ is contradicted. Therefore, the

only possibility is that e2 and e4 lie on different paths ∈ {P ′
21, P

′
22} and in this case G′ is

topographically equivalent to Fig. 3.5(c).

With the above arguments in place, it is clear that G′ is topographically equivalent to one of

the graphs in Fig. 3.5(a), 3.5(b) or 3.5(c).

P’11

s2s1

t2t1

P’21

P’22

e1

e3

e2

e4P’2->1

P’1->2

(a)

P’11

s2s1

t2t1

P’21

P’22

e1

e3

e2

e4

P’1->2

P’2->1

(b)

P’11

s2s1

t2t1

P’21

P’22

e1

e3

e2

e4

P’1->2

P’2->1

(c)

Figure 3.5 Possible subgraphs G′ when P ′
11 does not overlap with either

P ′
21 or P ′

22.
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We now present our schemes for the different possibilities for G′. For the class of G′ that

fall in Fig. 3.5(a), it suffices to use the approach in the proof of Theorem 3.3.10. Namely,

we use random linear network coding in the network and precoding at sources s2 and s3. As

in this case M21 ̸= 0, one needs to argue that rank[M21 M22ξ] = 2. Following the line of

argument used previously, we can do this by demonstrating a choice of local coding coefficients

such that [β1 β2] = [1 0] and [M21 M22] =

 1 1 0

0 0 1

. However, such an approach does not

work when the subgraph G′ belong to the class of graphs shown in Figs. 3.5(b) and 3.5(c).

For instance, it is easy to observe that if we use random coding on Fig. 3.5(b), and precoding

to cancel the X2 component at t1, then t2 will receive a linear combination of X1 and X2

w.h.p., i.e., decoding X2 at t2 will fail. Accordingly, when G′ looks like Fig. 3.5(b) or 3.5(c),

we require a different scheme that we now present.

Modified random coding for cases in Fig 3.5(b) and Fig 3.5(c).

It is clear that the strategy of random linear network coding and precoding at the sources fails

since the determinant of the matrix [M21 M22ξ] is identically zero for the cases in Fig. 3.5(b)

and 3.5(c). Thus, at the top level our approach is to modify the original graph G by removing

certain edges and identifying a special node in G that is upstream of t2. The transfer matrix

on the two incoming edges of this special node can be expressed as [M̃21 M̃22 M̃23] such that

the determinant of [M̃21 M̃22ξ] is not identically zero. Thus, at this node it becomes possible to

remove the effect of X1 via deterministic coding. Accordingly, our strategy is to first perform

random linear coding at all nodes except the special node and those that are downstream of

the special node. Following this, we perform deterministic coding at the special node to cancel

the effect of X1, and random linear coding downstream of it. Finally, we argue based on the

precoding constraints that each terminal can decode its desired message. In the discussion

below we outline each of the steps and the corresponding analysis in a systematic manner.

Recall that based on G′ (which is a subgraph of G) we have identified paths P ′
11, P ′

21,

P ′
22 that are all vertex disjoint, paths P ′

1→2 and P ′
2→1 and edges e1, . . . , e4. At the outset we

demonstrate that certain structures in G, need not be considered. In particular,
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• if in G, there exists a path from s1 to t1 that has an overlap with P ′
21 ∪ P ′

22, it is clear

that an alternate minimal subgraph G′′ can be found that satisfies the conditions of Case

1.

• In G, a path from s1 cannot have an overlap with path(e2− e3). To see this note that G′

is a subgraph of G; therefore if path(e2−e3) exists in it, then it necessarily has to belong

to a path P3i from s3 to t3. We emphasize that the entire path including e2 and e3 have to

belong to P3i because by assumption all nodes in the graph have in-degree + out-degree

at most 3. In a similar manner, the path from s1 that overlaps with path(e2 − e3) also

needs to belong to path P3j .If i = j, then it implies the existence of a path from s1 to t1

that has an overlap with P ′
21 ∪P ′

22; however, this is explicitly ruled out by the discussion

in the previous bullet. Thus, i ̸= j; however, this is impossible since the paths P3i and

P3j are edge disjoint.

Accordingly, in the discussion below, we will assume that the above scenarios do not occur.

Graph modification procedure for original graph G:

(i) Remove all edges downstream of e2 on P ′
21 that have no overlap with a path from ∪5

i=1P3i.

(ii) Identify an edge, denoted efirst on P ′
22, with the property that efirst is the edge closest

to s2 such that there exists a path(s1−efirst). Note that efirst exists due to the existence

of path P ′
1→2 in G.

(iii) Remove edges downstream of efirst while maintaining the following properties - (a) there

exists a path from efirst − t2, and (b) max − flow(s3 − t3) = 5. Rename P ′
22 to be

path(s2 − efirst − t2). It is important to note that after this procedure, removal of any

edge downstream of efirst would cause either property (a) or (b) to fail.

(iv) Identify edge elast ∈ P ′
22 such that it is the edge closest to t2 with the property that it

has two incoming edges - e′1 /∈ P ′
22 such that there exists path(s1 − e′1) and e′2 ∈ P ′

22.

Again e′1 is guaranteed to exist as P ′
1→2 exists in G.
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As a consequence of the modification procedure, there is no overlap between path(s1 − e′1)

and P ′
22. To see this, assume otherwise, i.e., an overlap segment, denoted Eos exists between

path(s1 − e′1) and P ′
22. As efirst is the edge closest to s2 such that there is a path between s1

and efirst, it follows that Eos is downstream of efirst along P ′
22. However, this contradicts the

property of the modified graph after Step (iii) in the modification procedure above.

Next, note that path(e2 − e3) has to overlap with a path from ∪5
i=1P3i (as G is minimal)

which means that the downstream neighboring edge of e2 along P ′
21 cannot belong to any path

in ∪5
i=1P3i and will be removed in Step (i). Likewise the incoming edge of t2 along P ′

21 will

also be removed. At the end of the graph modification procedure, and using the observations

made above, it is clear that we can identify a subgraph G̃ of G that is topologically equivalent

to either Fig. 3.6(a) or 3.6(b).

Next, we perform random linear coding over the modified graph except at edge elast and all

the edges downstream of elast, and impose the precoding constraints [β1 β2]ξ = 0 and γT θ = 0.

This ensures that t1 is satisfied. Furthermore, note that there is no path from elast to t1;

therefore any code assignment on elast and its downstream edges will not affect decoding at t1.

For t2 to decode X2, we first demonstrate that by using deterministic coding for edge elast,

the X1 component can be canceled while the X2 component can be maintained on elast. Note

that e′1 and e′2 denote the incoming edges of elast; we denote the transfer matrix to these two

edges by [M̃21 M̃22 M̃23].

Claim 3.3.13 For the network structures in Fig. 3.6(a) and Fig. 3.6(b), the determinant of

[M̃21 M̃22ξ] is not identically zero where ξ satisfies [β1 β2]ξ = 0.

proof: Based on previous arguments, we have identified the subgraph G̃ of G that is topo-

logically equivalent to either Fig. 3.6(a) or 3.6(b). By Lemma C.0.2, proving the claim is

equivalent to showing that the determinant of eq. (C.1) is not identically zero. Based on G̃ it

is evident that local coding vectors for the case of Fig. 3.6(a) can be chosen such that

[β1 β2] = [1 0], and
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Figure 3.6 Figures (a) and (b) denote possible subgraphs G̃ obtained after

the graph modification procedure for G. Figure (c) shows an

example of the overlap between the red s3 − t3 paths and P ′
22.

[M̃21 M̃22] =

 1 0 0

0 0 1

 . (3.19)

Similarly, for the case of Fig. 3.6(b) they can be chosen as

[β1 β2] = [1 0], and

[M̃21 M̃22] =

 1 1 0

0 0 1

 . (3.20)

Substituting the local coefficients into eq. (C.1) we have the required conclusion. �

We now want to argue that t2 can be satisfied. Note that edge e′1 must belong to a path

from P3, as the graph is minimal. Assume that there are k paths from P3 that overlap with

path(elast − t2); w.l.o.g. we assume that these are the paths P31, . . . , P3k.

Next, we note that there can be at most one overlap between a path P3j and path(elast −

t2). This is due to Step (iii) of the graph modification procedure, where we removed edges

downstream of efirst, (and hence elast) such that the max − flow(s3 − t3) = 5 and there is

path between efirst − t2. If there are multiple overlaps between P3j and path(elast − t2), this

would mean that there exists at least one edge that was not removed by Step (iii). As depicted

in Fig. 3.6(c), we denote the overlap segments as Eos1, . . . , Eosk, where Eosj is upstream of

Eos(j+1) for j = 1, ..., k − 1 along P ′
22. Also note that the first edge of Eos1 is elast.
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The next step in the code assignment is to use deterministic local coding coefficients so that

the transmitted symbol on elast does not have an X1 component. Note that it is guaranteed

to have an X2 component by the Claim 3.3.13 above. Following this, we again use random

linear coding on edges downstream of elast. By the definition of elast there is no edge ∈ P ′
22

downstream of elast that is reachable from s1. Thus all coding vectors along P ′
22 downstream

of elast do not have an X1 component. Let the coding vector on the edge ∈ Eosk closest to t2

be denoted by [0 | β̂T | γ̂T ], where it is evident that β̂ ̸= 0 w.h.p. We enforce the precoding

constraint γ̂T θ = 0. This satisfies t2.

Finally, we discuss the decoding at t3. Consider the overlap segments Eos1, . . . , Eosk dis-

cussed above. Each of these overlap segments has an incoming edge that does not lie on P ′
22

(the other has to be on P ′
22). We denote these edges by e∗i , i = 1, . . . , k, where we emphasize

that e∗1 = e′1. Let the edges entering t3 on paths P3(k+1), . . . , P35 be denoted e∗k+1, . . . , e
∗
5.

Denote the transfer matrix on the edges e∗1, . . . , e
∗
5 by [M̂31 | M̂32 | M̂33]. Note that with high

probability it holds that rank(M̂33) = 5, since the max-flow from s3 to these set of edges is 5.

Next consider the rank of the coding vectors on edges {elast, e∗2, e∗3, e∗4, e∗5}. For the sake of

argument suppose that we remove the row of M̂33 corresponding to e∗1 and replace it with the

corresponding row of elast. As we used a deterministic code assignment for edge elast the rank

of the updated M̂33 may drop to four, however it will be no less than four since it has four

linearly independent row vectors.

It can be seen that further random linear coding downstream of elast will therefore be

such that rank(M33) (recall that [M31|M32|M33] is the transfer matrix to t3) is at least four

w.h.p. Moreover, it can be seen that the information on Eosk also reaches t3, thus t3 can

decode X2. Therefore at t3 over the other four incoming edges we have a system of equations

specified by the matrix [M̆31|M̆33] (of dimension 4×6) with unknownsX1 and X3. Furthermore

rank(M̆33) ≥ 3. The constraints on θ thus far dictate that there are q3 − 1 non-zero choices

for it. As shown in the appendix (cf. Lemma E.0.4) this implies that there are at least q2 − 1

distinct values for M̆33θ. For decoding X3 at t3, from Lemma D.0.3, we need to have

M̆33θ /∈ span(M̆31). (3.21)
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Figure 3.7 a) Level-1 network. b) Level-2 network. c) Level-3 network.

d) Level-4 network.

As there are at most q vectors in the span of M31, it follows that there are at least q
2−q−1 > 0

non-zero values of θ such that t3 can be satisfied. �

3.4 Simulation results

Our feasibility results thus far have been for the case of unit-rate transmission over networks

with unit-capacity edges. In this section, we present simulation results that demonstrate that

these can also be used for networks with higher edge capacities, that can potentially support

higher rates for the connections. The main idea is to pack multiple basic feasible solutions

along with fractional routing solutions to achieve a higher throughput. The packing can be

achieved by formulating appropriate integer linear programs. We compared these results to

the case of solutions that can be achieved via pure fractional routing.

We applied our technique to several classes of networks. We did not see a benefit in the

case of networks generated using random geometric graphs (this is consistent with previous

results [9]). We have found that our techniques are most powerful for networks where the

paths between the various si − ti pairs have significant overlap. Accordingly, we experimented

with four classes of networks (shown in Fig. 3.7) with varying levels of overlap between the

different source-terminal pairs. The level-1 network (Fig. 3.7(a)) has the maximum overlap
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between the s1 − t1 paths and the other paths; the overlap decreases with an increase in the

level number of the network. The edge capacities in the networks were chosen randomly and

independently with distributions as explained below. We conducted two sets of simulations.

• Simulation 1. Let C denote the edge capacity. For the level-1 network for the black

edges we chose P (C = 1) = 0.25, P (C = 2) = 0.4, P (C = 3) = 0.35; for the other edges,

P (C = 1) = 0.15, P (C = 2) = 0.6, P (C = 3) = 0.25. In the other networks we chose

P (C = 1) = 0.15, P (C = 2) = 0.6, P (C = 3) = 0.25 for all the edges. Thus in this set

of simulations, the maximum edge capacity is three. We generated 300 networks from these

distributions and compared the performance of our schemes with pure fractional routing. The

results shown in the first row of Table 3.1 indicate that the level-1 network has the maximum

number of instances where a difference in the throughput was observed; both [1 2 5] and

[2 2 4] structures appear here. For the other networks, the [2 2 4] structure appeared most

often. The second row of Table 3.1 records the average performance improvement when there

was a difference between our scheme and routing; it varies between 4.9% to 5.59%.

• Simulation 2. In this set of simulations we increased the average edge capacity. For the

level-1 network for the black edges we chose P (C = 5) = 0.25, P (C = 6) = 0.4, P (C =

7) = 0.35; for the other edges, P (C = 5) = 0.15, P (C = 6) = 0.6, P (C = 7) = 0.25. In

the other networks we chose P (C = 5) = 0.15, P (C = 6) = 0.6, P (C = 7) = 0.25 for all

the edges. Again, we generated 300 networks from these distributions and compared the

performance of our schemes with pure fractional routing. The results shown in the third row

of Table 3.1 indicate that in this higher capacity simulation, the number of networks where

our schemes outperform pure routing is significantly higher. For instance for the level-2 and

level-3 networks more than 50% of the networks showed an increase in the throughput using

our methods. Another interesting point, is that one observes an increased gap for level-3

networks compared to the other cases. The fourth row of Table 3.1 records the average

performance improvement when there was a difference between our scheme and routing; it

varies between 0.45% to 1.16%.

We found that though there were instances of all the structures being packed by the ILP,
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Table 3.1 Proportions of networks with differences and performance improvement

Network Level-1 Level-2 Level-3 Level-4

Simulation 1 proportions 5.33% 2.33% 1% 0

Performance improvement 5.59% 5.06% 4.90% -

Simulation 2 proportions 47% 53% 80.67% 2.33%

Performance improvement 1.16% 1.31% 1.36% 0.45%

the majority were [2 2 4] structures. For the level-4 network, since [2 2 4] structure cannot

be packed effectively, there is a significant drop in the proportions of networks that exhibit a

difference with respect to routing as compared to the level-3 and level-4 networks. There were

significant advantages in our approach for the case of networks with higher edge capacities as

in these networks the chance of packing our basic feasible structures is higher. The average

performance improvement obtained when there was a difference between our schemes and

routing is not very high. We remark that the complexity of running the ILP increases with

higher edge capacities and that was a limiting factor in our experiments; the performance

improvement may be higher for large scale examples. Overall, our results indicate that there is

a benefit to using our techniques even for networks with higher capacities, where the different

source-terminal paths have a large overlap.

3.5 Conclusions

In this work we considered the three-source, three-terminal multiple unicast problem for

directed acyclic networks with unit capacity edges. Our focus was on characterizing the fea-

sibility of achieving unit-rate transmission for each session based on the knowledge of the

connectivity level vector. For the infeasible instances we have demonstrated specific network

topologies where communicating at unit-rate is impossible, while for the feasible instances we

have designed constructive linear network coding schemes that satisfy the demands of each

terminal. Our schemes are non-asymptotic and require vector network coding over at most

two time units. Our work leaves out one specific connectivity level vector, namely [1 2 4] for

which we have been unable to provide either a feasible network code or a network topology



43

where communicating at unit rate is impossible. Our experimental results indicate that there

are benefits to using our techniques even for networks where the edges have higher and poten-

tially different capacities. Specifically, our basic feasible solutions can be packed along with

routing to obtain a higher throughput.
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CHAPTER 4. NETWORK CODING FOR TWO UNICAST SESSIONS

4.1 System model

We consider a network represented by a directed acyclic graph G = (V,E). There is a

source set S = {s1, s2} ∈ V in which each source observes a random process (the processes are

independent) with a discrete integer entropy, and there is a terminal set T = {t1, t2} ∈ V in

which ti needs to uniquely recover the information transmitted from si at rate Ri. Each edge

e ∈ E has unit capacity and can transmit one symbol from a finite field of size q. If a given

edge has a higher capacity, it can be divided into multiple parallel edges with unit capacity.

Without loss of generality (W.l.o.g.), we assume that there is no incoming edge into source

si, and no outgoing edge from terminal ti. By Menger’s theorem, the minimum cut between

sets SN1 ⊆ S and TN2 ⊆ T is the number of edge disjoint paths from SN1 to TN2 , and will be

denoted by kN1−N2 where N1, N2 ⊆ {1, 2}. For two unicast sessions, we define the cut vector

as the vector of the cut values k1−1, k2−2, k1−2, k2−1, k12−1, k12−2, k1−12, k2−12 and k12−12.

The network coding model in this work is based on [3]. Assume that source si needs to trans-

mit at rateRi. Then the random variable observed at si is denoted asXi = (Xi1, Xi2, · · · , XiRi),

where each Xij is an element of the finite field of size q denoted by GF (q). For linear network

codes, the signal on an edge (i, j) is a linear combination of the signals on the incoming edges

on i or a linear combination of the source signals at i. Let Yen (tail(en) = k and head(en) = l)

denote the signal on edge en ∈ E. Then, we have

Yen =
∑

{em|head(em)=k}

fm,nYem if k ∈ V \ {s1, s2}, and

Yen =

Ri∑
j=1

aij,nXij if Xi is observed at k.
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The local coding vectors aij,n and fm,n are also chosen from GF (q). We can also express

Yen as Yen =
∑R1

j=1 αj,nX1j +
∑R2

j=1 βj,nX2j . The global coding vector of Yen is [αn, βn] =

[α1,n, · · · , αR1,n, β1,n, · · · , βR2,n]. We are free to choose an appropriate value of the field size q.

In this work, we present an achievable rate region given the cut vector; namely, k1−1, k2−2,

k1−2, k2−1, k12−1, k12−2, k1−12, k2−12 and k12−12. W.l.o.g, we assume that there are ki−ij

outgoing edges from si and kij−i incoming edges into ti. If this is not the case one can always

introduce an artificial source (terminal) node connected to the original source (terminal) node

by ki−ij (kij−i) edges. It can be seen that the new network has the same cut vector as the

original network.

4.2 Achievable rate region for given k12−1, k12−2, k1−1, k2−2, k1−2, and k2−1

We first consider the case that a subset of the cut values in the cut vector are available,

namely, k12−1, k12−2, k1−1, k2−2, k1−2, and k2−1. Suppose for now that only t1 is interested in

recovering both the random variables X1 and X2 which are observed at s1 and s2 respectively.

Denote the rate from s1 to t1 and s2 to t1 as R11 and R12. The rate pairs (R11, R12) are

achieved via routing [36] and the corresponding capacity region Ct1 is given by

Ct1 = {R11 ≤ k1−1, R12 ≤ k2−1, R11 +R12 ≤ k12−1}.

The capacity region Ct2 for t2 can be drawn in a similar manner (an example is shown in

Fig. 4.1(a)). We also find the boundary points W1u,W1l,W2u,W2l
1 such that their coordinates

are W1u = (k12−1 − k2−1, k2−1),W1l = (k1−1, k12−1 − k1−1),W2u = (k12−2 − k2−2, k2−2),W2l =

(k1−2, k12−2 − k1−2). A simple achievable rate region for our problem can be arrived at by

multicasting both sources X1 and X2 to both the terminals t1 and t2.

Lemma 4.2.1 Rate pairs (R1, R2) belonging to the following set B can be achieved for two

unicast sessions.

B = {R1 ≤ min(k1−2, k1−1), R2 ≤ min(k2−1, k2−2), R1 +R2 ≤ min(k12−1, k12−2)}.

1subscripts l and u are meant to denote lower and upper.
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Figure 4.1 (a) An example of Ct1 and Ct2 when the multicast region

shaded is pentagonal. (b) Another example where the multi-

cast region is rectangular.

proof: We multicast both the sources to each terminal. This can be done using the multi-

source multi-sink multicast result (Thm. 8 in [3]). �

Subsequently we will refer to region B achieved by multicast as the multicast region (the

grey region in Fig. 4.1(a)). It can be observed that if the cut values are such that

min(k1−2, k1−1) + min(k2−1, k2−2) ≤ min(k12−1, k12−2), (4.1)

then the region is rectangular (Fig. 4.1(b)), otherwise, it is pentagonal (Fig. 4.1(a)).

We now move on to precisely formulating the problem. Let Zi denote the received vector

at ti, Xi denote the transmitted vector at si, and Hij denote the transfer function from sj to

ti. Let Mi denote the encoding matrix at si, i.e., Mi is the transformation from Xi to the

transmitted symbols on the outgoing edges from si. In our formulation, we will let the length

of Xi to be ki−i, i.e., the maximum possible. For transmission at rates R1 and R2, we introduce

precoding matrices Vi, i = 1, 2 of dimension Ri × ki−i, so that the overall system of equations

is as follows.

Z1 = H11M1V1X1 +H12M2V2X2,

Z2 = H21M1V1X1 +H22M2V2X2.

(4.2)

We say that ti can receive information at rate Ri from si if it can decode ViXi perfectly;

each entry in Vi is either 0 or 1. The row dimension of the Vi’s can be adjusted to obtain

different rate vectors. Under random linear network coding, it can be shown that there exist

local coding vectors over a large enough field such that the ranks of the different matrices
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Table 4.1 dimension and rank of matrices

matrix H11 H12 [H11 H12] H21 H22 [H21 H22]

dimension
k12−1×
k1−12

k12−1×
k2−12

k12−1×
(k1−12 + k2−12)

k12−2×
k1−12

k12−2×
k2−12

k12−2×
(k1−12 + k2−12)

rank k1−1 k2−1 k12−1 k1−2 k2−2 k12−2

in the first row of Table 4.1 are given by the corresponding entries in the third row, which

correspond to the maximum possible. Furthermore, by the multi-source multi-sink multicast

result [3], when (R1, R2) ∈ B these matrices are such that [H11M1 H12M2] is a full column

rank matrix of dimension k12−1× (R1+R2), and [H21M1 H22M2] is a full column rank matrix

of dimension k12−2 × (R1 +R2). In Table 4.1, for instance since the minimum cut between s1

and t1 is k1−1, we know that the maximum rank of H11 is k1−1. Using the formalism of [3],

we can conclude that there is a square submatrix of H11 of dimension k1−1 × k1−1 whose

determinant is not identically zero. Such appropriate submatrices can be found for each of the

matrices in the first row of Table 4.1. This in turn implies that their product is not identically

zero and therefore using the Schwartz-Zippel lemma [35], we can conclude that there exists an

assignment of local coding vectors over a sufficiently large finite field so that the rank of all the

matrices is simultaneously the maximum possible. While, the Schwartz-Zippel lemma requires

random choice of the local coding vectors, the probability of success in the algorithm can be

made arbitrarily close to one if the field size is chosen large enough, or through repeated trials,

hence it runs in random polynomial time. For the rest of the paper, we assume that such a

choice of local coding vectors has been made. Our arguments will revolve around appropriately

modifying source encoding matrices M1 and M2.

Note that in general the multicast region has a pentagonal shape (see Fig. 4.1(a)). Two

points on this pentagon (denoted as Q1 and Q2) are of specific interest. At point Q1, we denote

the achievable rate pair by (R∗
1, R

∗
2) where

R∗
1 = min(k1−2, k1−1), and

R∗
2 = min(min(k2−1, k2−2),min(k12−1, k12−2)−R∗

1).

If the region is pentagonal, then R∗
1 = min(k1−2, k1−1) and R∗

2 = min(k12−1, k12−2) − R∗
1.
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Likewise at point Q2, we denote the achievable rate pair by (R∗∗
1 , R∗∗

2 ) where

R∗∗
1 = min(min(k1−2, k1−1),min(k12−1, k12−2)−R∗∗

2 ), and

R∗∗
2 = min(k2−1, k2−2).

If the region is pentagonal, then R∗∗
1 = min(k12−1, k12−2)−R∗∗

2 and R∗∗
2 = min(k2−1, k2−2). If

the region is rectangular, then Q1 = Q2, and R∗
1 = R∗∗

1 = min(k1−2, k1−1) and R∗
2 = R∗∗

2 =

min(k2−1, k2−2). In Fig. 4.1(a), these boundary points are Q1 = W2l and Q2 = W ∗, and the

multicast region is pentagonal. Another example is shown in Fig. 4.1(b) where Q1 = Q2 and

the multicast region is rectangular.

In what follows, we will present our arguments towards increasing the value of R1 and

R2 to achieve points that are near Q1 but do not belong to B. In this paper we refer to

k1−2 + k2−1 as a measure of the interference in the network and in the subsequent discussion

present achievable regions based on its value. We emphasize though that this is nomenclature

used for ease of presentation. Indeed a high value of k1−2 does not necessarily imply that there

is a lot of interference at t2, since the network code itself dictates the amount of interference

seen by t2. The following lemma will be used extensively.

Lemma 4.2.2 Consider a system of equations Z = H1X1 + H2X2, where X1 is a vector

of length l1 and X2 is a vector of length l2 and Z ∈ span([H1 H2])
2. The matrix H1 has

dimension zt × l1, and rank l1 − σ, where 0 ≤ σ ≤ l1. The matrix H2 is full rank and has

dimension zt × l2 where zt ≥ (l1 + l2 − σ). Furthermore, the column spans of H1 and H2

intersect only in the all-zeros vectors, i.e. span(H1) ∩ span(H2) = {0}. Then there exists a

unique solution for X2.

proof: Because Z ∈ span([H1 H2]), there exists X1 and X2 such that Z = H1X1 + H2X2.

Now assume there is another set of X ′
1 and X ′

2 such that Z = H1X
′
1 +H2X

′
2. This implies

H1(X1 −X ′
1) = H2(X2 −X ′

2). (4.3)

Because span(H1) ∩ span(H2) = {0}, both sides of eq. (D.1) are zero. Furthermore, since H2

is a full rank matrix, X2 = X ′
2, i.e., the solution for X2 is unique. �

2Throughout the paper, span(A) refers to the column span of A.
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We next define the achievable rate region which will be used in the rest of the paper.

Definition 4.2.3 A rate point (R1, R2) is said to lie in the achievable rate region RA if

there exist full column rank source encoding matrices M1 and M2 where rank(M1) = R1

and rank(M2) = R2 such that

rank(H11M1) = rank(M1), rank(H22M2) = rank(M2), and

span(Hi1M1) ∩ span(Hi2M2) = {0} for i = 1, 2.

(4.4)

The condition above will be referred in the remainder of the paper as the achievable condition.

It can be observed that the multicast region B is a subset of RA.

4.2.1 Low interference case - k1−2 + k2−1 ≤ min(k12−1, k12−2)

Note that it always holds that k2−1 + k1−1 ≥ k12−1 and k1−2 + k2−2 ≥ k12−2. Together

with the low interference condition, this implies that k1−1 ≥ k1−2 and k2−2 ≥ k2−1. It follows

that the multicast region is a rectangle since eq. (4.1) is satisfied and R∗
1 = k1−2, R

∗
2 = k2−1.

Furthermore, Q1 = Q2 = W ∗ as shown in the example in Fig. 4.1(b).

Our solution strategy is to first consider the encoding matrices M1 and M2 at the point

Q1, and to introduce a new encoding matrix at s1, denoted M ′
1 (with R∗

1 + δ columns) such

that span(H11M
′
1)∩ span(H12) = {0}. As shown below, this will allow t1 to decode from s1 at

rate R∗
1 + δ and t2 to decode from s2 at rate R∗

2. After the modification, each ti is guaranteed

to decode at the appropriate rate from si. A similar argument applies for R∗
2 to arrive at the

achievable rate region. At the point Q1, as both terminals can decode both sources, it holds

that

rank(Hi1M1) = k1−2, rank(Hi2M2) = k2−1, and

span(Hi1M1) ∩ span(Hi2M2) = {0} for i = 1, 2.

Before stating the main result, we present the following lemma.

Lemma 4.2.4 Rate Increase Lemma. Consider a rate point (R1, R2) ∈ RA with corresponding

matrices M1 and M2 such that (1) rank([H11 H12M2]) = r > rank([H11M1 H12M2]) =
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R1 + ∆, where rank(H12M2) = ∆ ≤ R2 and (2) rank([H21M1]) = rank(H21). There exist

matrices M ′
1 and M ′

2 such that t1 can decode at rate r −∆ and t2 can decode at rate R2.

proof: We first prove that if M1 and M2 satisfy Condition (1), then there exist a se-

ries of full rank matrices M̄
(n)
1 = [M̃

(n)
1 M1] of dimension k1−12 × (n + R1) such that

rank([H11M̄
(n)
1 H12M2]) = R1 + ∆ + n, 0 ≤ n ≤ (r − R1 − ∆). We prove this part by

induction. When n = 0, M̄
(0)
1 = M1, rank([H11M̄

(0)
1 H12M2]) = R1 +∆.

Assume that when n = l ≤ r−1−R1−∆, M̄
(n)
1 can be found such that rank([H11M̄

(l)
1 H12M2]) =

R1 +∆+ l. When n = l + 1 ≤ r −R1 −∆, if there does not exist an M̄
(l+1)
1 , all the columns

in [H11 H12M2] are linear combinations of [H11M̄
(l)
1 H12M2], which contradicts the fact

that rank([H11 H12M2]) = r > r − 1 ≥ l + R1 + ∆. Hence, there must exist a series of

full rank matrices M̄
(n)
1 such that rank([H11M̄

(n)
1 H12M2]) = R1 + ∆ + n is satisfied when

0 ≤ n ≤ r −R1 −∆.

Next, we prove that t1 can decode at rate r − ∆ and t2 can decode at rate R2 using

M ′
1 = M̄

(r−R1−∆)
1 and M ′

2 = M2.

Decoding at t1: Since M
′
1 is a full rank matrix of dimension k1−12× (r−∆), it also satisfies

(i) rank(H11M
′
1) = r−∆ and (ii) span(H11M

′
1)∩span(H12M2) = {0} because of the following

argument. We have

r = rank([H11M
′
1 H12M2]) ≤ rank([H11M

′
1]) + rank([H12M2])

≤ rank(M ′
1) + rank(H12M2) = r −∆+∆ = r.

Then all the inequalities become equalities and (i) and (ii) are satisfied. Then by Lemma D.0.3

and the above conditions, t1 can decode at rate r −∆.

Decoding at t2: From Condition (2), we have span(H21M1) = span(H21) (see Lemma

F.0.5 in the Appendix). Furthermore, since span(M1) ⊆ span(M ′
1), we have span(H21M1) ⊆

span(H21M
′
1) ⊆ span(H21). This implies that span(H21M1) = span(H21M

′
1) = span(H21).

Furthermore, since span(H21M1)∩span(H22M2) = {0}, we also have span(H21M
′
1)∩span(H22M2) =

{0}. Then by Lemma D.0.3 and the fact that H22M2 is full rank, t2 can decode at rate R2. �
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Lemma 4.2.5 If k1−2 + k2−1 ≤ min(k12−1, k12−2), the rate pair in the following region can be

achieved.

R1 ≤ k12−1 − k2−1, R2 ≤ k12−2 − k1−2.

proof: In this case, (R∗
1, R

∗
2) = (k1−2, k2−1) is the boundary point Q1 = Q2. Let M1 and

M2 denote the source encoding matrices at Q1.

First, note that rank(H12M2) = rank(H12) = k2−1, which implies that span(H12) =

span(H12M2). Therefore rank([H11 H12]) = rank([H11 H12 H12M2] = rank([H11 H12M2]).

This implies that rank([H11 H12M2]) = k12−1 ≥ k1−2 + k2−1 = rank([H11M1 H12M2]) since

by assumption k1−2+k2−1 ≤ min(k12−1, k12−2). Moreover, rank(H21M1) = rank(H21) = k1−2.

Therefore by the Rate Increase Lemma, we can achieve rate point (R1 = k12−1 − k2−1, R2 =

k2−1). Using a similar argument, we can further increase R2 such that rate pair (k12−1− k2−1,

k12−2 − k1−2) can be achieved. This region is the hatched gray region in Fig. 4.2. �

This implies that the point W ′ = (k12−1− k2−1, k12−2− k1−2) is achievable. Also note that

since we applied the Rate Increase Lemma, we have rank([H11M
′
1 H12M2]) = rank([H11 H12M2]).

Next, we consider the scenario in which rates can be traded off between the two unicast sessions.

Lemma 4.2.6 Rate Exchange Lemma – 1-1 tradeoff. Consider a rate point (R1, R2) ∈ RA

with corresponding matrices M1 and M2.

(a) If M1 and M2 satisfy (1) rank([H11M1 H12M2]) = rank([H11 H12M2]) = r, where

R1 + R2 ≥ r, and (2) rank(H21M1) = rank(H21), there exist M ′
1 and M ′

2 such that t1

can decode at rate min(R1 + 1, k1−1) and t2 can decode at rate max(R2 − 1, 0).

(b) If M1 and M2 satisfy (1) rank([H11 H12M2]) = r > rank([H11M1 H12M2]) = R1 +∆,

where rank(H12M2) = ∆ ≤ R2, and (2) rank(H21M1) < rank(H21), there exist M ′
1

and M ′
2 such that t1 can decode at rate min(R1 + 1, k1−1) and t2 can decode at rate

max(R2 − 1, 0).

Lemma 4.2.7 Rate Exchange Lemma – 1-2 tradeoff. Consider a rate point (R1, R2) ∈ RA

with corresponding matrices M1 and M2. If M1 and M2 satisfy (1) rank([H11M1 H12M2]) =
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rank([H11 H12M2]) = r, where R1 + R2 ≥ r, and (2) rank(H21M1) < rank(H21), there

exist M ′′
1 and M ′′

2 such that t1 can decode at rate min(R1 + 1, k1−1) and t2 can decode at rate

max(R2 − 2, 0).

proof: 1-1 tradeoff. We assume that R1 + 1 ≤ k1−1 and R2 − 1 ≥ 0. A vector α⃗ is added

to M1 to form M ′
1 such that M ′

1 = [α⃗ M1] and rank(H11M
′
1) = R1 + 1 where H11M

′
1 is of

dimension k12−1 × (R1 + 1).

For part (a), because of Condition (1), H11α⃗ will be a nonzero linear combination of the

vectors in H11M1 and H12M2, i.e., H11α⃗ = H11M1γ⃗1 + H12M2γ⃗2. Note that γ⃗1 is unique;

otherwise, assume that there exist γ⃗′1 and γ⃗′2 such that H11α⃗ = H11M1γ⃗
′
1 + H12M2γ⃗

′
2 where

γ⃗′1 ̸= γ⃗1. If H12M2γ⃗2 = H12M2γ⃗
′
2 then H11M1γ⃗1 = H11M1γ⃗

′
1 which indicates that H11M1

is not full column rank. On the other hand if H12M2γ⃗2 ̸= H12M2γ⃗
′
2, then it means that

span(H11M1)∩span(H12M2) ̸= {0}. Hence, by contradiction, we have γ⃗′1 = γ⃗1, which indicates

that γ⃗1 is unique. Then, β⃗ = H11α⃗−H11M1γ⃗1 is a vector which contains at least one nonzero

element. Otherwise, if β⃗ is a zero vector, rank(H11M
′
1) will be rank R1 which is a contradiction.

Assume w.l.o.g. that the nonzero element is on the first row of β⃗.

Next, we select a full rank matrix U of dimension R2 × (R2 − 1) from the null space of the

first row of H12M2 such that the first row of H12M2U is a zero row vector. It follows that H11α⃗

can not be represented by a linear combination of the vectors inH11M1 and H12M2U , which in-

dicates that H11α⃗ /∈ span([H11M1 H12M2U ]). Next, because span(H11M1)∩ span(H12M2) =

{0}, we have span(H11M1)∩ span(H12M2U) = {0}. Finally, we conclude that span(H11M
′
1)∩

span(H12M
′
2) = {0} where M ′

2 = M2U . Hence, t1 can decode at rate min(R1 + 1, k1−1).

For part (a) if Condition (2) is satisfied, span(H21M1) = span(H21). Using an argument

similar to the one used in the proof of Lemma 4.2.4, it can be shown that span(H21M
′
1) =

span(H21) = span(H21M1). This implies that span(H21M
′
1) ∩ span(H22M

′
2) = {0} since

span(H22M
′
2) ⊆ span(H22M2). Then t2 can decode at rate R2−1 since rank(H22M

′
2) = R2−1.

For part (b) if Condition (1) is satisfied, we can find anM ′
1 such that rank(H11M

′
1) = R1+1

and span(H11M
′
1)∩span(H12M2) = ∅. At the same time, if Condition (2) of part (b) is satisfied,

rank(H21M
′
1)− rank(H21M1) ≤ 1. Then rank(span(H21M

′
1)∩ span(H22M2)) can be as large
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as 1. As H22M2 is a full column rank matrix, we can find an M ′
2 by deleting one column

from M2 such that span(H21M
′
1) ∩ span(H22M

′
2) = {0} where M ′

2 is a full rank matrix of

dimension k2−12 × (R2 − 1). Furthermore, since span(H12M
′
2) ⊆ span(H12M2), we will have

that span(H11M
′
1)∩span(H12M

′
2) = {0}. With this M ′

1 and M ′
2, the rate point (R1+1, R2−1)

can be achieved. �

proof: 1-2 tradeoff. We assume that R1 + 1 ≤ k1−1 and R2 − 2 ≥ 0.

Note that Condition (1) here is the same as in the Rate Exchange Lemma – 1-1 tradeoff

– part(a). Therefore, we can find two matrices M ′
1 and M ′

2 with rank R1 + 1 and R2 − 1 by

appending one vector to M1 and selecting M ′
2 = M2U such that rank(H11M

′
1) = R1 + 1, and

span(H11M
′
1)∩ span(H12M

′
2) = {0} where U is a full rank matrix of dimension R2 × (R2 − 1)

such that rank(H12M2)− rank(H12M2U) = 1.

If Condition (2) is satisfied, rank(H21M
′
1) − rank(H21M1) can be as large as 1. Then

rank(span(H21M
′
1) ∩ span(H22M

′
2)) can be as large as 1. Because H22M

′
2 is a full column

rank matrix, we can find an M ′′
2 by deleting one column from M ′

2 such that span(H21M
′
1) ∩

span(H22M
′′
2 ) = {0} whereM ′′

2 is a full rank matrix of dimension k2−12×(R2−2). Furthermore,

since span(H12M
′′
2 ) ⊆ span(H12M

′
2), we will have that span(H11M

′
1) ∩ span(H12M

′′
2 ) = {0}.

Finally let M ′′
1 = M ′

1. With encoding matrices M ′′
1 and M ′′

2 , it can be seen that (R1+1, R2−2)

can be achieved. �

By applying the Rate Exchange Lemma – 1-1 tradeoff – part (a), at point W ′ = (k12−1 −

k2−1, k12−2 − k1−2), we have the following theorem.

Theorem 4.2.8 If k1−2 + k2−1 ≤ min(k12−1, k12−2), the following rate region (see Fig. 4.2)

can be achieved.

Region 1:

R1 ≤ k1−1, R2 ≤ k2−2,

R1 +R2 ≤ k12−1 − k2−1 + k12−2 − k1−2.

proof: Note that point W ′ = (R1, R2) = (k12−1 − k2−1, k12−2 − k1−2) is achieved by using

the Rate Increase Lemma. Let M1 and M2 be the encoding matrices at W ′. Then, we have

rank([H11M1 H12M2]) = rank([H11 H12M2]), and we further have that rank(H21M1) =
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Figure 4.2 The achievable rate region for the low interference case. For

each point in the shaded grey area, both terminals can recover

both the sources. In the hatched grey area and the hatched

white area, for a given rate point, its x-coordinate is the rate for

s1− t1 and its y-coordinate is the rate for s2− t2; the terminals

are not guaranteed to decode both sources in this region. The

union of the hatched white region, the hatched gray region and

the gray region is the final extended rate region for the low

interference case.

rank(H21) = k1−2. Applying the Rate Exchange Lemma – 1-1 tradeoff – part (a) we have the

required conclusion. �

remark: Note that it always holds that k12−1 ≥ k1−1, k12−2 ≥ k2−2. Along with the low

interference condition, we can conclude that k12−1 − k2−1 + k12−2 − k1−2 ≥ max(k1−1, k2−2) ≥

(k1−1 + k2−2)/2. As k1−1 + k2−2 is always an upper bound (albeit loose) on R1 + R2, this

implies that our rate region is within a multiplicative gap of two of the outer bound.

4.2.2 High interference case - k1−2 + k2−1 > min(k12−1, k12−2)

Note that for the low interference case, the low interference condition implies that k1−1 ≥

k1−2 and k2−2 ≥ k2−1. However, in high interference case, there are several possibilities. We

show a case where k1−1 ≤ k1−2 and k2−2 ≤ k2−1 in Fig. 4.3(a). When k1−1 ≥ k1−2, Fig. 4.3(b)

illustrates an example where k2−2 ≤ k2−1, and Fig. 4.1(a) (in Section 4.2.1) illustrates an

example where k2−2 ≥ k2−1. It can be observed here that unlike the low interference case, Q1

may not be the same point as Q2. In the discussion below we present rate regions by extending

them from the rate points Q1 and Q2.

Claim 4.2.9 When Q1 ̸= Q2, the Rate Increase Lemma cannot be applied to increase the rate
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Figure 4.3 (a) High interference case where k1−1 ≤ k1−2 and k2−2 ≤ k2−1.

(b) High interference case where k1−1 ≥ k1−2 and k2−2 ≤ k2−1.

to t2 above R∗
2 at Q1 or to increase the rate to t1 above R∗∗

1 at Q2.

Proof: As Q1 ̸= Q2, using eq. (4.1), we conclude that min(k1−2, k1−1)+min(k2−1, k2−2) >

min(k12−1, k12−2). Then atQ1, R
∗
2 = min(min(k2−1, k2−2),min(k12−1, k12−2)−min(k1−2, k1−1)) <

min(k2−1, k2−2) ≤ k2−1. Next, since rank(H12M2) ≤ rank(M2) = R∗
2 < rank(H12) = k2−1,

Condition (2) of the Rate Increase Lemma is not satisfied. A similar argument applies for

Q2. �

In view of the above claim, using our achievable strategies one can at best use the Rate

Exchange Lemma to increase the rate to t2 at Q1 while reducing the rate to t1. As Q1 ̸= Q2,

the multicast region is a pentagon and applying the 1-1 tradeoff will at most allow us to

achieve the boundary between Q1 and Q2, while the 1-2 tradeoff achieves interior points in the

multicast region. As points on the Q1 − Q2 boundary are already achieved by multicasting

both sources, the region is not enlarged.

Hence, we will consider rate points (R1, R2) such that R1 > R∗
1 and R2 = R∗

2 at Q1 (and

similarly R1 = R∗∗
1 and R2 > R∗∗

2 at Q2). At Q1, if k1−2 ≥ k1−1, R
∗
1 = k1−1, i.e. increasing

R1 is impossible since it attains its maximum. Therefore, we assume that k1−2 < k1−1. By

the high interference condition and the fact that k1−2 + k2−2 ≥ k12−2, we have (R∗
1, R

∗
2) =

(k1−2,min(k12−1, k12−2)−k1−2). We begin by modifying the source encoding matrices at point

Q1, with the goal of increasing R1 the rate to t1 above R∗
1. Our strategy at Q1 is similar to the

one for the low interference case, namely, we attempt to trace a region of achievable rates by

using the Rate Increase and Rate Exchange lemmas. The main difference is that here we also
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use the 1-2 tradeoff result (cf. Lemma 4.2.7). Note that in the discussion below, we present

the arguments for increasing rates at Q1 and Q2 separately. However, if Q1 = Q2, then the

arguments are still applicable.

Theorem 4.2.10 If k1−2 + k2−1 > min(k12−1, k12−2) and k1−2 < k1−1, then the rate pair in

the following region can be achieved.

Region 2:

D1 ∩ (D2 ∪D3 ∪D4) if k2−1 < k2−2, or

D1 ∩ (D2 ∪D3) if k2−1 ≥ k2−2, where

D1 : R1 ≤ k1−1,

D2 : R1 +R2 ≤ rank([H11 H12M2]) when R2 ≤ min(k12−1, k12−2)− k1−2,

D3 : R1 + 2R2 ≤ R∗
2 + rank([H11 H12M2]) when min(k12−1, k12−2)− k1−2 ≤ R2 ≤ min(k2−1, k2−2),

D4 : R1 +R2 ≤ R∗
2 + rank([H11 H12M2])− k2−1 when k2−1 < R2 ≤ k2−2,

where R∗
2 = min(k12−1, k12−2)− k1−2, M1 and M2 are the encoding matrices at Q1.

Note that in the above characterization, the rate constraints depend on rank([H11 H12M2]);

we show a lower bound on rank([H11 H12M2]) in Section 4.2.2.1.

Proof: Given that k1−2 + k2−1 > min(k12−1, k12−2) and k1−2 < k1−1, we will extend the

rate region from Q1 where R∗
1 = k1−2, R

∗
2 = min(k12−1, k12−2)− k1−2. Let M1 and M2 denote

the encoding matrices at Q1. At Q1, we first need to increase R1 while keeping R2 as large as

possible. Suppose that we can use the Rate Increase Lemma to increase R1. This implies that

min(k12−1, k12−2) = rank([H11M1 H12M2]) < rank([H11 H12M2]) ≤ rank([H11 H12]) =

k12−1 which implies that min(k12−2, k12−1) = k12−2. In the following discussion, we assume

this is the case. By Rate Increase Lemma, we can achieve the rate point W ′ = (R′
1, R

′
2) =

(rank([H11 H12M2])−R∗
2, R

∗
2). The corresponding encoding matrices are M ′

1 and M ′
2 = M2.

When we want to further increase R1 above R′
1, we could use Rate Exchange Lemma – 1-1

tradeoff – part (a) repeatedly, since rank(H21M1) = k1−2 = R∗
1 and span(M1) ⊆ span(M ′

1),

implying that rank(H21M
′
1) = rank(H21) = k1−2. When R′

1 is increased by δ, R′
2 is decreased

by δ where 0 ≤ δ ≤ min(R∗
2, k1−1 − R′

1) (δ ≤ k1−1 − R′
1 comes from the fact that R′

1 can be
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increased to at most k1−1). Terminal t1 can decode messages from s1 at rate R′′
1 = R′

1 + δ and

t2 can decode messages from s2 at rate R′′
2 = R′

2 − δ. Denote the new set of encoding matrices

as M ′′
1 and M ′′

2 . This is shown by the line (W ′, W̄ ′) in Fig. 4.4(a) which corresponds to D2.

On the other hand, at W ′, we can increase R2 such that R2 = R′
2 + δ1 where 0 ≤ δ1 ≤

min(k2−1−R∗
2, k2−2−R∗

2). First note that k12−2 = rank([H21M1 H22M2]) ≤ rank([H21M
′
1 H22M

′
2]) ≤

rank([H21M
′
1 H22]) ≤ rank([H21 H22]) = k12−2 which implies rank([H21M

′
1 H22M

′
2]) =

rank([H21M
′
1 H22]). Then by using Rate Exchange Lemma – 1-2 tradeoff, since rank(H12)−

rank(H12M
′
2) = k2−1 − (min(k12−1, k12−2)− k1−2) > 0 we can increase R′

2 by δ1 and decrease

R′
1 by 2δ1, and the boundary point (R′

1 − 2δ1, R
′
2 + δ1) can be achieved where 0 ≤ δ1 ≤

min(k2−1 − R∗
2, k2−2 − R∗

2, R
′
1/2) which corresponds to D3 (δ1 ≤ R′

1/2 comes from the fact

that R1 should be not smaller than 0). If we have that k2−1 ≤ min(k2−2, R
′
1/2 + R∗

2), we will

arrive at the boundary point W ′′ = (R′′
1 , R

′′
2) = (R∗

2+ rank([H11 H12M2])− 2k2−1, k2−1). The

corresponding matrices are M ′′
1 and M ′′

2 . This is demonstrated by the line (W ′,W ′′) in Fig.

4.4(a).

If we have that R′′
1 ≥ 0 and k2−1 < k2−2, at point W ′′, we can further increase R2 such

that R2 = R′′
2 + δ2 and R1 = R′′

1 − δ2 where 0 ≤ δ2 ≤ min(k2−2−k2−1, R
′′
1). The corresponding

encoding matrix at s2 is M ′′′
2 . By Rate Exchange Lemma – 1-1 tradeoff – part (a), since

rank(H12) = rank(H12M
′′
2 ), t1 can decode at rate R′′

1 − δ2, and t2 can decode at rate R′′
2 + δ2.

Then W ′′′ is achieved and the procedure is demonstrated by the line (W ′′,W ′′′) in Fig. 4.4(a)

which corresponds to D4. The entire extended rate region for this case is shown in Fig. 4.4(a).

�

We next consider increasing R2 above R∗∗
2 at Q2. If k2−1 ≥ k2−2, R2 cannot be increased

as R∗∗
2 = k2−2. Hence, we assume that k2−1 < k2−2. A similar analysis for Q2 results in the

following region.

Corollary 4.2.11 If k1−2 + k2−1 > min(k12−1, k12−2) and k2−1 < k2−2, then the rate pair in

the following region can be achieved.

Region 3:
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Figure 4.4 (a) The extended rate region for the high interference case from

point Q1. (b) The final extended rate region for the case of high

interference.

D′
1 ∩ (D′

2 ∪D′
3 ∪D′

4) if k1−2 < k1−1, or

D′
1 ∩ (D′

2 ∪D′
3) if k1−2 ≥ k1−1 where,

D′
1 : R2 ≤ k2−2,

D′
2 : R1 +R2 ≤ rank([H21M1 H22]) when R1 ≤ min(k12−1, k12−2)− k2−1,

D′
3 : 2R1 +R2 ≤ R∗∗

1 + rank([H21M1 H22]) when min(k12−1, k12−2)− k2−1 ≤ R1 ≤ min(k1−2, k1−1),

D′
4 : R1 +R2 ≤ R∗∗

1 + rank([H21M1 H22])− k1−2 when k1−2 < R1 ≤ k1−1,

where R∗∗
1 = min(k12−1, k12−2)− k2−1, M1 and M2 are the encoding matrices at Q2.

From the above argument, the overall rate region is the convex hull of multicast region, and

either Region 2 or Region 3 or both depending upon the cut conditions. For instance when

k1−2 < k1−1 and k2−1 < k2−2 the final region is shown in Fig. 4.4(b), where boundary segment

W ′′′ −W ′ is achieved via timesharing.

Finally, note that when k1−2 ≥ k1−1 and k2−1 ≥ k2−2, we cannot enlarge the region using

our achievability schemes, i.e., the achievable region is the multicast region.

4.2.2.1 Lower bound of rank([H11 H12M2])

As before, let (R∗
1, R

∗
2) denote the rate point at Q1 and let M1 and M2 denote the cor-

responding encoding matrices. First note that rank([H11 H12M2]) ≥ rank(H11) = k1−1 and
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rank([H11 H12M2]) ≥ rank([H11M1 H12M2]) = R∗
1 + R∗

2. Next we will also find another

nontrivial lower bound of rank([H11 H12M2]) by the following lemma.

Lemma 4.2.12 Given rank([H11 H12]) = k12−1, rank(H12) = k2−1 and rank([H12M2]) = l,

we have rank([H11 H12M2]) ≥ k12−1 − k2−1 + l.

proof: By the assumed conditions, there are k2−1 columns in H12 that are linearly independent,

and in H11, we can find a subset of k12−1 − k2−1 columns denoted H ′
11 such that span(H ′

11) ∩

span(H12) = {0} and rank(H ′
11) = k12−1 − k2−1, which further imply that rank([H ′

11 H12]) =

k12−1.

Since span(H12M2) ⊆ span(H12) this means that span(H ′
11) ∩ span(H12M2) = {0}. Then

rank([H ′
11 H12M2]) = rank(H ′

11)+rank(H12M2) = k12−1−k2−1+l. Hence, rank([H11 H12M2]) ≥

rank([H ′
11 H12M2]) = k12−1 − k2−1 + l. �

Together with the two lower bounds above, we have rank([H11 H12M2]) ≥ max(k1−1, k12−1−

k2−1+R∗
2, R

∗
1+R∗

2). A case where max(k1−1, k12−1− k2−1+R∗
2, R

∗
1+R∗

2) = k12−1− k2−1+R∗
2

is shown in Fig. 4.4(b) where R∗
2 = k12−2 − k1−2.

4.2.3 Increasing the achievable rate region by modifying the graph

Thus far, we have presented achievable rate regions for both the low and high interference

scenarios. An interesting observation about these regions is that it is possible to enlarge the

regions by considering the removal of judiciously chosen edges from the network. We have noted

that by removing certain edges from the network, the achievable rate region can be extended.

For example, Fig. 4.5 corresponds to a scenario where k1−1 = 3, k1−2 = 1, k2−1 = 3, k2−2 = 3,

k12−1 = 3 and k12−2 = 3. Hence, the sum rate R1 + R2 ≤ 3 using Theorem 4.2.10. However,

one can achieve the rate points (R1, R2) = (1, 3) and (3, 1) by removing edges e1 and e2 since

k2−1 drops to 1 and the low interference result (cf. Theorem 4.2.8) applies. Furthermore note

that the rate points (1, 3) and (3, 1) are not achievable by routing need network coding.

In principle, one could consider the union of the achievable rate regions obtained by remov-

ing certain subset of the edges from the network to perhaps obtain a larger region. Finding
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Figure 4.5 An example of a network where a larger achievable rate region

can be achieved by removing edges e1 and e2.

such edges in a systematic manner is an interesting problem. However, we are unaware of any

known algorithm for it.

4.3 Achievable rate region for given k1−12, k2−12, k1−1, k2−2, k1−2, and k2−1

We have discussed the achievable rate region given k12−1, k12−2, k1−1, k2−2, k1−2, and k2−1

in the previous section. However, there are other cuts that are potentially useful in finding

the achievable rate region. In this section, we will discuss the achievable rate region for given

k1−12, k2−12, k1−1, k2−2, k1−2, and k2−1 using the reversibility result introduced in [37]. Towards

this end define the reverse of a network G as the network G′ = (V ′, E′) where (1) The nodes

V ′ and edges E′ in G′ are the same as in G, except the direction of edges are reversed. (2)

The sources in G are the terminals in G′ and vice versa.

For the double unicast problem, we will have that s′i = ti and t′i = si, i = 1, 2. Let

k1−12, k2−12, k1−1, k2−2, k1−2 and k2−1 denote the cut in G and let k′12−1, k
′
12−2, k

′
1−1, k

′
2−2, k

′
1−2

and k′2−1 denote the cut in G′. It is evident that k′12−1 = k1−12, k
′
12−2 = k2−12, k

′
1−1 = k1−1,

k′2−2 = k2−2, k
′
1−2 = k2−1 and k′2−1 = k1−2. By Theorem 4 in [37] a linear network coding

solution for rate pair (R1, R2) in the original network G is in one-to-one correspondence with
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the rate pair (R′
1, R

′
2) = (R1, R2) in the reversed network G′. Thus, our idea is to determine

an achievable rate pair in G′ and then claim the existence of a corresponding rate pair in G.

The process consists of substituting the corresponding cuts of the reverse network into the

multicast region B, Region 1, Region 2 and Region 3 of the original network, to obtain a new

set of regions B′, Region 1’, Region 2’ and Region 3’.

In the interest of avoiding repetitive arguments, we discuss the process of determining

Region 2’ by means of an example. For the original graph, in Region 2, D2 : R1 + R2 ≤

rank([H11 H12M2]) when R2 ≤ min(k12−1, k12−2) − k1−2. Thus, for Region 2’, the corre-

sponding D2 : R1 +R2 ≤ rank([H ′
11 H ′

12M
′
2]) when R2 ≤ min(k1−12, k2−12)− k2−1 where H ′

ij

is the transfer matrix from s′j to t′i, and M ′
i is the source encoding matrix at s′i. The other

inequalities can be determined in a similar manner.

Hence, given all possible cuts in a double unicast network, the achievable rate region is

convex hull of multicast region B, B′ and the corresponding extended region in different cases.

In order to demonstrate the utility of considering the reversed network, consider the network

shown in Fig. 4.6. It can be verified that the rate regions are different using the original result

and reversibility result. with our schemes. In particular, using the reversibility result can

achieve rate point (1,1) whereas the original result cannot.

4.4 Comparison with existing results

The work that is most closely related to the present paper is by [12] that also considers the

double unicast problem with arbitrary rates. Assuming that k2−2 ≤ k1−1, the region in [12] is

given by EF09 = EF09(a) ∪ EF09(b), where

EF09(a) = {(R1, R2) : R1 + 2R2 ≤ k1−1, R2 ≤ k2−2}, and

EF09(b) = {(R1, R2) : 2R1 +R2 ≤ k2−2, R1 ≤ k1−1}.

A comparison between our region and theirs indicates that our region is larger than theirs. To

see this, consider the low interference case and a rate point (R1, R2) that lies in EF09(a). We

have that R1 + R2 ≤ R1 + 2R2 ≤ k1−1 ≤ k12−1 − k2−1 + k12−2 − k1−2 (since k1−2 + k2−1 ≤



62

1
s

2
s

1
t

2
t

Figure 4.6 An example of a network where the achievable rate regions are

different using the original result and the reversibility result.

All edges are unit capacity.

min(k12−1, k12−2)) and R2 ≤ k2−2, i.e. (R1, R2) also belongs to our region.

For the high interference case, we argue as follows. Let (R1, R2) belong to EF09(a).

• If k1−2 ≤ k1−1, we show that (R1, R2) belongs to Region 2. Note that R1 + 2R2 ≤

k1−1 ≤ rank([H11 H12M2]). However, the RHS of D2 and D3 is at least as large

as rank([H11 H12M2]), and for D4 we have R1 + 2R2 ≤ rank([H11 H12M2]) ≤ R∗
2 +

rank([H11 H12M2])−k2−1+R2 (since in D4, k2−1 ≤ R2 ≤ k2−2) indicating that (R1, R2)

is within Region 2.

• If k1−2 > k1−1 and k2−1 ≥ k2−2, we haveR1+R2 ≤ R1+2R2 ≤ k1−1 ≤ min(k1−2, k12−1) ≤

min(k12−2, k12−1) which shows that (R1, R2) is within our multicast region.

• If k1−2 > k1−1 and k2−1 < k2−2, we consider different ranges for R2. For 0 ≤ R2 ≤ k2−1,

R1 + R2 ≤ R1 + 2R2 ≤ k1−1 ≤ min(k1−2, k12−1) ≤ min(k12−2, k12−1) which implies that

(R1, R2) is within our multicast region. On the other hand when k2−1 ≤ R2 ≤ k2−2, we

have k1−1 − 2k2−2 ≤ R1 ≤ k1−1 − 2k2−1 (from the definition of EF09(a)). This implies

that (R1, R2) belongs to Region 3. To see this we note that the relevant range of Region
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3 is D′
2 since k1−1 − 2k2−1 ≤ min(k12−1, k12−2)− k2−1. We have R1 +R2 ≤ R1 + 2R2 ≤

k1−1 ≤ min(k1−1 + k2−1,min(k12−1, k12−2)) = R∗∗
1 + R∗∗

2 = rank([H21M1 H22M2]) ≤

rank([H21M1 H22]) indicating that such a point is within Region 3.

In a similar manner it can be shown that all rate points in EF09(b) are within our rate region.

The authors in [10] and [11] explore the unit-rate case R1 = R2 = 1 in detail. Such schemes

can potentially be packed into networks with higher capacities. References [10,11] rely heavily

on an analysis of the graph theoretic structures that are possible in double unicast networks.

Thus, our scheme will in general be weaker than their approach on certain networks. Likewise

the work of [9] [26] also considers the achievable rate region using network coding between

pair of sources. However, there are networks where our approach is strictly better than all the

above approaches. We show such an example in Fig. 4.7. In Fig. 4.7, we can achieve rates

(4,2) by the argument using in Region 2, whereas it can be verified that the above schemes

do not support this rate point. For instance, if R2 = 2, R1 ≤ 3 in EF09, whereas the scheme

in [10] can at most achieve a rate of (1, 2). Furthermore, we note that the enlargement of the

achievable region by considering the removal of certain edges discussed in Section 4.2.3 also

improves our region in many cases.

The following results have appeared since the submission of the present paper and the

publication of our preliminary conference paper [23]. The work of [31] treats the two unicast

problem as an instance of a linear deterministic interference channel and finds a network

code that uses random linear network coding. Their region contains our proposed achievable

region. The authors in [32] also derive an achievable region by exploiting the equivalence with

deterministic interference channels; their region is completely specified by the cut values in

the network (in contrast, in certain cases our region and the region in [31] is specified in terms

of the rank of matrices that depend on the network code). However, for some networks our

scheme achieves a larger region. As an example, if one considers the two-unicast butterfly

network with k1−1 = k2−2 = 1, k1−2 = k2−1 = 2 and k12−1 = k12−2 = 2, our scheme achieves

the multicast point (1, 1) whereas the region in [32] is empty.
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Figure 4.7 An example of a high interference network when our scheme

can achieve a higher rate pair compared to many other schemes.

4.5 Conclusions

In this work, we presented an achievable rate region for the double unicast problem for

directed acyclic networks with unit capacity edges. The proposed strategy combines random

linear network coding along with appropriate precoding at the source nodes. Networks are

classified according the relationship of the values of the cuts between various subsets of the

sources and the terminals. We begin with the multicast region where both sources are multicast

to both terminals and then enlarge the region by either unilaterally increasing one of the rates

or trading off rates between the connections. The proposed region can potentially be enlarged

by considering regions that are obtained by the judicious removal of certain edges from the

network.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

5.1 Contributions

This dissertation has focused on the multiple unicast problem over directed acyclic net-

works when there are three sessions and two sessions. The most significant contribution and

conclusions of this work can be summarized as follows.

1. For three unicast problem, given the connectivity level vector [k1 k2 k3] where there exist

ki edge disjoint paths between si to ti, we decide if unit rate transmission is feasible. For

connectivity level vector [1 3 3], [2 2 4] and [1 2 5], we present constructive linear network

coding schemes. For connectivity level vector [1 1 3], [2 2 2], [2 2 3], we provide instances of

network that cannot support unit rate transmission. For connectivity level vector [1 2 4],

we are not able to provide either a network coding solution or a network topology to

demonstrate the infeasibility of unit rate transmission. The experimental results indicate

that for networks where the different source terminal paths have a significant overlap,

our constructive unit rate schemes can be packed along with routing to provide higher

throughput as compared to a pure routing approach.

2. For two unicast problem, we assume we know certain minimum cut values for the network,

e.g., mincut(Si, Tj), where Si ⊆ {s1, s2} and Tj ⊆ {t1, t2} for different subsets Si and

Tj . Based on these values, we propose an achievable rate region using linear network

codes. We first define the multicast region where both sources are multicast to both

terminals. Following this we enlarge the region by appropriately encoding the information

at the source nodes, such that terminal ti is only guaranteed to decode information from

the intended source si, while decoding a linear function of the other source. We also
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incorporate the techniques of removing certain edges and network inversion to further

enlarge the achievable region.

5.2 Future work

Based on what has been accomplished so far in this dissertation, several suggestions for

further research work are provided below:

1. For three unicast problem, we have identify certain feasible/infeasible instances with two

unicast sessions, where the message entropies are different, e.g., Lemma 3.2.2 and Lemma

3.3.4. These are used to arrive at conclusion for the problem in the case of high sessions

(more than three sessions). Hence, it is beneficial to analyze the achievable rate region for

double unicast network, and then analyze the more general case, e.g., we are interested

in given the cut value mincut(s1, t1), mincut(s2, t2), if there exists a general method to

decide the achievable region.

2. For the two unicast problem, we have demonstrated that the proposed region can po-

tentially be enlarged by considering regions that are obtained by removing certain edges

from the network. However, it is not an easy problem. An intuition is to convert an

original network of high interference to a corresponding low interference one since a 1-1

tradeoff can always be done in Region 1. While this is an intuition, this is not always

true in every high interference network. Future work would include the investigation of

systematic techniques for finding the appropriate edges to be removed.

3. For general multiple unicast problem, we have packed our three unicast unit rate schemes

in a general unicast problem to increase the capacity. A nature question to ask is if we can

pack our non-unit rate two unicast schemes in the graphs to increase the capacity over

routing. This question is more involved since we have to divide the original graphs into

subgraphs that have certain cut vectors. A future research interest could be optimizing

the dividing procedure to achieve the maximum rate for each session.
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APPENDIX A. PROOF OF LEMMA 3.2.4

proof: When n1 is even, the network structure is shown in Fig. A.1.

Assume in n time units, s1 observes n1 independent source vectors Xn
11, . . . , Xn

1n1
, s2

observes n2− 3n1/2+ a independent source vectors Xn
21, . . . , Xn

2m where m = n2− 3n1/2+ a

and a is a positive constant. For the simplicity of the proof, we assume that the alphabet of

X1i and X2j is X , and H(X1i) = H(X2j) = 1,∀i, j. The n random variables that ei carries are

denoted as Y n
ei , or simply Y n

i . From Y n
1,2, Y

n
1,4, . . . , Y n

n1/2,2
, Y n

n1/2,4
, we estimate Xn

11, . . . , Xn
1n1

.

Let the estimate be X̂n
11, . . . , X̂n

1n1
.

From the Fano’s inequality, we shall have

H(Xn
11, . . . , X

n
1n1

|X̂n
11, . . . , X̂

n
1n1

) ≤ nϵn. (A.1)

where nϵn = 1 + nPe log(|X |). For t1 to decode Xn
11, . . . , Xn

1n1
asymptotically, ϵn → 0 as

Pe → 0, when n → ∞, where Pe = P ((X̂n
11, . . . , X̂

n
1n1

) ̸= (Xn
11, . . . , X

n
1n1

)).

Because X̂n
11, . . . , X̂

n
1n1

are function of Y n
1,2, Y

n
1,4, . . . , Y n

n1/2,2
, Y n

n1/2,4
, we will have

H(Xn
11, . . . , X

n
1n1

|Y n
1,2, Y

n
1,4, . . . , Y n

n1/2,2
, Y n

n1/2,4
)

= H(Xn
11, . . . , X

n
1n1

|X̂n
11, . . . , X̂

n
1n1

, Y n
1,2, Y

n
1,4, . . . , Y n

n1/2,2
, Y n

n1/2,4
)

≤ H(Xn
11, . . . , X

n
1n1

|X̂n
11, . . . , X̂

n
1n1

) ≤ nϵn.

(A.2)

Because H(Y n
1,2, Y

n
1,4, . . . , Y n

n1/2,2
, Y n

n1/2,4
) ≤ n1n, eq. (A.2) and the independence among

Xn
11, . . . , X

n
1n1

, Xn
21, . . . , X

n
2m, by Claim B.0.1, we will have

mn− nϵn ≤ H(Xn
21, . . . , X

n
2m|Y n

1,2, Y
n
1,4, . . . , Y n

n1/2,2
, Y n

n1/2,4
) ≤ mn; (A.3)

H(Y n
1,2, Y

n
1,4, . . . , Y n

n1/2,2
, Y n

n1/2,4
|Xn

21, . . . , X
n
2m) ≥ n1n− 2nϵn. (A.4)
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e

2
2,n
e

e1,0

Figure A.1 An example where t1 at decode at rate n1, but t2 cannot decode

at rate n2 − 3n1/2 + 1.

Next, we shall have

H(Y n
1,3, Y

n
1,4, . . . , Y

n
n1/2,3

, Y n
n1/2,4

)

(a)
= H(Xn

21, . . . , X
n
2m, Y n

1,3, Y
n
1,4, . . . , Y

n
n1/2,3

, Y n
n1/2,4

)−H(Xn
21, . . . , X

n
2m|Y n

1,3, Y
n
1,4, . . . , Y

n
n1/2,3

, Y n
n1/2,4

)

(b)
= H(Xn

21, . . . , X
n
2m, Y n

1,3, . . . , Y
n
n1/2,3

)−H(Xn
21, . . . , X

n
2m|Y n

1,3, Y
n
1,4, . . . , Y

n
n1/2,3

, Y n
n1/2,4

)

(c)

≤ mn+ (n1/2)n−H(Xn
21, . . . , X

n
2m|Y n

1,3, Y
n
1,4, . . . , Y

n
n1/2,3

, Y n
n1/2,4

)

(d)

≤ mn+ (n1/2)n−H(Xn
21, . . . , X

n
2m|Y n

1,0, Y
n
1,2, Y

n
1,3, Y

n
1,4, . . . , Y

n
n1/2,0

, Y n
n1/2,2

, Y n
n1/2,3

, Y n
n1/2,4

, Xn
11, . . . , X

n
1n1

)

(e)
= mn+ (n1/2)n−H(Xn

21, . . . , X
n
2m|Y n

1,0, Y
n
1,2, Y

n
1,4, . . . , Y

n
n1/2,0

, Y n
n1/2,2

, Y n
n1/2,4

, Xn
11, . . . , X

n
1n1

)

(f)
= mn+ (n1/2)n−H(Xn

21, . . . , X
n
2m|Y n

1,2, Y
n
1,4, . . . , Y

n
n1/2,2

, Y n
n1/2,4

, Xn
11, . . . , X

n
1n1

)

(g)
= mn+ (n1/2)n−H(Xn

21, . . . , X
n
2m|Y n

1,2, Y
n
1,4, . . . , Y

n
n1/2,2

, Y n
n1/2,4

)

+ I(Xn
21, . . . , X

n
2m;Xn

11, . . . , X
n
1n1

|Y n
1,2, Y

n
1,4, . . . , Y

n
n1/2,2

, Y n
n1/2,4

)

(h)

≤ mn+ (n1/2)n−mn+ nϵn + I(Xn
21, . . . , X

n
2m;Xn

11, . . . , X
n
1n1

|Y n
1,2, Y

n
1,4, . . . , Y

n
n1/2,2

, Y n
n1/2,4

)

≤ mn+ (n1/2)n−mn+ nϵn +H(Xn
11, . . . , X

n
1n1

|Y n
1,2, Y

n
1,4, . . . , Y

n
n1/2,2

, Y n
n1/2,4

)

(i)

≤ mn+ (n1/2)n−mn+ nϵn + nϵn = (n1/2)n+ 2nϵn

(A.5)
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(a) follows from the chain rule, (b) is because Y n
1,4, . . . , Y n

n1/2,4
are functions of Xn

21, . . . , X
n
2m

and Y n
1,3, . . . , Y n

n1/2,3
. (c) is because of the capacity constraints. (d) is because condition-

ing reduces entropy. (e) is because Y n
1,3, . . . , Y n

n1/2,3
are functions of Y n

1,2, . . . , Y n
n1/2,2

and

Y n
1,0, . . . , Y n

n1/2,0
. (f) is because Y n

1,0, . . . , Y n
n1/2,0

are functions of Xn
11, . . . , X

n
1n1

. (g) follows

from the mutual information definition. (h) is from eq. (A.3). (i) is from eq. (A.2).

From the network, we know that Y n
1,2, . . . , Y n

n1/2,2
are functions of Y n

1,1, . . . , Y n
n1/2,1

and

Xn
21, . . . , X

n
2m. Then

H(Y n
1,1, Y

n
1,3, Y

n
1,4, . . . , Y

n
n1/2,1

, Y n
n1/2,3

, Y n
n1/2,4

, Y n
2,3n1/2+1, . . . , Y

n
2,n2

|Xn
21, . . . , X

n
2m)

= H(Y n
1,1, Y

n
1,3, Y

n
1,4, . . . , Y

n
n1/2,1

, Y n
n1/2,3

, Y n
n1/2,4

, Y n
2,3n1/2+1, . . . , Y

n
2,n2

, Xn
21, . . . , X

n
2m|Xn

21, . . . , X
n
2m)

≥ H(Y n
1,2, Y

n
1,3, Y

n
1,4, . . . , Y

n
n1/2,2

, Y n
n1/2,3

, Y n
n1/2,4

, Y n
2,3n1/2+1, . . . , Y

n
2,n2

|Xn
21, . . . , X

n
2m)

≥ H(Y n
1,2, Y

n
1,4, . . . , Y

n
n1/2,2

, Y n
n1/2,4

|Xn
21, . . . , X

n
2m)

(a)

≥ n1n− 2nϵn

(A.6)

(a) is due to eq. (A.4).

Finally, we shall have

H(Xn
21, . . . , X

n
2m|Y n

1,1, Y
n
1,3, Y

n
1,4, . . . , Y

n
n1/2,1

, Y n
n1/2,3

, Y n
n1/2,4

, Y n
2,3n1/2+1, . . . , Y

n
2,n2

)

= H(Y n
1,1, Y

n
1,3, Y

n
1,4, . . . , Y

n
n1/2,1

, Y n
n1/2,3

, Y n
n1/2,4

, Y n
2,3n1/2+1, . . . , Y

n
2,n2

|Xn
21, . . . , X

n
2m)

+H(Xn
21, . . . , X

n
2m)−H(Y n

1,1, Y
n
1,3, Y

n
1,4, . . . , Y

n
n1/2,1

, Y n
n1/2,3

, Y n
n1/2,4

, Y n
2,3n1/2+1, . . . , Y

n
2,n2

)

(a)

≥ n1n− 2nϵn +mn−H(Y n
1,1, Y

n
1,3, Y

n
1,4, . . . , Y

n
n1/2,1

, Y n
n1/2,3

, Y n
n1/2,4

, Y n
2,3n1/2+1, . . . , Y

n
2,n2

)

= n1n− 2nϵn +mn−H(Y n
1,1, . . . , Y

n
n1/2,1

, Y n
2,3n1/2+1, . . . , Y2n2 |Y n

1,3, Y
n
1,4, . . . , Y

n
n1/2,3

, Y n
n1/2,4

)

−H(Y n
1,3, Y

n
1,4, . . . , Y

n
n1/2,3

, Y n
n1/2,4

)

(b)

≥ n1n− 2nϵn +mn− (n2 − 3n1/2 + n1/2)n− (n1/2)n− 2nϵn

= n1n− 2nϵn + n2n− 3/2n1n+ an− (n2 − 3n1/2 + n1/2)n− (n1/2)n− 2nϵn = an− 4nϵn

(A.7)

(a) is because of eq. (A.6). (b) is because of eq. (A.5) and the capacity constraints.

When n → ∞, for t1 to asymptotically decode Xn
11, . . . , X

n
1n1

, we shall have ϵn → 0. Then

t2 cannot decode Xn
21, . . . , X

n
2m asymptotically where m = n2 − 3n1/2 + a and a = 1. This
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indicates that when t1 decodes s1 at rate n1 where n1 ≥ 2 and n1 is even, t2 cannot decode

the information at s2 at rate n2 − 3n1/2 + 1.

When n1 is odd and n1 > 1, we could find a network where P1,n1 is overlapped with

P2,n2 . The remaining network is the same as in Fig. A.1. With a similar argument, we

can prove that when t1 can decode Xn
11, . . . , X

n
2n1

, X2 cannot decode Xn
21, . . . , X

n
2m where

m = [n2 − 1− 3(n1 − 1)/2] + a = n2 − 3n1/2 + 1/2 + a where a = 1/2, which indicates when

t1 decodes s1 at rate n1 where n1 ≥ 3 and n1 is odd, t2 cannot decode the information at s2

at rate n2 − 3n1/2 + 1. �
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APPENDIX B. CLAIM B.0.1

Claim B.0.1 For two independent random variables X1 and X2 with H(X1) = a and H(X2) =

b, if H(X1|Y ) ≤ ϵn where Y is another random variable with H(Y ) ≤ a, then b − ϵn ≤

H(X2|Y ) ≤ b, H(Y |X2) ≥ a− 2ϵn.

proof: Since H(X1) = a and H(X1|Y ) ≤ ϵn, we have

H(Y ) = H(X1, Y )−H(X1|Y ) ≥ H(X1)−H(X1|Y ) ≥ a− ϵn.

Next H(Y ) ≤ a implies that

H(Y |X1) = H(X1|Y ) +H(Y )−H(X1) ≤ ϵn + a− a = ϵn.

As X1 and X2 are independent and H(X2) = b, we have

b = H(X2) = H(X2|X1) ≤ H(X2|X1, Y ) +H(Y |X1)

≤ H(X2|X1, Y ) + ϵn ≤ H(X2|Y ) + ϵn ≤ b+ ϵn.

Thus,

b− ϵn ≤ H(X2|Y ) ≤ b.

Finally, we obtain

H(Y |X2) = H(Y )− I(Y ;X2) = H(Y ) +H(X2|Y )−H(X2)

≥ a− ϵn + b− ϵn − b = a− 2ϵn

�



72

APPENDIX C. LEMMA C.0.2

Lemma C.0.2 If β1 ̸= 0, det([M21 M22ξ]) can be represented by

ξ2
β1

det

 α′
1 −β2β

′
11 + β1β

′
12

α′
2 −β2β

′
21 + β1β

′
22

 . (C.1)

where ξ satisfies [β1 β2]ξ = 0.

proof: Because ξ satisfies [β1 β2]ξ = 0, we can have ξ1 = −β2ξ2/β1. Note ξ2 can be selected

to be nonzero. To see this, if β2 = 0, ξ2 can be arbitrary and ξ1 = 0. If β2 ̸= 0, ξ2 = β1ξ1/β2

can also be nonzero. By substituting ξ1 into [M21 M22ξ], the determinant of [M21 M22ξ]

becomes

det

M21 M22

 −β2ξ2
β1

ξ2


 = det

 α′
1 −β2ξ2β′

11
β1

+ ξ2β
′
12

α′
2 −β2ξ2β′

21
β1

+ ξ2β
′
22

 =
ξ2
β1

det

 α′
1 −β2β

′
11 + β1β

′
12

α′
2 −β2β

′
21 + β1β

′
22

 .

(C.2)

where ξ2/β1 is nonzero. �
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APPENDIX D. LEMMA D.0.3

Lemma D.0.3 Consider a system of equations Z = H1X1 + H2X2, where X1 is a vector

of length l1 and X2 is a vector of length l2 and Z ∈ span([H1 H2])
1. The matrix H1 has

dimension zt × l1, and rank l1 − σ, where 0 ≤ σ ≤ l1. The matrix H2 is full rank and has

dimension zt × l2 where zt ≥ (l1 + l2 − σ). Furthermore, the column spans of H1 and H2

intersect only in the all-zeros vectors, i.e. span(H1) ∩ span(H2) = {0}. Then there exists a

unique solution for X2.

proof: Because Z ∈ span([H1 H2]), there exists X1 and X2 such that Z = H1X1 +H2X2.

Now assume there is another set of X ′
1 and X ′

2 such that Z = H1X
′
1 + H2X

′
2. Then we will

have

H1(X1 −X ′
1) = H2(X2 −X ′

2). (D.1)

Because span(H1)∩ span(H2) = {0}, both sides of eq. D.1 are zero. Furthermore, since H2 is

a full rank matrix, X2 = X ′
2. The solution of X2 is unique. �

1Throughout the paper, span(A) refers to the column span of A.
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APPENDIX E. LEMMA E.0.4

Lemma E.0.4 There are at least q2−1 distinct values for M̆33θ when there are q3−1 distinct

values for θ.

proof: Since M̆33 is a 4 × 5 matrix with rank at least 3, we could find two vectors γ̆
1
and

γ̆
2
such that the matrix M̆ ′

33 =


M̆33

γ̆
1

γ̆
2

 and rank(M̆ ′
33) = 5. We will have that there are

q3 − 1 distinct values for M̆ ′
33θ. Next note that since rank(M33) ≥ 4, γ̆

1
can be selected as

the coding coefficient for X3 on Eosk such that rank

 M̆33

γ̆
1

 ≥ 4. Since by precoding at s3,

γ̆
1
θ = 0. Hence, by removing γ̆

1
θ from M̆ ′

33θ, there will be q
3−1 distinct vectors, if we further

remove γ̆
2
θ from M̆ ′

33θ, there will be at least q2 − 1 distinct values. Hence, there will be at

least q2 − 1 distinct values for M̆33θ. �
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APPENDIX F. LEMMA F.0.5

Lemma F.0.5 If rank(HM) = rank(H) = r, then span(HM) = span(H).

proof: First note that span(HM) ⊆ span(H). Assume span(HM) ̸= span(H), then there is

a vector v⃗ ∈ span(H) but not in span(HM). Then,

rank([HM v⃗]) = rank(HM) + 1 = r + 1 > r = rank(H)

However, it contradicts the fact that rank(H) ≥ rank([HM v⃗]), since [HM v⃗] ⊆ span(H).

Hence span(HM) = span(H). �
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