Allosteric regulation of mammalian fructose-1,6-bisphosphatase

Thumbnail Image
Date
2013-01-01
Authors
Gao, Yang
Major Professor
Advisor
Richard B. Honzatko
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Biochemistry, Biophysics and Molecular Biology

The Department of Biochemistry, Biophysics, and Molecular Biology was founded to give students an understanding of life principles through the understanding of chemical and physical principles. Among these principles are frontiers of biotechnology such as metabolic networking, the structure of hormones and proteins, genomics, and the like.

History
The Department of Biochemistry and Biophysics was founded in 1959, and was administered by the College of Sciences and Humanities (later, College of Liberal Arts & Sciences). In 1979 it became co-administered by the Department of Agriculture (later, College of Agriculture and Life Sciences). In 1998 its name changed to the Department of Biochemistry, Biophysics, and Molecular Biology.

Dates of Existence
1959–present

Historical Names

  • Department of Biochemistry and Biophysics (1959–1998)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Biochemistry, Biophysics and Molecular Biology
Abstract

Fructose-1, 6-bisphosphate (D-fructose-1, 6-bisphosphate 1-phosphohydrolase; EC 3. 1. 3; FBPase) is an essential regulatory enzyme in gluconeogenesis and has long been considered as a drug target towards type II diabete. In mammalian, the activity of FBPase is regulated by AMP and fructose 2,6-bisphosphate (Fru-2,6-P2). AMP is an allosteric inhibitor that binds to FBPase with positive coopertivity, and Fru-2,6-P2 is an active site inhibitor which is up-regulated by hormone. Despite the 30 Å distance between their binding sites, both of AMP and Fru-2,6-P2 transform FBPase from active R-state to inactive T-state. Large conformational rearrangements are coupled to the R- to T-state transition: subunit pairs within tetrameric FBPase rotate over ten degree relative to each other and an essential catalytic loop (residue 50-72) is forced away from active site. Mutagenesis, kinetics, crystallography and molecular dynamics simulations are combined here to investigate structure-function relationship of FBPase. Tetramer is a functional unit of FBPase; disturbing the tetrameric packing of FBPase leads to loss of AMP cooperativity. A hydrophobic cavity at the center of FBPase tetramer is populated by well-defined clathrate-like waters. The cavity together with waters in it is shown to be thermodynamic determinant for quaternary states of FBPase. Kinetics and crystallographic studies indicate a negative correlation between subunit pair rotation and relative activity of FBPase. Filling the cavity by point mutations selectively hinges subunit pair rotation induced by Fru-2,6-P2 and largely reduce the synergism between AMP and Fru-2,6-P2. Mutation that stops subunit pair rotations causes complete loss of AMP inhibition but retains Fru-2,6-P2 inhibition; whereas mutation promotes the subunit pair rotation turn off cooperative binding of AMP as well as AMP/Fru-2,6-P2 synergism. MD simulation together with crystal structures of intermediate states of FBPase reveals correlation between subunit pair rotation and status of loop 50-72. Moreover, knowledge of allosteric regulation of porcine liver FBPase and FBPase from Escherichia coli was used predict the regulatory properties of all Type-I FBPases, for which sequence information is available. Subsequent expression of FBPase from a bacterial organism, predicted to have the regulatory properties of a eukaryotic FBPase, proved correct and established a basis for the evolution of regulatory properties for all Type-I FBPases.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2013