Phase field approach for melting of aluminum nanoparticles

Thumbnail Image
Date
2013-01-01
Authors
Samani, Kamran
Major Professor
Advisor
Valery Levitas
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Aluminum nanoparticles are of interest due to the variety of their applications, including additives for plastics and powder metallurgy. They can also enhance the burning rate of propellants. Metallic particles in traditional thermites are in the micron size range. When the particle diameter reduces to the nanometer range, their reactivity increases by several orders of magnitude. Thus flame rates of 0.9-1 km/s can be reached, while for micron size thermites they are on the order of centimeters or meters per second. Ignition delay time also decreases by up to three orders of magnitude.

The two main continuum methods to study melting-related phenomena (like surface melting, size dependence of melting temperature, melting of a few nm-size particles, and overheating at a very fast heating rate) are the sharp interface method and the phasefield approach. The sharp interface approach fails when nanoparticles and solid-liquid interface radii are comparable with interface width and also when nanoparticles are overheated fast. In the phase field model, the interface between phases has a finite thickness in which physical quantities, such as elastic moduli and entropy, vary between their values in the adjacent bulk phases. An order parameter describe the material instabilities, such as the instabilities of a crystal lattice in solid-solid phase transformations, melting, fracture and so on. Phase field method provides smooth description of the phase interface, rather than discontinuous one. We developed an advanced phase field model coupled to mechanics to study melting in the region of metastability and complete instability of solid and melt.

Comments
Description
Keywords
Citation
Source
Copyright
Tue Jan 01 00:00:00 UTC 2013