1955

A Veishea Trophy in the Palm of Your Hand

Becky Metcalf

Iowa State College

Follow this and additional works at: http://lib.dr.iastate.edu/homemaker

Part of the Home Economics Commons

Recommended Citation

Metcalf, Becky (1955) "A Veishea Trophy in the Palm of Your Hand," The Iowa Homemaker: Vol. 35 : No. 1 , Article 2. Available at: http://lib.dr.iastate.edu/homemaker/vol35/iss1/2

This Article is brought to you for free and open access by the Student Publications at Iowa State University Digital Repository. It has been accepted for inclusion in The Iowa Homemaker by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
In this story look for:
• 1955 Veishea float rules
• Tips for using lumber, nails
• Answers on circle construction
• Weatherproofing suggestions
• Float finishing ideas

By Becky Metcalf
Technical Journalism Junior

HOME ECONOMICS STUDENTS aren't carpenters, but when spring comes, they take as great a part in Veishea float building as any engineer.

The more building know-how you and your fellow builders have, the better the float you will display, and the better your chances will be for a winner's trophy.

First make a thorough review of the 1955 Veishea float rules. Your float will follow the main Veishea theme, "Cavalcade of Education", and the parade's specific theme, "Books." However, exact titles are not to be copied, but rather should be colorful displays of ideas taken from them. This year's maximum measurements for an individual float are 14 feet high, 15 feet wide, and 30 feet long. These specifications have been set up by the parade committee to facilitate traveling over the parade route, for a float longer than the specified length would make turning corners more difficult. This does not apply to hinged floats, or those in several sections.

A float chairman desiring a trailer should turn his request in to the parade committee. This committee has made arrangements to secure as many trailers as possible from a local canning company.

Space to work on your float may be secured through the parade committee or by contacting the Ames Highway Commission. Plans can be made also to use the College Armory.

Consider your own float and its plans now. The simplest and best type of plan, especially for irregularly shaped floats, is that of a sketch drawn to scale on graph paper. Space and proportions may then be read directly from the sketch. The importance of careful planning cannot be over-emphasized. The most impressive floats are almost invariably the result of carefully drawn-up plans on paper.

Now move to the actual building. Foremost you'll want a sturdy base to support the frame; 2 x 6 inch lumber is preferable. For a slightly less rugged base, 2 x 4 inch or 2 x 2 inch lumber is very widely used; 1 x 2 inch boards are satisfactory for cross-pieces and bracing. The quality of lumber required in building your float probably will be between one and four grades, depending upon the specific use of each individual piece and the strength required of it. When purchasing lumber, be sure you do not buy a higher grade than you actually need. There is a vast difference in price. Just ask yourself, what will this board be used for?

Hemlock lumber is preferred for the main boards. It is quite soft and pliable, and therefore not apt to split. Number two white pine, an inexpensive lumber, is good for the cross-pieces and bracing.

The heavier boards used in the main framing and construction will take an eight penny nail, while the 1 x 2 inch cross-pieces take a six or seven penny box nail, somewhat lighter. "Eight penny" denotes a standard size, though originally it designated the price of the nail. The frame itself may be securely fastened to the base (probably a truck or trailer bed) by "U" bolts, super-heavy bolts with extra long prongs to reach through a thick lumber board and screw firmly into the bed beneath, thus securing the board solidly.

Should your particular float call for a circle, large or small, to be made of lumber, here are some tips to an easy solution: Select six boards, saw off the ends at a 60 degree angle, and on a large, flat surface arrange them in the form of a hexagon. If the circle is to be small, three or four feet in diameter, fasten the six hexagonally arranged boards together at each joint with gussets—small lengths of board to be nailed across both the top and bottom surfaces of the hexagon at each adjoining joint.

Now, tie a string measuring the radius of the hexagon to a pencil, secure the end of the string directly in the center of the hexagon, and draw a complete
of your hand

circle with the pencil on the hexagonally arranged boards. All you have to do is trim around the hexagon with a handsaw, following your pencil mark!

The only difference in construction of a large circle having a fifteen foot diameter is that you do not actually fasten each of the six boards of the hexagon one to another, but rather, draw your pencil circle on them as they merely lie separate, but adjacent to one another in the hexagonal arrangement. This makes it possible to later cut each of the arcs with the handsaw separately as segments of the subsequent complete circle.

A popular type of float finish is paper napkins stuffed into wire netting. Quantity buying of these supplies may be carried on through the Veishea parade committee. Buying through wholesale lots will save approximately 25 per cent on wire mesh, crepe paper and paper napkins.

The number of napkins suggested is approximately 36 per square foot. These may be sewn or pasted to prevent their blowing.

A variation may be obtained by interlacing strings of crepe paper through the mesh, or circles of crepe paper may be fastened to pasteboard. If one point on the circumference is pasted firmly, the rest may be stretched, causing it to curl and give the effect of scales.

Large, curved or irregular surfaces may be covered by using wire mesh as a base and fastening newspaper flat over this. Cheesecloth should then be stretched over the entire surface. For smaller figures it is best to pad over the netting with burlap and cover with muslin.

Paper mache has been used to make attractive shapes. This is made by soaking shredded newspaper in water. One quart of starch solution added to five gallons of water will give it the proper stickiness when applied to a base of wire mesh. Ample time must be allowed for the paper to dry. Paint may then be applied.

Because of unpredictable May weather, weatherproofing is always a problem. A popular but rather expensive weatherproof material is Sisalkraft, a siding material made of sisal cord and craft paper with an inner sheet of asphalt. Sisalkraft is particularly desirable because it comes in widths up to 15 feet. Cheaper papers, slightly weatherproof, are available in more narrow widths. You might consider these materials in planning the skirt of your float.

Use crepe paper, pasteboard and show-card paint with caution. Float builders who have counted on the cooperation of the weatherman have often been sadly disappointed the morning of the parade.

Since cost is always an important factor in float-building, it is wise to use any material that is on hand. Parade judges will look for outstanding examples of construction and craftsmanship, beauty and design, appropriateness, clarity and originality. These will be totaled on the basis of 200 points, so it is well to keep these qualifications in mind throughout the planning of your float.

With careful planning and the hearty cooperation of all members of an organization, float building can be fun for everyone. And who knows — you may even win the sweepstakes trophy!