Frequency-Shifted Low-Noise Sagnac Sensor for Ultrasonic Measurements

Thumbnail Image
Date
1997
Authors
Fomitchov, Pavel
Stechenrider, J. Scott
Krishnaswamy, Sridhar
Achenbach, Jan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Laser generation of ultrasound and the subsequent detection of the ultrasonic waves using laser interferometry are areas of active research [1–6]. In earlier papers, the present authors have discussed an LBU system which employs a diffraction grating for illumination of a line-array to generate narrow-band surface waves and Lamb waves [4], and a fiberized heterodyne dual-probe laser interferometer to measure signals [3]. This paper reports progress towards the development of a robust low cost fiberized Sagnac laser interferometer suitable for field applications. Bowers first reported [7] the use of a Sagnac-type interferometer for surface acoustic wave detection, and the present authors have previously reported [8 QNDE 95] a variant of that scheme. In this paper, we present an alternative lower noise system that uses low cost, long coherence He-Ne lasers that have better intensity noise characteristics than typically used laser diodes. A scheme for elimination of a parasitic interference utilizing a frequency shifting technique has been developed. The primary advantage of the Sagnac interferometer is that it is exactly path matched and as such requires no heterodyning or static path compensation for sensor stabilization. The Sagnac interferometer described below is suitable for the measurement of ultrasonic surface waves arising from laser- or PZT-generated sources or from acoustic emissions. The laser-based ultrasonics (LBU) system can be used to detect and characterize discrete defects such as cracks.

Comments
Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 1997