Thermal analysis of undercooled metallic liquids by electromagnetic levitation drop calorimetry

Carl Tackes
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Mechanics of Materials Commons

Recommended Citation
Tackes, Carl, "Thermal analysis of undercooled metallic liquids by electromagnetic levitation drop calorimetry" (2013). Graduate Theses and Dissertations. 13316.
https://lib.dr.iastate.edu/etd/13316

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Thermal analysis of undercooled metallic liquids by electromagnetic levitation drop calorimetry

by

Carl Matthew Tackes

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

Major: Materials Science and Engineering

Program of Study Committee:
Ralph E. Napolitano, Major Professor
Monica Lamm
Matt Kramer

Iowa State University
Ames, Iowa
2013

Copyright © Carl Matthew Tackes, 2013. All rights reserved.
TABLE OF CONTENTS

LIST OF TABLES	...	v
LIST OF FIGURES	...	vii
ACKNOWLEDGEMENTS	..	xv
ABSTRACT	...	xvi
CHAPTER 1. Introduction	..	1
CHAPTER 2. The Role of Thermodynamic Measurements in Computational Materials Science	..	6
2.1 Introduction	...	6
2.2 Thermodynamic Models	...	8
2.2.1 Thermodynamic Properties of the Undercooled Liquid	..	14
2.2.2 Temperature Dependence of the Undercooled Heat Capacity and Associated Liquid Behavior	..	15
2.3 Molecular Dynamics Simulations	..	22
2.4 Principles of Thermodynamic Measurements	..	25
2.4.1 Calorimetry	...	25
2.4.2 Second-Law Methods	...	28
2.5 Conclusions	...	30
CHAPTER 3. Traditional Experimental Techniques for Thermodynamic Measurements	..	32
3.1 Introduction	...	32
3.2 Calorimetric Methods	...	33
3.2.1 Reaction Calorimetry .. 37
3.2.2 Non-reaction Calorimetry 40
3.2.3 Measurements of the Undercooled Liquid 43
3.3 Electromotive Force Methods 48
3.4 Vapor Pressure Measurements 51
3.5 Conclusions .. 54

CHAPTER 4. Development of Levitation Calorimetry Technique 57
4.1 Overview .. 57
4.2 History .. 57
4.3 Refinement of EML Apparatus for Levitation Calorimetry 59
 4.3.1 Optimization of Levitation Coils 59
 4.3.2 Cooling Gas Introduction 60
 4.3.3 Motion Translation and Vaporization Shield 63
4.4 Isoperibolic Calorimeter Development 63
 4.4.1 Calorimeter Temperature Measurement 66
 4.4.2 Non-contact Sample Temperature Measurement 69
4.5 Enthalpy Increment Calculation 72
 4.5.1 Heat Loss During Drop Period 74
 4.5.2 Calibration .. 76
4.6 Conclusions .. 78

CHAPTER 5. Thermal Analysis of Aluminum-RE Binary Glass Forming
 Alloys .. 80
 5.1 Introduction .. 80
 5.2 Enthalpy Measurements ... 84
 5.3 Calculation of the Enthalpy of Mixing from Levitation Calorimetry 88
 5.4 In-situ Metastable Phase Formation and Evolution 90

CHAPTER 6. Conclusions and Future Directions 103
 6.1 Future Directions .. 104
LIST OF TABLES

Table 3.1 Examples of some solid electrolytes suitable for use in metallurgical thermodynamics studies [1] .. 50

Table 4.1 Summary of variables for calculation of radiative and convective losses. Some values are calculated for each sample condition. 76

Table 4.2 Determined liquid and undercooled liquid heat capacity from linear fit of enthalpy data, and intercept for the form \(H(T) - H(298) = C_p \cdot T + b \), with 95% confidence intervals given. .. 78

Table 4.3 Measured enthalpy increments of pure aluminum used for calorimeter calibration. .. 79

Table 4.4 Measured enthalpy increments of pure copper. 79

Table 5.1 Measured heat capacities at 298 K from stepwise DSC for use in Equation 4.7 with 95% confidence intervals given. 85

Table 5.2 Determined heat capacity from linear fit of enthalpy data, and intercept for the form \(H(T) - H(298) = C_p \cdot T + b \) with 95% confidence intervals given .. 86

Table 5.3 Calculation of \(\Delta H_{mix} \) from levitation calorimeter measurements. All enthalpy values are given in kJ/mol. .. 89

Table 5.4 Measured enthalpy increments of Al\textsubscript{90}Tb\textsubscript{10} at% alloy. 98

Table 5.5 Measured enthalpy increments of Al\textsubscript{90}Sm\textsubscript{10} at% alloy 99

Table A.1 Measured enthalpy increments of pure aluminum used for calorimeter calibration. .. 118
Table A.2	Measured enthalpy increments of pure copper.	118
Table A.3	Determined liquid and undercooled liquid heat capacity from linear fit of enthalpy data, and intercept for the form $H(T) - H(298) = C_p \cdot T + b$, with 95% confidence intervals given.	120
Table A.4	Measured heat capacities at 298 K from stepwise DSC for use in Equation A.3 with 95% confidence intervals given.	121
Table A.5	Determined heat capacity from linear fit of enthalpy data, and intercept for the form $H(T) - H(298) = C_p \cdot T + b$ with 95% confidence intervals given.	121
Table A.6	Measured enthalpy increments of Al$_{90}$Tb$_{10}$ at% alloy.	122
Table A.7	Measured enthalpy increments of Al$_{90}$Sm$_{10}$ at% alloy.	124
LIST OF FIGURES

Figure 1.1 Specific heat capacities of the undercooled liquid for several alloys from [2]. V1 and V4 are Vitreloy-1 and Vitreloy-4 alloys. Plotted data from [3, 4, 5]. ... 2

Figure 1.2 Difference in Gibbs free energy between the liquid and crystalline states from [2]. Critical cooling rates are listed below the composition. Plotted data from [3, 5, 6]. ... 3

Figure 1.3 Difference in Entropy between the liquid and crystalline states, ΔS_{l-s}, for a $\text{Pd}_{43}\text{Ni}_{10}\text{Cu}_{27}\text{P}_{20}$ alloy [7]. T_k is the Kauzmann temperature, T_g is the kinetically observed glass transition, and T_f the peak fusion temperature (melting temperature). ... 4

Figure 2.1 Schematic Gibbs free energies for the illustration of partitionless crystallization [8]. It can be seen that for a given composition C^*_l, the the required temperature for the condition $\Delta G^{ls} = 0$, where T_1 illustrates the T_0 condition, and any temperature below which allows for partitionless solidification. ... 9

Figure 2.2 For a binary system A-B, if the T_0 curves ‘plunge’ (a), glass formation is possible. Should the T_0 curves intersect, the liquid would instead form $\alpha + \beta$ without partitioning (b). Figure from [9]. ... 10

Figure 2.3 T_0 and T_k curves calculated by Zhou and Napolitano, with experimental comparison [10]. Ref. 4 is the experimental observations of glass formation from Inoue [11]. ... 11
Figure 2.4 Modified T_0 curves, evaluated for a crystal volume fraction of 10^{-6}, and a cooling rate of 10^6 K/s from [12]. The solid circles are experimentally determined glass compositions, with their temperature being the crystallization temperature on heating [13]. Triangles are the melting point of the compound.

Figure 2.5 Flowchart describing CALPHAD method [14]

Figure 2.6 Comparison between various empirical models for the undercooled heat capacity, used in the calculation of the difference of Gibbs free energy per volume [15]. (a)-(d) refer to the models of Turnbull [16], Dubey [17], Thompson [18], and Hoffman [19], respectively.

Figure 2.7 $C_p(T)$ for two BMG alloys, Pd$_{40}$Ni$_{40}$P$_{20}$ (left) and Pd$_{77.5}$Cu$_6$Si$_{16.5}$ (right) from [20]. Pd$_{40}$Ni$_{40}$P$_{20}$ has been characterized with strong liquid behavior [21], Pd$_{77.5}$Cu$_6$Si$_{16.5}$ is more fragile [22]. On left, linear temperature dependence can be observed, on right, no discernible temperature dependence until a large peak near the glass transition.

Figure 2.8 Specific heat capacities of the undercooled liquid for several alloys from [2]. V1 and V4 are Vitreloy-1 and Vitreloy-4 alloys. Plotted data from [3, 4, 5].

Figure 2.9 Specific heat capacities of liquid, undercooled liquid, and crystalline Au$_{53.2}$Pb$_{27.6}$Sb$_{19.2}$ by Fecht et. al. [15]. It can be seen that the heat capacity of the undercooled liquid is neither constant or linear as shown before, but of second order temperature dependence.

Figure 2.10 Potential energy landscape view of glass formation, where liquids can sample various inherent structures, amorphous or crystalline, in which transitions are thermally activated [23].
Figure 2.11 Left, fraction of polyhedra as a function of temperature, tetragonal tri-capped polyhedra (TTP) and bicapped square antiprisms (BSAP) are the dominant ordering in Mg$_{65}$Cu$_{25}$Y$_{10}$ and full icosahedra (FI) are the dominant ordering in Cu$_{64}$Zr$_{36}$[24, 25]. Right, heat capacities of the undercooled liquid [24]. It is presented by Ding et. al. that the fraction of ordering directly correlate to the heat capacity behavior. 22

Figure 2.12 The average number of connected structural motifs, from vertex sharing (VS), edge sharing (ES), face sharing (FS), and tetrahedral sharing (TS) as a function of temperature, from Ding et. al. [24]. It can be seen that there is no temperature dependence. 23

Figure 2.13 Thermodynamic comparison by Foiles et. al [26]. Solid curves are calculated for crystal, dashed for liquid. Symbols are experimental values. 24

Figure 2.14 For an isolated pair of atoms, the force and potential energy are described as a function of interatomic distance [27] 27

Figure 3.1 Reconstruction of the true temperature increase resulting from heat introduction [28]. 36

Figure 3.2 Comparison between two calorimeters in the measurement of the enthalpy of mixing of Ni-Ti [29]. 37

Figure 3.3 One calorimeter cell of Kleppa’s mixing calorimeter [30]. It can be seen there are two liquid levels, in which the fine tip of one tube can be broken to initiate mixing. 38

Figure 3.4 Temperature response of a mixing calorimeter to calibration pulses and mixing from Itagaki and Yazawa [31] 39

Figure 3.5 Adiabatic drop calorimeter receiving wells which feature “sample following” heating jacket. Left: high temperature drop calorimeter receiving well of Levinson [32]. Right, that of Barth et. al. [33]. 41
Figure 3.6 High temperature drop calorimeter furnace of Levinson [32]. The sample is connected to a graphite rod, which is notched. A mechanical shock breaks the graphite rod and the sample falls into the receiving well in Figure 3.5.

Figure 3.7 Summary of techniques for attaining the undercooled liquid from Perepezko [34].

Figure 3.8 Principle of fluid dispersion technique, where catalytic sites are isolated and allowing for large undercooling in the bulk of the metallic droplets [35].

Figure 3.9 Heat capacity measurements of Zr$_{41}$Ti$_{13}$Cu$_{13}$Ni$_{10}$Be$_{23}$ in the crystalline, glassy, undercooled liquid and liquid state [21].

Figure 3.10 Free cooling method to obtain the undercooled heat capacity. Top, measured C_p/ϵ_T for a free-cooled Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ alloy. Bottom, measured heat capacity from DSC and free cooling curve. Both figures from [36].

Figure 3.11 Calculated temperature fields (left) and velocity fields for a 6mm diameter Fe sphere [37].

Figure 3.12 Schematic diagram of the galvanic cell used by Jacob et. al. [38]. It can be seen that the two evacuated tubes are connected by the electrical leads. The oxygen pressures are compared in each tube once equilibrium is established.

Figure 3.13 Dual Knudsen Effusion cell for direct measurement of activities from Heyrman et. al. [39].

Figure 3.14 A schematic of KEMS apparatus by Heyrman et. al. [39].

Figure 3.15 One calorimeter cell of a twin-type calorimeter, here used in a high temperature drop method [40].

Figure 4.1 Excerpt from the June 16, 1952 issue of LIFE magazine showing EML.

Figure 4.2 Experimental coil geometry used from [41].
Figure 4.3 Paschen curves measured for various gases assuming a gap distance of \(d = 1 \text{cm} \)

Figure 4.4 Description of levitation drop calorimeter apparatus.

Figure 4.5 Incremental calorimeter designs. Left, two part calorimeter with separate thermocouples. Right, conical calorimeter with thermocouple on bottom.

Figure 4.6 Final calorimeter design featuring a flat bottom hole to minimize splashing and tapered sides for sample removal.

Figure 4.7 Transient heat conditions can render the peak temperature unknowable, green line represents newtonian cooling fit, blue line experimental measurement. On left, improper thermocouple placement results in temperature spike.

Figure 4.8 Temperature response of the calorimeter block from a 880.2mg copper sample at 1426.4 K

Figure 4.9 Corrected temperature rise of the calorimeter block from a 880.2mg copper sample at 1426.4 K

Figure 4.10 Removal of oxide layer of pure Al in vacuum conditions: a) oxidized b) partially removed c) 99% removed.

Figure 4.11 Schematic of enthalpy as a function of temperature. Each arrow represents an enthalpy increment measurement. Dashed line represents the undercooled liquid.

Figure 4.12 Measured enthalpy increments of pure aluminum for calibration (o), and experimental fit (solid line). Red dashed line for reference is from the SGTE database [42].

Figure 4.13 Measured enthalpy increments of pure copper (o) and fit (solid line). Red dashed line for reference is from the SGTE database [42].

Figure 5.1 Al-Sm phase diagram from Okamoto [43].

Figure 5.2 Glass forming range of Al-Re alloys [44].
Figure 5.3 Compositional profile for Al-Ni-Ce showing strong chemical isolation of α-Fcc [45].

Figure 5.4 Measured enthalpy increments of Al$_{90}$Tb$_{10}$ alloy (○), and fit (solid line). T_{melt} is indicated by the dashed line.

Figure 5.5 Measured enthalpy increments of Al$_{90}$Sm$_{10}$ alloy (○), and fit (solid line). T_{melt} is indicated by the dashed line.

Figure 5.6 Enthalpy of mixing calculations done at 1200 K in comparison to solution calorimetry (▽, ○) and levitation calorimetry (■) measurements. Solution calorimetry measurements were completed in two time periods, with ▽ and ○ representing separate experimental periods.

Figure 5.7 Temperature evolution of undercooled Al$_{90}$Sm$_{10}$. Recalescence events are indicated with arrows.

Figure 5.8 Calculated Gibbs free energies for liquid, FCC Al + Al$_4$Sm-β phase, and FCC Al + Al$_{11}$Sm$_3$-α phase. Calculated by S. Zhou from previously reported model [46].

Figure 5.9 Approximate isothermal temperature holds for Al$_{90}$Sm$_{10}$ samples. The data presented represents a collection of multiple trials under similar experimental conditions. Sample sizes varied from 400-500 mg.

Figure 5.10 Summary of temperature data and determined phases from XRD. Upper figure describes the formation of Al$_4$Sm-β and Al$_{11}$Sm$_3$-α phases. Lower figure describes the quench and XRD for an isothermal temperature hold.

Figure 5.11 GSAS refinement data for low undercooling Al-Sm levitation sample in Figure 5.10. The teal markers (phase2 in legend) are the Al$_{11}$Sm$_3$-α reflections, the purple markers (phase6) are the experimental reflections for Al$_4$Sm-β, and pink markers (phase1) are FCC Al reflections. It can be most clearly seen in the bottom figure near 35-2θ that the sample is both Al$_4$Sm-β, Al$_{11}$Sm$_3$-α, and FCC Al.
Figure 5.12 Double recalescence event in undercooled Fe-Cr-Ni (stainless steel) alloys from Matson [47].
Figure 5.13 Observed ‘equilibrium’ solidification behavior of undercooled Al$_{90}$Sm$_{10}$,
stirring can be observed as solid moves across the surface.
Figure 5.14 Observed ‘metastable’ solidification behavior of undercooled Al$_{90}$Sm$_{10}$,
there appears to be considerably less stirring. The third and seventh frames show the same shape of solid as the sample rotates.
Figure 5.15 XRD pattern for ‘metastable’ temperature profile after quench. The pattern indicates the Al$_4$Sm-β + FCC Al phases.
Figure 5.16 XRD analysis of Al$_{90}$Sm$_{10}$, at high undercooling (blue) and high temperature (red). Peak positions are given from crystal database for notated phases.
Figure 5.17 XRD analysis of Al$_{96}$Tb$_{10}$ at.% at high undercooling. Peak positions are given from crystal database for notated phases. The Al$_3$Tb phase is the most stable phase.
Figure 5.18 XRD analysis of Al$_{90}$Tb$_{10}$ and Al$_{80}$Tb$_{20}$. Peak positions are consistent showing in both cases the same phases were formed.
Figure 5.19 SEM images of AlTb alloys, upper image is Al$_{80}$Tb$_{20}$ at% and lower Al$_{90}$Tb$_{10}$ at%. EDS analysis revealed phases formed were consistent with XRD.
Figure A.1 Description of levitation drop calorimeter apparatus.
Figure A.2 Experimental coil geometry, from [48]. The first two positions in the table (the upper windings) are wound in an opposite direction to the lower windings to provide a restoring force.
Figure A.3 Calorimeter design used in enthalpy determination.
Figure A.4 Temperature response of the calorimeter from the introduction of a 880.2mg copper sample at 1426.4 K.
Figure A.5 Corrected temperature rise of the calorimeter block from the introduction of a 880.2mg copper sample at 1426.4 K. 115

Figure A.6 Measured enthalpy increments of pure aluminum for calibration (○), and linear fit (solid line). Red dashed line for reference is from the SGTE database [42]. 119

Figure A.7 Measured enthalpy increments of pure copper (○) and linear fit (solid line). Red dashed line for reference is from the SGTE database [42]. 120

Figure A.8 Measured enthalpy increments of Al$_{90}$Tb$_{10}$ alloy (○), and fit (solid line). T_{melt} is indicated by the dashed line. 123

Figure A.9 Measured enthalpy increments of Al$_{90}$Sm$_{10}$ alloy (○), and fit (solid line). T_{melt} is indicated by the dashed line. 124
ACKNOWLEDGEMENTS

There are many I would like to acknowledge for otherwise this thesis could not have been written. First I’d like to thank Ralph Napolitano and Shihuai Zhou for their support and discussions. I would also like to thank my committee members for their time and thoughts regarding my work. I’d also like to thank Matt Besser for his expertise (as well as patience) with regards to X-ray diffraction. I’d also like to acknowledge the contributions of my fellow group members: Tim Cullinan, Paul Matlage, Megan Meyer, Yang Huo, Irmak Sargin, James Acton, and Zach Royer.

This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Material Sciences and Engineering. The research was performed at Ames Laboratory, Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The document number assigned to this thesis is IS-T 3088.
ABSTRACT

Here the role of thermodynamic measurements in computational materials science (with a focus on metallic glasses) is described, of which the heat capacity of the undercooled liquid is identified as a key measurement. Traditional experimental techniques for generating thermodynamic measurements are then reviewed, as well as techniques that focus on the undercooled liquid. Then the development of a levitation calorimeter is presented, and the results of applying the technique to several binary Al-based glass forming compositions is described. The enthalpy of a reactive Al-rare earth liquid was measured as well as the enthalpy of the undercooled liquid of Al-rare earth glass forming compositions. The results indicated a constant heat capacity of the liquid throughout the temperature range studied, which is discussed with respect to liquid behavior. Additionally, the containerless levitation technique enabled the in-situ formation of metastable Al-Sm phases.
CHAPTER 1. Introduction

The increasing societal and technological demand for improved performance of engineered components calls for the development of materials that are stronger, safer, lighter, while being less expensive. As a result, there are great motivations to understand and quantify the relationship between a materials structure, processing techniques, and performance in order to effectively design and implement new materials systems. Thus, the design and application of new materials, such as amorphous, glassy, or nanocrystalline metals requires quantification of the thermodynamic and physical properties that underpin a material’s behavior as a result of processing conditions.

The characterization of the structures and dynamics of metallic glasses requires analysis over a vast expanse of length scales, beginning with liquid ordering and continuing to extend in length to include consideration of formation stable and metastable crystalline structures which may exist in combination with partial glass formation or extend over the entire material. There is great motivation to not only understand the phenomenological aspects of glass formation (which properties changed?), but also how the structure influences the properties and performance of the system. The more difficult question is, “why does this property change?”

That is not meant to downplay the usefulness of a phenomenological understanding of a system, when it is often sufficient to have a consistent description of how properties change. For instance, there has been considerable success in the search for better glass formers based on empirical rules, presented by Inoue [49], where it has been shown that glass formability is improved with an increased number of elements with large atomic size ratio differences (∼12 %), and highly negative enthalpies of mixing. These rules are thought to be related to chemical and topological ordering, however the ideal case of predictive multi-scale control of glassy and nanocrystalline materials is improved with the atomic level quantification of the
role of ordering in metallic liquids [50, 51]. Indeed, the goal of understanding structural-motifs and their selection as a function of time and temperature shows promise for a more universal understanding of the glass transition [52].

The quantification of bulk thermodynamic properties, such as the specific heat capacity, \(C_p\), of the undercooled liquid brings insight into the configuration of the liquid. The heat capacity of material is inherently related to its structure, where changes in bonding nature, or short-range ordering are reflected in the heat capacity. Furthermore, the undercooled heat capacity enables calculation of the Gibbs free energy difference between the undercooled liquid and crystalline states, \(\Delta G_{l-s}\), the magnitude of which is indicative of the degree of instability of the liquid [53]. Small Gibbs free energy differences between the liquid and solid, coupled with classical nucleation theory, are indicative of slow nucleation rates, which reduces the critical cooling rate required to form a glass. It has been demonstrated that glass forming systems can exhibit a variety of temperature dependence of the heat capacity [21, 2] which is indicative of the liquid behavior and ‘strength’ against crystallization. Some reported specific heat capacities and Gibbs free energy differences between the liquid and crystalline solid can be seen in Figure 1.1 and Figure 1.2 respectively.
The undercooled heat capacity also enables the calculation of ΔS_{l-s}, the entropy difference between the undercooled liquid and crystalline state, which can be used to calculate the Kauzmann temperature, T_k, discussed in detail later, which is presented to be the lowest entropy limit of the undercooled liquid. T_k is defined as the point in which the entropy of the undercooled liquid is equal to that of the crystalline state, which is paradoxical. An example of the calculation of ΔS_{l-s} can be seen in Figure 1.3. Determination of T_k, and the kinetic limit of glass formation, the glass transition temperature, T_g, as well as the temperature limit of liquid stability with respect to crystalline phases, T_0 (also discussed later), is of interest to further understand the glass transition phenomenon.

Experimental measurements of the undercooled liquid are generally scarce, having been described as the most neglected thermodynamic measurement [54] due to the experimental challenges required to reduce the energetic advantage for nucleation provided by surfaces such as container walls or impurities. Additionally, empirical estimations of the heat capacity of undercooled liquids such as the model of Thompson [18] diverge from experimental data as undercooling is increased [15, 55]. In this work, the development of a levitation calorimeter is
Figure 1.3 Difference in Entropy between the liquid and crystalline states, ΔS_{l-s}, for a Pd$_{43}$Ni$_{10}$Cu$_{27}$P$_{20}$ alloy [7]. T_k is the Kauzmann temperature, T_g is the kinetically observed glass transition, and T_f the peak fusion temperature (melting temperature).
presented that enables access to far-from-equilibrium conditions at the laboratory time scale. The technique is used to probe the undercooled liquid for two binary Al-Re (Rare earth) glass forming alloys, which to date has only been analyzed in far-from-equilibrium conditions as a result of high cooling rates.

In addition to the undercooled liquid, thermodynamic measurements in the liquid state are also valuable on their own for use in industry in simulations or heat balances to improve production efficiency. Almost all industrial metal productions require heating the product to the liquid state at some point. Additionally, liquid thermodynamic measurements are used for the development of phase diagrams (both equilibrium and non-equilibrium) which are valuable when developing new materials systems.

In this work, the role of thermodynamic measurements (including the undercooled liquid) in models will be summarized with an emphasis on those related to glass formation. Traditional experimental techniques for obtaining thermodynamic measurements will also be outlined. The development of a thermal analysis technique which can be used to measure thermodynamic properties in the liquid state as well as probe far-from-equilibrium experimental conditions such as the undercooled liquid state will be described, and finally the results of applying the technique to Al-based rare earth glass forming alloys will be presented.
CHAPTER 2. The Role of Thermodynamic Measurements in Computational Materials Science

2.1 Introduction

Thermodynamics provides a framework for which a great deal information about the behavior of matter can be arranged. A widely used aspect of thermodynamics is its use in describing stability of a state in terms of energy (usually Gibbs free energy). If the free energy of a system as a function of atomic arrangement is presented, there generally exists maxima and minima. Maxima are therefore inherently unstable, in which the energy can be easily lowered by atomic re-arrangement. As a result, decreases in free energy drive the maxima towards a minima and the absolute minimum is defined as the stable state, with any relative minima above that state defined as metastable. The rates of transformation, described by kinetics, can be sufficiently slow enough to render a metastable state practically stable, which can lead to many uses like martensitic transformations in steels or glassy metals [56].

Real materials are generally multicomponent and multiphase, where phases may be chemical solutions or specific stoichiometric compounds. The phases are most frequently crystalline with a host of defects associated with occupancy on the lattice and anomalies in the periodicity. The structure in general, due to its composite nature, includes interfaces of various types and perhaps other inhomogeneities. The field of materials science is largely focused on the creation and control of these multi-scale multiphase defected structures and their correlation with observable material properties. Knowledge of the Gibbs free energy as a function of chemical composition and temperature, i.e. \(G(x, T) \), provides a map of stability known as a phase diagram. Phase diagrams can be used to answer a variety of questions along the lines of “what happens if?” [57]. Phase diagrams can be determined experimentally using thermal
analysis techniques such as DSC and DTA, and also from calculations when a comprehensive thermodynamic description of the components is available. The three main techniques used for generating thermodynamic data are calorimetry, vapor pressure measurements, and electromotive force measurements. Each of these techniques have advantages and limitations, and will be discussed in more detail later. From these measurements, thermodynamic functions of phases can be determined and when collected can be used to determine a phase diagram. A complete thermodynamic description of a system often requires several measurements, usually a combination of calorimetry and either electromotive force or vapor pressure measurements [1].

As described earlier, amorphous and glassy metals are formed in extreme conditions, far-from-equilibrium. How can thermodynamics, of which equilibrium is a pre-requisite, be used to further understanding of these conditions? The energetic landscape of glass formation is complex, and the liquid can select many different solidification pathways. Depending on the undercooling, there exists a multitude of viable crystalline structures (stable or metastable), each having different diffusional requirements. Additionally, the liquid may form clusters, icosahedral or otherwise [51], which influences the interfacial energy and provides an energy barrier to crystallization [58]. The simplest description of glass formation is ‘failed crystallization’, in which the undercooled liquid is stable for the kinetically required time period to reach the glass transition. Within this simple framework, thermodynamic limits of glass formation can be calculated and provide insight into glass formation. Determining glass forming compositions and temperatures requires kinetic analysis, however it is useful to have some measure of thermodynamic viability for the limits of crystallization which are likely to be kinetically suppressed.

The critical data for such thermodynamic models is that of the undercooled liquid. Additionally, thermodynamic measurements in far-from-equilibrium conditions are used in relation to first-principles (ab-initio) and molecular dynamics simulations to provide a measure of accuracy and link the methods to a real system. These techniques can investigate conditions of glass formation otherwise inaccessible, and it is difficult to comprehend the quantification of the complex structures and dynamics of metallic glasses without them.
This chapter is therefore dedicated to describing the roles of the most relevant thermodynamic measurements in computational materials science, with a focus on computational techniques used to further understand glass formation.

2.2 Thermodynamic Models

The Gibbs free energy of the undercooled liquid allows for the calculation of the Kauzmann temperature, \(T_k \), as well as \(T_0 \) curves, which define the stability limit for the liquid based on the Gibbs free energy of the liquid and available competing phases that can form at the same composition (without partitioning). The Kauzmann [59] temperature is the temperature at which the entropy of the undercooled liquid is equal to that of the crystal, and approaching \(T_k \) likely causes an ‘entropy crisis’ [60] in the liquid, forcing either glass formation or crystallization as it is paradoxical for a liquid to exist with a lower entropy than the crystal state. The Kauzmann temperature is often presented as the absolute limit for the glass transition, where often kinetic arrest occurs at higher temperatures.

In general, nucleation of a crystalline phase requires compositional rearrangements in the undercooled liquid. At high undercoolings, such compositional fluctuations are kinetically suppressed, however there exists the possibility of the nucleation of a phase of the same composition as the liquid, known as partitionless solidification [21]. This can only occur with the fulfillment of two conditions, the composition of the liquid and crystal must be the same, and the solidification rate (dependent on the undercooling) be of high enough magnitude such that complete solute trapping would be energetically favorable [8]. \(T_0 \) is defined as the temperature-composition curve in which the the undercooled liquid is stable compared to crystalline phases that may form without partitioning. Thus, for any given temperature and composition under the \(T_0 \) curve allows for partitionless crystallization. The Gibbs free energy for the \(T_0 \) condition is illustrated in Figure 2.1.

Solidification rates for partitionless crystallization are several orders of magnitude higher than cases where partitioning is observed, and thus not likely to be kinetically suppressed even with high cooling rates. For this reason, \(T_0 \) curves are often used to bound the compositional region where partitionless crystallization is not possible, therefore indicating a thermodynamically
It can be seen that for a given composition C^*_l, the required temperature for the condition $\Delta G^{ls} = 0$, where T_1 illustrates the T_0 condition, and any temperature below which allows for partitionless solidification.
Figure 2.2 For a binary system A-B, if the T_0 curves ‘plunge’ (a), glass formation is possible. Should the T_0 curves intersect, the liquid would instead form $\alpha + \beta$ without partitioning (b). Figure from [9].

viable composition range for glass formation. The determination of this thermodynamically viable range is useful prior to the application of rigorous kinetic treatments. An illustration of T_0 curves can be seen in Figure 2.2.

For a real system, when a comprehensive thermodynamic description of a system has been obtained (including the undercooled liquid) the previously mentioned T_0 criterion can be calculated,

$$\Delta G^{C_x} = G^{C_x}_{liq} - G^{C_x}_{crystal} \leq 0,$$

(2.1)

where C_x denotes the composition for which the crystalline phase can solidify without partitioning. For example, the Al-La system was investigated by Zhou and Napolitano [10], in which T_0 and T_k curves were calculated and can be seen in Figure 2.3 with comparison to experimentally measured glass formation.

The definition of a metallic glass is often under debate, as it is possible to form some small fraction of crystals that are virtually undetectable. From this definition, the T_0 criterion would predict a smaller region of glass formation. The formation of glasses with some allowable volume fraction of crystals can be calculated with a modified T_0 criterion in which classical nucleation theory [16, 61] is applied, along with consideration of cooling rates, such as the work of Nash and Schwarz [12]. An example of this modified T_0 calculation can be seen in Figure 2.4.
As thermodynamic approaches to glass formation require knowledge of all competing phases, often thermodynamic limitations are calculated within the CALPHAD (CALculation of PHAse Diagrams) framework. The CALPHAD method allows for the calculation of stable phase diagrams, as well as incorporation of metastable phases, and can include treatment of the undercooled liquid [9].

The CALPHAD method is a robust technique in which researchers can combine a variety of experimental (XRD, EPMA, DTA) data, and thermodynamic data to optimize and develop a self-consistent description of a system. A flow chart for the CALPHAD procedure can be seen in Figure 2.5.

Researchers must choose between a variety of models to describe how the atoms interact with each other. For instance, take the description of the Al-Sm system by Zhou and Napolitano [46], in which the liquid is described using a two-state association model, terminal
Figure 2.4 Modified T_0 curves, evaluated for a crystal volume fraction of 10^{-6}, and a cooling rate of 10^6 K/s from [12]. The solid circles are experimentally determined glass compositions, with their temperature being the crystallization temperature on heating [13]. Triangles are the melting point of the compound.
phases are described using a one-sublattice model, metastable phases are approximated using a two-sublattice model, and intermediate phases treated as stochiometric compounds. Indeed, accurately modeling the interactions of atoms usually requires a range of models of varying complexity [62].

It is desirable to describe the mixing of components with respect to the pure components [62],

\[G = G^o + G_{mix}^{ideal} + G_{mix}^{xxs} \]

(2.2)

in which \(G^o \) is the contribution of the pure components, \(G_{mix}^{ideal} \) is the contribution from ideal
mixing, and $G_{\text{mix}}^{\alpha_s}$ represents the contribution from non ideal interactions. This definition is useful because many researchers have compiled accurate thermodynamic data for pure substances to use in calculations [42]. There are a variety of solution types used in CALPHAD modeling to handle some of the complicated phases in some material systems, such as [62]: line compounds, interstitial phases in steels, order-disorder transformations, ionic liquids (slags, molten salts), or even aqueous solutions. These can be treated with a variety of restrictions related to individual components, and a definition of the Gibbs free energy can be obtained.

It is then desirable to compare the definition of the Gibbs free energy of mixing to that of a real system to show accuracy. Having generated a model for the Gibbs free energy using the CALPHAD approach, it is possible to calculate the enthalpy of mixing. It is therefore desirable to measure the enthalpy of mixing to compare to the calculations. Later in this work, enthalpy of mixing is determined for comparison with modeling, and can be seen in Chapter 5.

The CALPHAD framework is the most convenient for application of thermodynamic limitations of glass formation. The properties of metastable phases must be calculated, and the undercooled liquid must be described. The calculation of phase diagrams for amorphous alloys has been examined extensively [63, 64, 65, 66, 9, 46, 10]. The critical thermodynamic data for this approach is that of the undercooled liquid. The Gibbs free energy for the undercooled liquid phase is usually estimated by the difference between the energy of the undercooled liquid and the equilibrium solid, as described in Eqs. 2.3 to 2.6.

2.2.1 Thermodynamic Properties of the Undercooled Liquid

The Gibbs free energy of the undercooled liquid is often considered with reference to the equilibrium crystalline state. The undercooled liquid is inherently unstable, and the driving force is defined as

$$
\Delta G_{l-s} = \Delta H_{l-s} - T \Delta S_{l-s},
$$

(2.3)

where the enthalpy and entropy are also considered with respect to the equilibrium crystalline state.
The enthalpy difference between liquid and solid is described as [67]

$$\Delta H_{l-s} = \Delta H_f - \int_T^{T_m} \Delta C_{P}^{l-s} \, dT,$$

(2.4)

and the entropy difference between liquid and solid is described as [67]

$$\Delta S_{l-s} = \Delta S_f - \int_T^{T_m} \frac{\Delta C_{P}^{l-s}}{T} \, dT,$$

(2.5)

where ΔH_f and ΔS_f are the enthalpy and entropy of formation, and ΔC_p is the difference of heat capacity between the liquid and solid, and T_m the melting temperature. And by the combination of Eqs. 2.3 to 2.5, the Gibbs free energy difference, ΔG_{l-s}, can be described:

$$\Delta G_{l-s}(T) = \left[\Delta H_f - \int_T^{T_m} \Delta C_{P}^{l-s} \, dT \right] - T \left[\Delta S_f + \int_T^{T_m} \frac{\Delta C_{P}^{l-s}}{T} \, dT \right].$$

(2.6)

This allows for direct calculation of the Gibbs free energy difference as well as the Kauzmann temperature, T_k ($\Delta S_{l-s} = 0$), from measurements of specific heat of the undercooled liquid.

The heat capacity of the undercooled liquid is rarely available, having been considered the most neglected thermodynamic quantity [54], thus various approximations have been developed such as that of Turnbull and Fisher [16], Dubey and Ramachandrarao [17], Thompson and Spaepen [18], and Hoffman [19]. It has been shown that for even moderate undercoolings accurate experimental data is required for successfully predicting solidification phenomena [15] which is shown in Figure 2.6.

The variation in the predicted value for ΔG_{l-s} in Figure 2.6 can be used in combination with classical nucleation theory to predict critical cooling rates, which in this case vary over several orders of magnitude [21].

2.2.2 Temperature Dependence of the Undercooled Heat Capacity and Associated Liquid Behavior

Recently there has been an effort to classify glass forming metallic alloys based on their ‘strength’ against crystallization, based on the dynamics of the undercooled heat capacity [2] and viscosity [68]. The temperature dependence of the undercooled heat capacity is related to the formation of short-range ordering, which plays an important role in glass formation. Chen
and Turnbull proposed several mechanisms for the change in heat capacity of liquids that relate to their configuration such as [69],

- a change in the vibrational spectrum as a result of the change in the types of bonding,

- an increase in non-random associations between unlike atoms as temperatures decrease,

- and changes in the configurational entropy from the multiplicity of atomic positioning.

The first is related to the quantum-mechanical phonon theory of temperature, in which the motions of an atomic lattice are a result of the collective excitation of quasi-particles that oscillate at a given frequency. For low temperature crystals, the Debye law accurately predicts the temperature dependence of the heat capacity solely from the vibrational contribution of photons, should the electronic contribution to the heat capacity be negligible. In liquids, atoms gain additional degrees of freedom such as rotation and translation, however the vibrational mode is still important. Later work in analysis of metallic glasses has identified the Boson Peak [70], an excess contribution to the Debye predicted vibrational density of states, which has been
controversial in determining its meaning with respect to glass formation [71, 72]. Computational analyses predict that the Boson Peak is a result of localized anharmonic vibrational modes associated with the ‘defects’ in glasses [73], and that the magnitude of the Boson Peak is related to the liquid behavior that formed the glass.

In Chen and Turnbull’s second proposal, an increase in non-random associations on cooling, they describe the phenomenon more commonly known as short-range ordering, and they predicted short-range ordering had a significant effect on the temperature dependent behavior of the heat capacity. The formation of short-range ordering often has a large effect on the specific heat capacity, as a result of the formation of bonds and clusters in the liquid state, the available degrees of freedom are reduced. A wide variety of temperature dependent behavior of the undercooled heat capacity has been reported, and will be shown here. The heat capacity of Pd$_{40}$Ni$_{40}$P$_{20}$ and Pd$_{77.5}$Cu$_{6}$Si$_{16.5}$ is illustrated in Figure 2.7.

![Figure 2.7](image)

Figure 2.7 $C_p(T)$ for two BMG alloys, Pd$_{40}$Ni$_{40}$P$_{20}$ (left) and Pd$_{77.5}$Cu$_{6}$Si$_{16.5}$ (right) from [20]. Pd$_{40}$Ni$_{40}$P$_{20}$ has been characterized with strong liquid behavior [21], Pd$_{77.5}$Cu$_{6}$Si$_{16.5}$ is more fragile [22]. On left, linear temperature dependence can be observed, on right, no discernible temperature dependence until a large peak near the glass transition.

Pd$_{77.5}$Cu$_{6}$Si$_{16.5}$ can be cast into a rod of 11mm diameter, and its behavior is classified as fragile, and one of the best glass formers, Mg$_{65}$Cu$_{25}$Y$_{10}$, can form rods up to 22 mm in diameter, and its kinetic behavior is strong [22]. The temperature dependence of the heat capacity of
Mg$_{65}$Cu$_{25}$Y$_{10}$ is very low, which can be seen in Figure 2.8.

Fragile liquids are inherently more difficult to measure the heat capacity over the entire undercooled liquid range, due to their decreased resistance to crystallization. In Figure 2.7, a glassy sample was annealed at $T > T_g$ and then measured on cooling through the glass transition. Another example of a fragile liquid can be seen in Figure 2.9.

This review of experimentally measured heat capacities leads to the general conclusion that fragile liquids display a peak in the heat capacity near the glass transition, ‘good’ glass formers like Pd$_{40}$Ni$_{40}$P$_{20}$ display a weak linear temperature dependence, and one of the best glassformers, Mg$_{65}$Cu$_{25}$Y$_{10}$, displays a very shallow temperature dependence. The other very good BMG alloys (Vitreloy alloys in Figure 2.8) also display a very shallow temperature dependence of the heat capacity.

Future directions for analyzing the glass transition have been summarized by Debenedetti and Stillinger [60], Cheng and Ma [50], and Sheng et. al. [51]. Of the future directions, the energy landscape framework will be briefly discussed here, which is related to Chen and Turnbull’s third proposal; ΔC_p is related to changes in the configurational entropy of the system.
Figure 2.9 Specific heat capacities of liquid, undercooled liquid, and crystalline Au$_{53.2}$Pb$_{27.6}$Sb$_{19.2}$ by Fecht et. al. [15]. It can be seen that the heat capacity of the undercooled liquid is neither constant or linear as shown before, but of second order temperature dependence.

Configurational entropy is defined as a measure of the available structural states, which decreases as temperatures decrease. The concept of configurational entropy was presented by Adam and Gibbs for a connection between kinetics and thermodynamics in their theory for cooperatively rearranging regions [74],

$$ t = t_0 \exp(B/S_c(T)) $$

(2.7)

where t is a relaxation time (essentially viscosity), $S_c(T)$ the configurational entropy, and t_0 and B are T independent constants. In Equation 2.7 it can be seen that the relaxation time, t, approaches infinity if the ideal glass transition temperature, T_k ($S_c(T_k) = 0$), is approached. Quantitatively defining the available states is one of the main challenges of applying Adam-Gibbs theory, along with the increasing notion that metallic liquids are heterogenous in nature, in which localized regions may relax differently than the bulk (dynamical heterogeneity [75]).
The configurational entropy, S_c, can be approximated experimentally [74],

$$S_c(T) = \Delta C_p \ln(T/T_k), \quad (2.8)$$

where T is the temperature, and T_k the ideal glass transition temperature ($S_c(T_k) = 0$). The Adam-Gibbs relation has been shown to be interesting in its relation to Volger-Tamman-Fulcher (VTF) viscosity theory, where if the configurational entropy is assumed to be constant, the Adam-Gibbs relation predicts Arrhenius viscosity behavior (strong liquid behavior) [76]. In this way, a non-zero temperature dependence of the heat capacity predicts deviation from Arrhenius viscosity behavior that is adequately described by VTF theory (fragile behavior).

The relation by Adams and Gibbs indicates that the origin of the glass transition is related to a decrease in the number of configurations that the liquid can sample. The final result, i.e. one last configuration available, would be the ideal glass state. This is qualitatively similar to the energy landscape theory that was later proposed by Goldstein [77], which defines potential energy basins which are separated by thermally activated energy barriers. An example of an energy landscape can be seen in Figure 2.10.

The recent work of Ding et. al. contrasts the fraction of ordering (decreasing number of available states) for both Mg$_{65}$Cu$_{25}$Y$_{10}$ (one of the best BMG) and Cu-Zr (marginal) as a function of temperature [24]. The dominant ordering in Mg$_{65}$Cu$_{25}$Y$_{10}$ are tetragonal tri-capped polyhedra (TTP) and bicapped square antiprisms (BSAP)[24], where in Cu$_{64}$Zr$_{36}$ the ordering is icosahedral in nature [24, 25]. As can be seen in Figure 2.11, the bonding nature is linked to the heat capacity in this instance.

Ding et. al. went further to determine the temperature dependence of the medium-range ordering for Mg$_{65}$Cu$_{25}$Y$_{10}$, which they determined to be very small, seen in Figure 2.12.

The main conclusions of their analyses were that a high degree of inherent structures in the high temperature Mg$_{65}$Cu$_{25}$Y$_{10}$ liquid is the source of the heat capacity behavior [24]. The liquid is saturated with SRO structures even at the melting point, which implies a low configurational entropy, thus the temperature dependence of the heat capacity does not reflect structural changes. In contrast, the degree of ordering in Cu$_{64}$Zr$_{36}$ increases on cooling with a small dependence and then peaks, consistent with the fragile behavior discussed earlier. It is
clear from this example that the measurement of the undercooled heat capacity is valuable to better understand the structural dynamics of metallic liquids.

In conclusion, the most valuable thermodynamic measurements for thermodynamic modeling to elucidate glass formation are as follows:

- The specific heat capacity of the undercooled liquid, in which experimental measurements are the most reliable for determining the Gibbs free energy and entropy of the undercooled liquid. Additionally, the heat capacity of the undercooled liquid is linked to the structure of the liquid and reflects changes in the ordering dynamics.

- The partial Gibbs free energies of components obtained by e.m.f or vapor pressure measurements and the enthalpy of mixing, to serve as a comparison to the calculated value to ensure that the mixing of components is appropriately determined for use in calculating the Gibbs free energies of metastable phases and calculation of T_0 curves.
Figure 2.11 Left, fraction of polyhedra as a function of temperature, tetragonal tri-capped polyhedra (TTP) and bicapped square antiprisms (BSAP) are the dominant ordering in Mg$_{65}$Cu$_{25}$Y$_{10}$ and full icosahedra (FI) are the dominant ordering in Cu$_{64}$Zr$_{36}$ [24, 25]. Right, heat capacities of the undercooled liquid [24]. It is presented by Ding et. al. that the fraction of ordering directly correlate to the heat capacity behavior.

2.3 Molecular Dynamics Simulations

Given that the goal of MD simulations is the understanding of a system at the atomic level, an efficient way to relate the atoms to each other must be developed. A quantum description (like ab initio calculations) would be ideal, however in practice these simulations are difficult to implement even for very small systems [78]. A simple approach, treating individual atoms as point masses connected by ‘springs’, allows for calculation of greater system sizes [79] although there is generally some loss of accuracy compared to quantum mechanical descriptions. In the field of MD, it is therefore critical to determine an accurate effective potential, the relationship between atoms, through a variety of measurements of which thermodynamic measurements are just one component. These are called semi-empirical potentials, and the goal is that they have the accuracy to reproduce experimental data but still have the large sample size and longer
Figure 2.12 The average number of connected structural motifs, from vertex sharing (VS), edge sharing (ES), face sharing (FS), and tetrahedral sharing (TS) as a function of temperature, from Ding et. al. [24]. It can be seen that there is no temperature dependence.

available simulation times afforded by an approximation. Many-body interatomic potentials such as the embedded atom method (EAM) [80] or Finnis-Sinclair [81] method are commonly used to retain accuracy without sacrificing computational ability.

The embedded atom method is based on the quasielectron theory [82] which defines the energy of a quasiatom as [80]:

\[E = E_Z(\rho_h(R)) \] (2.9)

where \(\rho_h(R) \) is the electron density of the host without impurity at \(R \), the site the impurity is placed, and \(E_Z \) is the quasielectron energy of an impurity with atomic number \(Z \) [80]. Daw and Baskes treat all atoms as being embedded in a host consisting of all other atoms, with the embedding energy being density dependent (which has the advantage of always being definable) [80]. In their 1984 paper, Daw and Baskes use perfect crystal data to fit their semi-empirical potential. Mendelev et. al. present that perfect crystal potentials are ineffective in simulating liquids or situations that deviate from perfection (dislocations, grain boundaries, etc.) and that liquid data can be used to fit potentials [83]. The main thermodynamic comparisons are that of the melting point, and thermal expansion [84], with some groups also
comparing the Gibbs free energies [26] and enthalpies (such as enthalpies of melting [85, 86], mixing, and formation [87]). An example of a thermodynamic comparison can be seen in Figure 2.13.

Figure 2.13 Thermodynamic comparison by Foiles et. al [26]. Solid curves are calculated for crystal, dashed for liquid. Symbols are experimental values.

Monte Carlo simulations can be used to determine the enthalpy of solid and liquids, but these generally do not include quantum effects so low temperature calculations require quasi-harmonic calculations [84]. Quasi-harmonic calculations can not be applied to higher temperatures because the thermal vibrations are large enough that the harmonic approximation is not accurate. In the Structures and Dynamics group at Ames Laboratory, development of potentials has been improved by considering liquid diffraction data, as well as thermodynamic properties of liquids such as the enthalpy of mixing, and liquid density [88, 89]. The consideration of the thermal expansion is important because it tests the anharmonic portion of the interactions [84], as the complete harmonic interactions yield zero thermal expansion. The undercooled liquid heat capacity can also be calculated for comparison, although generally it is difficult to have agreement between MD enthalpy measurements and experimental [90].

In summary the most valuable thermodynamic measurements for Molecular Dynamics simulations are:
• Measurements of Gibbs free energies, enthalpies of mixing, and liquid densities to refine potentials and serve as a comparison to the calculated values to ensure that the simulation reflects reality.

2.4 Principles of Thermodynamic Measurements

In this section, the principles of thermodynamic measurements will be reviewed, with experimental methods being described in the next chapter. The utility of each experimental method, calorimetry, vapor pressure, and electromotive force, arises from their definition in relation to known thermodynamic principles. The main goal of thermodynamic measurements for metal alloys is generally is the determination of partial or integral values of the Gibbs free energy, the enthalpies of formation and mixing, as well as heat contents as a function of temperature and composition [54]. The enthalpy of the undercooled liquid is of particular value for analyses with respect to glass formation, as was just described. This section will summarize the experimental pathways to access the Gibbs free energy, from the various definitions of Gibbs free energy. For metals, almost all experiments are carried out at constant pressure. Computational techniques and examinations of gases can be carried out at constant volume, however [91].

Calorimetric techniques are used to establish integral and partial enthalpies, but are limited when determining partial Gibbs free energy, and the related activities [62]. Second law methods such as electromotive force measurements and vapor pressure measurements are used to determine partial free energies of reaction (mixing or formation) [92].

2.4.1 Calorimetry

Considering the change of Gibbs free energy, ΔG, and its definition,

$$\Delta G = \Delta H - T\Delta S,$$ \hspace{1cm} (2.10)

if ΔH, the change in enthalpy, T, the temperature in Kelvin, and ΔS, the change of entropy, were known, it would be possible to calculate the Gibbs free energy difference at one temperature, T. How then can we obtain ΔH and ΔS (and their relationships with composition and temperature) to determine the free energy?
If we then consider that the direct measurement of entropy is not practically possible it becomes evident that measurement of enthalpy is instead the only pathway to obtaining the Gibbs free energy in this definition. While direct measurements of entropy are practically limited, as a result of the third law of thermodynamics (at absolute zero the entropy of an ordered system should be zero) the entropy at a temperature \(T \) can be determined:

\[
S(T) = \int_0^T \frac{C_p}{T} \, dT
\]

in which \(C_p \) is the constant pressure heat capacity. The constant pressure heat capacity as a function of temperature can determined by the measurement of enthalpy:

\[
C_p = \frac{\delta Q}{\delta T} = \frac{\delta H}{\delta T}.
\]

From the first and second laws of thermodynamics, every possible substance has a fixed value of \(H \) and \(S \). If we define the formation of a simple alloy of constituents \(A \) and \(B \) (in their standard states), and amounts \(j \) and \(k \) \([93]\) as \(jA + kB = A_jB_k \), the resulting change of the enthalpy can be represented by:

\[
\Delta H_f = H_{A_jB_k} - (jH_A + kH_B)
\]

where \(H_A \) and \(H_B \) are the standard state enthalpies of the pure components and \(\Delta H_f \) is defined as the enthalpy of formation of the alloy.

Similarly, the enthalpy of mixing can be described in the same manner,

\[
\Delta H_{mix} = H_{A_jB_k} - (jH_{A}^{liq} + kH_{B}^{liq}),
\]

where \(H_{A}^{liq} \) and \(H_{B}^{liq} \) are the enthalpies of \(A \) and \(B \) in their liquid states.

The magnitudes of these quantities reveals information regarding the lattice stabilities of the system. If we consider the potential energy of a system as a function of interatomic radius, seen in Figure 2.14, the depth and width of the well is related to various material properties such as melting point and elastic modulus by virtue of the strength of the bonding. The enthalpies of formation and mixing therefore contain valuable information about the nature of the arrangement of the atoms, for example, one of the empirical rules for glass formation.
proposed by Inoue [49] is that glass formation is enhanced with a highly negative enthalpy of mixing. This is thought to improve the formation of short-range ordering as the atoms are more closely related, and a decreased liquid free-volume is thought to have a strong effect on glass formation and tendency of short-range ordering.

Figure 2.14 For an isolated pair of atoms, the force and potential energy are described as a function of interatomic distance [27]

Both the enthalpy of formation and entropy are usually reported at a temperature of 298.15 K, as a matter of convention these are known as the standard enthalpy and entropy, usually denoted with the standard temperature, e.g. H_{298}, or with a superscript zero, H^0, or both H^0_{298}.

Having both a value for the entropy and enthalpy, it is now possible to calculate the Gibbs free energy:

$$ G_{298} = H_{298} - TS_{298}. $$

(2.15)

Often, free energy data for temperatures beyond 298.15 K are desirable, in which heat capacities
must be considered:

\[
\Delta G(T) = \Delta H_{298} + \int_{298}^{T} \Delta C_p \, dT - T\Delta S_{298} - T \int_{298}^{T} \frac{\Delta C_p}{T} \, dT
\] (2.16)

and if there are any transformations in the temperature region 298.15 K to \(T \), enthalpies and entropies of phase transitions must be considered.

2.4.2 Second-Law Methods

The second-law methods, vapor pressure and e.m.f, are elegant in their simple description and access to the Gibbs free energy. These methods, however, present substantial experimental challenges.

If we consider another definition of the free energy for a reaction,

\[
\Delta G = G_{\text{products}} - G_{\text{reactants}},
\] (2.17)

where \(\Delta G \) represents the maximum work done in the reaction at a constant pressure \[93\], it is clear that in the case of a reversible reaction if the relationship between products and reactions is known, the Gibbs free energy can be determined. The work of van’t Hoff, Nernst, and others lead to the development of the relationship of free-energy and an equilibrium constant \[94\]:

\[
\Delta G = -RT \ln K,
\] (2.18)

where \(R \) is the universal gas constant, \(T \) the temperature, and \(K \) the equilibrium constant.

2.4.2.1 Vapor Pressure Methods

If we now consider a pure metal in a solid state at some high \(T \), the formation of some finite vapor is the only product. Thus the Gibbs free energy can be determined by measuring the partial pressure of the vapor formed:

\[
\Delta G = RT \ln(p).
\] (2.19)

When considering an alloy, if an adequate temperature is chosen in which only one component is volatile, it is possible to compare the pressure of the volatile component to that of
the pressure generated by that same component in its pure state to obtain the activity of that component in the alloy [54, 95]:

$$\Delta G_i = RT \ln \left(\frac{P_i}{P^0_i} \right) = RT \ln a_i$$ \hspace{1cm} (2.20)

where ΔG_i is the partial Gibbs free energy of component i, P_i is the pressure of the component in an alloy, P^0_i the pressure of the pure component at the same T, which is then the activity, a_i of component i in the alloy. Activities describe a relation for the solution compared to the ideal case, which is useful when calculating the mixing of pure components.

2.4.2.2 Electromotive Force Methods

Electromotive force methods are based on the work of Gibbs in 1876 for the definition of a reversible (perfect) electrochemical apparatus [96]:

$$V_2 - V_1 = -\frac{d\zeta}{de}$$ \hspace{1cm} (2.21)

in which V represents a potential, de is an infinitesimal quantity of electricity, and $d\zeta$ the change in isothermal-isobaric free energy (related to Gibbs free energy).

Later the relationship was presented in the most practical form by the work of Lewis, et al [97]:

$$\Delta G = -z \cdot F \cdot E$$ \hspace{1cm} (2.22)

in which zF represents a charge transfer, z being the valence and F the Faraday constant, and E is the electromotive force produced by the cell. This relationship represents the amount of work that is required in a galvanic cell to transfer one mole of a pure element to a solution or compound. This implies some experimental challenges in realizing the technique, which will be discussed in Chapter 3. With a suitable electrode, the description of galvanic cells is generally described as follows:

$$A \mid \text{ionic electrolyte} \mid A_xB_{1-x}$$ \hspace{1cm} (2.23)

where A and A_xB_{1-x} represent some component and alloy, either of which can be solid or liquid.
The electromotive force in the cell is therefore related to the partial Gibbs energy (or activity) of A [1]:

$$\Delta G_A = -zFE = RT \cdot \ln a_A \quad (2.24)$$

where a_A is the activity of A in A_xB_{1-x}. It is now evident that both vapor pressure and e.m.f techniques are used to measure the partial activities of components, from the same definition (Equation 2.18).

If the EMF voltage can be monitored as a function of temperature, the partial enthalpy,

$$\Delta S_A = ZF \left(\frac{\partial E}{\partial T} \right), \quad (2.25)$$

and entropy can be determined [54],

$$\Delta H_A = ZF \left[T \cdot \left(\frac{\partial E}{\partial T} \right) - E \right]. \quad (2.26)$$

The conventional methods for obtaining free energies can be summarized as follows:

- Free energies may be calculated from heats of formation, entropies, and specific heats using the relationships described in subsection 2.4.1.

- Free energies can be determined by combining partial measurements, which are obtained directly from the measurement of equilibrium constants (partial pressures or e.m.f) as described in subsection 2.4.2.

2.5 Conclusions

From the literature reviewed here and analyses reported, the following conclusions can be drawn regarding the role of thermodynamic measurements to elucidate glass formation:

- The specific heat capacity of the undercooled liquid provides insight regarding the structural nature of the liquid, which underpins the behavior the liquid and the associated potential formation of metallic glasses.

- The specific heat capacity of the undercooled liquid enables calculation of the Gibbs free energies, enthalpies, and entropies of the undercooled liquid, which can be used to calculate T_0 curves to identify thermodynamically viable compositions of glass formation. The
entropy of the undercooled liquid can be used to calculate the Kauzmann temperature, or ideal glass transition temperature.

- A variety of behaviors for the temperature dependence of the undercooled heat capacity have been reported, where, in general, strong liquids have a weak temperature dependence and fragile liquids have been reported with both no temperature dependence and second order temperature dependence. Fragile liquids also generally display a peak in the heat capacity prior to the glass transition. MD simulations reveal that the small temperature dependence in strong liquids is a result of a high degree of ordering at the melting point, thus the degree of ordering does not increase considerably on cooling, and that fragile liquids undergo a large degree of ordering prior to the glass transition.

- Enthalpies of mixing, liquid density, and thermal expansion measurements are useful for development and comparison of MD potentials.
CHAPTER 3. Traditional Experimental Techniques for Thermodynamic Measurements

3.1 Introduction

As described in Chapter 2, the most widely used thermodynamic techniques are based on the analysis of heats, calorimetry, and the second-law methods consisting of electromotive force and vapor pressure techniques. A brief historical perspective will be given.

The roots of modern calorimetry can probably be linked to Joseph Black. Black described his first experiments in the 1760s for what is now known as specific heat by placing a cubic inch of iron and wood into an oven and realized that the iron felt hotter and continued to feel hotter for longer [98]. Black made the important distinction between temperature and heat, however it was not until the works of James Joule in 1850 that heat was proven as a form of energy rather than matter, and that a given amount of work could be converted to heat [99]. Indeed, the accurate quantitative study of heat is a relatively recent phenomenon which is often marked by the publication by White regarding the construction and operation of calorimeters [100]. In time, those desiring to obtain thermodynamic data extended beyond those who exclusively studied heat and the increased demand and usage lead to commercial offerings and adoption of thermal analysis techniques to many subsets of physical science [93, 101]. Use of thermal analysis techniques has since expanded to many everyday aspects of our lives such as: determination of drug purity [102], food labels [103, 104], and of course extensive use in materials processing [105, 106, 107].

Both the vapor pressure methods and the electromotive force methods are related, in that they are both defined from the natural tendencies for systems to move towards equilibrium and maximum entropy (the second law of thermodynamics). In both methods, the free energy
is measured by attaining a reversible equilibrium and determining the driving force for the equilibrium. In his publication *On The Equilibrium of Heterogenous Substances* Gibbs described a perfect reversible electrochemical cell in which the potential of the cell was related to the isothermal-isobaric free energy [108]. Helmholtz then derived the function in terms of Helmholtz free energy in his publication in 1882. In 1886 van’t Hoff proved that work was related to an equilibrium constant through his “equilibrium box” thought experiment [109], which could then later be related to the free energy change. Nernst developed the relation between electromotive force and free energy in 1889 [110]. Thus at this point, there were two working definitions to measure the free energy, however, at this time, researchers had difficulty applying ideal thermodynamic theories to real solutions and gases [109]. Lewis developed the concept of the activity in 1907 [111] (as well as fugacity in 1901 [112]), and then along with Randall, measured free energies for 25 years to publish one of the most important texts in thermodynamics [97].

3.2 Calorimetric Methods

The use of thermal analysis techniques to analyze metals (and therefore metallic glass forming alloys) generally requires higher temperatures which introduces several experimental obstacles such as oxidation, reactivity of crucible materials, small size of experimental heat effect compared to background, and potential non-uniform vaporization. A number of excellent reviews of high temperature calorimetry for metallic systems available [113, 114, 115] as well as more focused reviews targeting reaction (solution) calorimetry [116, 117, 54]. In general, the non-reaction calorimetric methods are applied to measure heat capacities, and enthalpies (including transformation enthalpies). Reaction calorimetry methods are applied to measure heats of formation and mixing.

Calorimetric methods are among the most popular for obtaining thermodynamic data, along with electromotive force measurements. When choosing a calorimetric technique to obtain thermodynamic measurements, it is worthwhile to understand the principles of the techniques and limitations. Each calorimeter type is generally suited for different tasks, and each handle three aspects of calorimetry differently: \(T_c \), the temperature of the calorimeter, \(T_s \), the temperature of the surroundings, and \(Q \) the heat produced per unit time. Each technique
is primarily concerned with eliminating or properly accounting for heat leakage.

The classification of calorimeters is in itself somewhat of a challenge. There have been many attempted methods to classify calorimetric methods [93, 101, 118, 119, 120, 114]. I found the most logical classification presented by Rouquerol and Zielenkiewicz [119] in which the main distinction is between adiabatic, “ordinary”, and isothermal. Defining the total heat as the sum of accumulated heat and exchanged heat [119],

\[Q_{\text{total}} = Q_{\text{accumulated}} + Q_{\text{exchanged}} \]

(3.1)

where \(Q_{\text{accumulated}} \) describes heat that is contained within the calorimeter, and \(Q_{\text{exchanged}} \) describes heat that is transferred with the surroundings. This description allows for the distinction between the three types to be quite natural. The first being those in which \(Q_{\text{total}} = Q_{\text{accumulated}} \) and there is no heat lost, described as perfect adiabatic. The converse, in which \(Q_{\text{total}} = Q_{\text{exchanged}} \) represents a perfect heat flow calorimeter. A calorimeter in which some heat is accumulated and lost is therefore the ordinary calorimeter. This definition, while useful, requires some measure of the quality of a calorimeter, i.e. if an adiabatic calorimeter is not perfectly adiabatic, it is an ordinary calorimeter.

Rouquerol and Zielenkiewicz went on to present the main criteria based on how the calorimeter vessel and shielding temperatures are handled [119]:

i) Adiabatic types have traditionally maintained a temperature control such that the temperature of the calorimeter block and shielding are measured and the shield temperature follows that of the vessel via some power compensation (“sample following”). For example, after a heat introduction, the shield temperature rises to match that of the calorimeter temperature to minimize heat leakage, i.e. the shield follows the sample temperature.

ii) Ordinary calorimeters maintain no fixed or controlled relationship between the calorimeter block and the shielding, but the shielding is generally maintained at a constant temperature. These are also referred to as Isoperibolic.

iii) Isothermal calorimeters are opposite to adiabatic, in that the calorimeter follows the shielding temperature (“shield following”). An ice bath in contact with the calorimeter would fit
this description, where after an introduction of heat the calorimeter temperature follows the shield.

Adiabatic calorimeters are well suited for reactions that are relatively slow [93] as the adiabatic condition can be maintained for extended periods of time to measure long reactions. If the reaction rate exceeds the rate at which the calorimeter-shield temperatures can be matched, the adiabatic condition is no longer achieved. Additionally, as the operating temperature increases the adiabatic condition becomes more difficult to maintain [121].

Isothermal calorimeters maintain the calorimeter and the shielding at the same temperature, which is constant even with the introduction of heat. The constant temperature is maintained by either a phase-change of a material (ice calorimeter for example) or by some external compensation [114]. An ice calorimeter can be used in the following way, the sample is dropped into a calorimeter which is insulated with ice. The heat produced from the sample melts an amount of ice, which can be used to determine the heat of the sample. The use of isothermal calorimeter for the analysis of metals is scarce today, although there has been use for isothermal calorimeters in titration reactions in which the heat evolution is continuously measured.

Isoperibolic calorimeters, in which the term isoperibol is from greek, meaning same (iso) and surroundings (peribol) [114], maintains the temperature of the calorimeter jacket at the same temperature. In comparison to adiabatic or isothermal techniques, there is a finite and well defined thermal resistance in which the heat flows away. Therefore proper usage of the technique involves consideration of the heat leakage.

Accurate calorimetry does not rely on elimination of all heat leakage if the heat leakage flows away in a manner of the known physical laws [100]. The physical laws governing the heat loss in a calorimeter system are often assumed to obey newtonian cooling, where the rate of heat leakage, \(\frac{dT}{dt} \), is proportional to the thermal gradient. As a result of the finite thermal leakage, there also exists some heat leakage during the heat introduction period. For example, the calorimeter apparatus of Schaefers et. al. [28] maintain a constant jacket temperature above the calorimeter temperature, where the temperature of the calorimeter continuously drifts towards the jacket temperature. By fitting the temperature drifting portions of the
curve (process shown in Figure 3.1) and determining the mid point of heat transfer, the true temperature can then be determined by evaluating the temperature of the cooling fit at the time of mid point of heat transfer.

![Figure 3.1 Reconstruction of the true temperature increase resulting from heat introduction](image)

Given the vast array of available calorimeters, selecting a calorimeter design depends on several factors related to the experimental goals [114]:

a) The property to be measured, i.e. enthalpy of mixing vs heat capacity.

b) The temperature range to be explored.

c) The size of the thermal effect and required accuracy.

For the determination of heat capacity for instance, all of the calorimeter types have been employed. Considering that many of the types are suitable, it is important to remember that the goal is still to obtain reliable data without wasting effort [116]. The most limiting aspect of selecting a calorimeter type is the temperature range. Luck, Predel et. al reported a
comparison between two different calorimeters for the same measurement which is somewhat rare in literature [29] which can be seen in Figure 3.2.

Their comparison was between a rather complex calorimeter, the commercial SETARAM calorimeter (details available in [122]), and a vacuum calorimeter [123]. Their results indicated that chemical factors (especially oxygen and nitrogen reactions) were more critical than simply maximizing accuracy in temperature measurement. These also further confirm some of the experimental challenges with reactions when employing high temperature calorimetry.

3.2.1 Reaction Calorimetry

Reaction calorimetry is used to determine the enthalpy of mixing in liquids, or the enthalpies of formation of phases and compounds. The principle of the technique is that two components are introduced (both of known heat content), the temperature continuously measured and the heat of the reaction (either formation or mixing) is measured. The various calorimeter operating modes described previously apply to reaction calorimetry as well. Calorimeter designs vary due to specific problems in certain systems, such as vaporization of one component: a breakable silica ampoule of one component can be submerged in the liquid of another component and broken [114].

An example of a mixing calorimeter is that of Kleppa’s [30], which can be seen in Figure 3.3.
The twin-cell calorimeter in Figure 3.3 can also be operated in a drop method, in which one component is at room temperature [40]. This can be seen in Figure 3.15.

Clever calorimeter designs which allow for continuous introduction of one component allows for the determination of mixing or formation over a wide composition range in one experiment [54]. Additionally, one component may be liquid, the other at room temperature. If the enthalpy of the sample at room temperature is known it can be added to the liquid and either mixing or formation may be calculated depending if the sample melts or forms a compound.

An example of the calculation of the heat of mixing will now be presented from Itagaki
and Yazawa [31]. First, high purity metal constituents are placed in the calorimeter. Then
the calorimeter is evacuated and backfilled with argon. The calorimeter is then heated to
operating temperature and held for a period to stabilize. A heat pulse from an electrical
calibration method is introduced, and the calibration checked. Then the metal samples are
allowed to mix, and the heat response measured. The procedure then involves an introduction
of another calibration pulse, and it is checked against the first pulse to ensure accuracy. The
heat of mixing is then calculated by:

\[m \cdot \Delta H = W \cdot \Delta T_1, \]

(3.2)

where \(m \) is the mole amount of the alloy, \(\Delta T_1 \) is the temperature change related to mixing, and
\(W \) the water equivalent (calorimeter constant) of the calorimeter. The temperature response
of the calorimeter can be seen in Figure 3.4.

Figure 3.4 Temperature response of a mixing calorimeter to calibration pulses and mixing
from Itagaki and Yazawa [31]

Different ratios of the metals are then used for additional experiments to measure the heats
of mixing over the composition range desired. This usually requires at least 10 measurements.
3.2.2 Non-reaction Calorimetry

Non-reaction calorimetry is the standard determination of heat contents, without a reaction, such as the enthalpy, heat capacity, and heats of transformation. The main methods used are drop calorimetry, differential thermal methods, and adiabatic calorimeters. In general, differential scanning calorimeters are limited to lower temperatures although there is research in this area to increase the operating temperature [124]. The more general differential thermal analysis (DTA) calorimeters do not have power compensation for well controlled heating/cooling rates but can be extended to higher temperatures. Adiabatic calorimeters also have upper temperature limits, usually around 1500-1800 K. Drop techniques can be extended to very high temperatures (∼3000 K) with the combination of a levitation coil, which is discussed in Chapter 4.

Drop methods have been used to determine the heat contents of metals for over one hundred years [125], as the drop method is a logical conclusion to minimize error from moving a sample from an external furnace to a calorimeter. As mentioned in the previous chapter, the heat capacity is defined as the derivative of the enthalpy with respect to temperature and enthalpy increments are measured with drop calorimetry. Performing several enthalpy measurements at different temperatures will allow for the determination of the heat capacity. Heats of transformation can be determined by performing enthalpy measurements prior to the transformation and after. Two examples of an adiabatic drop calorimeter technique is that of Levinson [32] and Barth, et. al. [33], which can be seen in Figure 3.5.

The furnace component of each differs considerably. The furnace of Barth et. al. is an electromagnetic levitation furnace, the technique which will be further discussed in Chapter 4. The furnace of Levinson is a traditional furnace, which can be seen in Figure 3.6.

Not to be confused with adiabatic drop calorimetry, the principle behind adiabatic calorimetry is the input of energy increments and the measurement of the response of the sample, and because there is no heat loss the change of the heat capacity is then directly related to the energy input [126]:

\[C_p = \frac{\Delta E}{\Delta T} \]

(3.3)
where C_p is the heat capacity for the midpoint of the temperature difference ΔT. Ideal adiabatic conditions are not practically achievable, although through complex designs heat exchange with the surroundings can be minimized. Some adiabatic mixing or drop calorimeters can be used as adiabatic calorimeters. An example of this is the calorimeter of Dench et. al. [127], which was developed as a high temperature mixing calorimeter. It was used in this adiabatic method to determine the heat capacity of iron [128].

The two main methods for determining the heat capacity with differential scanning calorimeters are the scanning method and the step-scan method. In the scanning method an empty sample pan is scanned over some temperature range. Then the sample is introduced and scanned over the same range, and after that a reference material of known heat content is scanned over the same range. In each case the empty pan is subtracted, and the heat content of the sample can be compared to that of the reference. In the step-scan method, a series of heat pulses are introduced followed by an equilibration time in which the enthalpy is determined. The heat capacity can then be derived. More information on the step-scan method can
Figure 3.6 High temperature drop calorimeter furnace of Levinson [32]. The sample is connected to a graphite rod, which is notched. A mechanical shock breaks the graphite rod and the sample falls into the receiving well in Figure 3.5.
be found in these publications by Mraw and Naas [129], as well as Cerdeirina et. al. [130]. It is also worth mentioning that this method can be applied in a similar fashion to that of the scan method, in which the empty pan can be subtracted, and a reference material can be used.

3.2.3 Measurements of the Undercooled Liquid

The largest obstacle to obtaining the undercooled liquid is that of heterogeneous nucleation sites provided by a container or substrate. Despite this, there have been several techniques to obtain large undercoolings. Some of these were summarized by Perepezko in 1984 [34] and can be seen in Figure 3.7:

a) fluid dispersion techniques [131, 132]

b) substrate techniques, like that of Turnbull [133, 134] and Vonnegut [135]

c) processing an alloy in a temperature region in which small volumes are generated [136]

d) inorganic fluxing techniques [137]

e) electromagnetic levitation

The substrate techniques were the first studies of liquid metal undercooling of large magnitude. In general, fine powders (10-100 µm diameter) were placed on heated silica slides, melted, and cooled by allowing the melts to cool radiatively or flowing helium [138]. The melted droplets were observed with optical microscopy and nucleation could be determined when the surface texture changed as a result of solidification. Higher undercoolings were obtained by emulsification techniques, likely due to the potency of the substrate in previous investigations. Indeed, the work of Turnbull and Hoffman showed that surfaces can dramatically reduce the energy barrier to form a critical nucleus [134, 61]. Emulsification techniques better isolate the effect of surfaces and internal catalysts. The fluid dispersion techniques are based on the principle of dividing the bulk volume of a melt into small parts, which would isolate inherent nucleants, and the surface potency is reduced by the addition of a surfactant that reacts with the metal droplets to form a coating that has a low catalytic potency [139]. The emulsification technique can be seen in Figure 3.8.
The metal regions are isolated by using a stirring motor in an inert atmosphere, and additional chemicals are added to the mixture that react with the surface of the isolated metallic droplets to reduce the surface potency, as well as ensure that the metallic regions are not continuous. The highest undercoolings can be achieved when the melts can be divided into the smallest regions possible. This technique is generally limited to 400-500°C for organic oils, however the technique has been demonstrated using molten salts as the carrier fluid to undercool cast-iron [140]. Vonnegut used emulsification techniques in conjunction with XRD to determine the period for which an emulsification mixture was liquid or solid, and determined that the mixture could be undercooled and the rate at which the XRD signal indicated crystallinity was proportional to the nucleation rate [135]. These studies analyzed higher undercoolings within the framework of classical nucleation theory [141].

Thermodynamic properties of the undercooled liquids were generally not measured until the use of DSCs became more prominent [69, 142, 143]. Dispersion and fluxing techniques have been used with success to obtain the heat capacity of undercooled melts using DTA.
or DSC [139, 3, 144], although it requires careful accounting of the emulsification or fluxing medium. Additionally, the technique in general is limited to lower temperatures, both of the emulsification medium (generally organic oils) or fluxing agent and the DSC or DTA. Another common technique is heating an already amorphous sample and measuring the heat capacity continuously. This requires consideration of the time and temperature rate dependent effects of devitrification. For example, Johnson et. al. prepared an amorphous $\text{Zr}_{41}\text{Ti}_{13}\text{Cu}_{13}\text{Ni}_{10}\text{Be}_{23}$ sample and devitrified the sample \textit{in-situ} using DSC [21] which can be seen in Figure 3.9. In general, \textit{in-situ} devitrification results in a limited temperature range where the liquid resists crystallization and the heat capacity can be measured. This then requires measurement of the higher temperature liquid heat capacity to connect the data.

Since Perepezko’s summary in 1984, there have been a number of other containerless techniques developed such as electrostatic, aerodynamic, and acoustic levitation as well as drop-tube and microgravity experiments which have been included in a review by Herlach et. al. [35]. With respect to the levitation techniques, the heat capacity can be obtained in several ways. The sample can be dropped into a calorimeter (outlined in the next chapter), or if free cooling conditions are possible (limited to ESL [36]), measurement of sample temperature as a function of time along with consideration of Planck’s law results in determination of the heat capacity.
as radiation is the only energy loss. Additionally, the sample can be levitated in microgravity and modulated RF power applied (TEMPUS project [145],[146]) where the heat capacity of the sample can be determined from the observed thermal response.

In free cooling conditions, the heat capacity of a sample is related to Planck’s law [36],

$$mC_p(T) \frac{dT}{dt} = -\epsilon_T(T)A\sigma(T^4 - T_s^4),$$ \hspace{1cm} (3.4)

where m is the sample mass, $C_p(T)$ the heat capacity as a function of temperature, $\epsilon_T(T)$ the hemispherical total emissivity as a function of temperature, A the surface area of the sample, σ the Stefan-Boltzmann constant of value 5.67×10^{-8} J S$^{-1}$ m$^{-2}$ K$^{-4}$, T the sample temperature, and T_s the temperature of the surroundings. The hemispherical total emissivity is generally not known. Thus researchers can report C_p as a function of ϵ_T, or in some cases measure ϵ_T to obtain the heat capacity. In the work of Busch et. al., a glassy Zr-based BMG was devitrified in-situ to obtain the heat capacity to obtain ϵ_T. Their results can be seen in Figure 3.10. The more ideal case is that in which the total hemispherical emissivity can be measured directly, however laser reflectance techniques are not commercially available, requiring considerable effort into their construction and calibration [147].

In general, container less processing provides several advantages compared to emulsification and fluxing techniques. The techniques are inherently high purity, for example, in EML, electromagnetic convection continuously exposes the liquid to either high vacuum or some inert
Figure 3.10 Free cooling method to obtain the undercooled heat capacity. Top, measured $C_p/\epsilon T$ for a free-cooled Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10.0}$Be$_{22.5}$ alloy. Bottom, measured heat capacity from DSC and free cooling curve. Both figures from [36].

atmosphere. The stirring velocity can be seen in Figure 3.11, where it can be seen that the stirring effect continuously exposes the internal liquid to the surface.

Electrostatic levitation is restricted to high vacuum due to the high potentials applied. Either high purity atmosphere is an advantage in the reduction of impurities that may act as nucleation sites. The other primary advantage is that the undercooling ranges can be of large magnitude, and are continuous. The next chapter details the use of EML drop calorimetry for the measurement of the undercooled heat capacity.
Recalling from chapter 2, that the amount of work that is necessary for a cell to transfer one mole of an element (at valence z) to a solution or compound is related to the Gibbs free energy by

$$\Delta G = -z \cdot F \cdot E,$$

(3.5)

where F is faraday’s constant, and E is the electromotive force in the cell. As mentioned previously, the cell must operate in a perfectly reversible fashion. This is generally represented by the requirement that there is no external current flowing, requiring measurements to be made on an open circuit with high resistance measuring devices [1]. The main challenges for setting up an e.m.f measurement are [148]: finding a suitable electrolyte, and the identification of the single reversible process at each electrode. There must only be a single reversible process because the ions must have one valence to use in the calculation. Additional challenges involve the materials involved in the construction of the cell, temperature gradients, vaporization of any component, and any reaction other than the one being studied [62, 149].
The electrolyte must be purely ionic, as the definition of the method requires transfer of ions being the only reaction ideally of only one species [150]. It is possible to correct for cells in which there is also electronic conduction, although in general it is desirable to minimize this effect.

With a suitable electrode, the description of galvanic cells is generally described as follows:

\[
A \mid \text{ionic electrolyte} \mid A_xB_{1-x}
\]

where \(A\) and \(A_xB_{1-x}\) can be solid or liquid.

The electromotive force in the cell is therefore related to the partial gibbs energy (or activity) of \(A\) [1]:

\[
\Delta \overline{G}_A = -zFE = RT \cdot \ln a_A
\]

where \(a_A\) is the activity of \(A\) in \(A_xB_{1-x}\).

Selection of the electrolyte is a critical part of an electromotive force measurement. Aqueous solutions of ions seem obvious as ions have much greater diffusion in liquids. The reality of the situation is that as temperatures are increased, it becomes more likely for a liquid component to become volatile rendering the measurement uncertain. Liquid electrolytes have been used up to about 200 °C by Babanly et. al. who used Ti⁺ in glycerol solutions [151]. The first use of the technique to determine thermodynamic data with solid electrolytes was done by Kiukkola and Wagner in 1957 [152], in which they used oxide cells to determine the Gibbs energies of the formation of oxides. There were several demonstrations of solid oxides before this, however the work by Kiukkola and Wagner was the first use in thermodynamic measurements using them. Solid oxide cells can generally used at higher temperatures and thus are generally more useful to metallurgical thermodynamics. Ionic conductivity in solid electrolytes is usually caused by lattice defects, which can result from a variety of conditions [1]:

- Doping the electrolyte, leading to vacancies in the lattice (YSZ, explained later),
- large cation disorder (Ag-I),
- low packing density structures (tunnel or layered, β-alumina),
Table 3.1 Examples of some solid electrolytes suitable for use in metallurgical thermodynamics studies [1]

<table>
<thead>
<tr>
<th>Material Base</th>
<th>Conduction Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide</td>
<td>Anion</td>
<td>ZrO$_2$, HfO$_2$, ThO$_2$, Bi$_2$O$_3$, CaZrO$_3$</td>
</tr>
<tr>
<td></td>
<td>Cation</td>
<td>β-alumina, β'-alumina, Pyrex, fused silica, SrCeO$_{3-\delta}$</td>
</tr>
<tr>
<td>Halide</td>
<td>Anion</td>
<td>MgF$_2$, CaF$_2$, SrF$_2$, BaF$_2$, PbF$_2$, LaF$_3$, BaCl$_2$</td>
</tr>
<tr>
<td></td>
<td>Cation</td>
<td>CuCl, α-AgI, Ag$_3$Si, RbAg$_4$I$_5$</td>
</tr>
<tr>
<td>Oxyhalide</td>
<td>Anion</td>
<td>LaOF</td>
</tr>
<tr>
<td>Sulfide</td>
<td>Cation</td>
<td>CaS, MgS</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Cation</td>
<td>Li$_2$SO$_4$, Na$_2$SO$_4$, K$_2$SO$_4$</td>
</tr>
<tr>
<td>Complex oxide</td>
<td>Proton</td>
<td>SrCeO$_3$, BaCeO$_3$, CaZrO$_3$, SrZrO$_3$</td>
</tr>
<tr>
<td>Other</td>
<td>Cation</td>
<td>NASICON ($\text{Na}_2\text{Zr}2\text{Si}2\text{PO}{12}$), LISICON (Li${14}$Zn(Geo$_4$)$_4$)</td>
</tr>
</tbody>
</table>

- amorphous materials or network structures (NASICON, etc.).

A list of types of solid electrolytes from a recent review by Ipser [1] will be described in Table 3.1.

An example of an cell setup and EMF measurement will now be described from Jacob et. al. [38]. The activities of Rh in Pd-Rh were measured between 950-1350 K with the following cell:

$$\text{Rh, Rh}_2\text{O}_3 \mid \text{Y}_2\text{O}_3 + \text{ZrO}_2 \mid \text{Pd}_{1-x}\text{Rh}_x, \text{RH}_2\text{O}_3 +$$

where it can be seen the electrode was a Yttria Stabilized Zirconia (YSZ) type. The experimental apparatus can be seen in Figure 3.12. The procedure used has been used by others [153].

The oxygen ion transfer follows:

$$\text{O}_2 \text{ alloy} \rightarrow \text{O}_2 \text{ pure Rh}$$

Thus the EMF can be measured by:

$$E = -\frac{RT}{4F} \ln \left[\frac{P_{\text{O}_2 \text{ pure}}}{P_{\text{O}_2 \text{ alloy}}} \right] \quad (3.8)$$

where P_{O_2} is the oxygen potential measured (by comparing the oxygen partial pressures in each tube), and the valence is four for two oxygen ions. The partial Gibbs free energy can be obtained once E is known,

$$\Delta \overline{G}_{\text{Rh}} = -3FE = RT \ln a_{\text{Rh}}, \quad (3.9)$$
Figure 3.12 Schematic diagram of the galvanic cell used by Jacob et. al. [38]. It can be seen that the two evacuated tubes are connected by the electrical leads. The oxygen pressures are compared in each tube once equilibrium is established.

where the valence is 3 because Rh exists as Rh$^{+3}$ in Rh$_2$O$_3$.

3.4 Vapor Pressure Measurements

A heterogenous phase equilibrium including a gas phase has been used as a convenient way to determine the Gibbs free energy of a substance. The goal of vapor pressure techniques are to determine the partial pressure of the gas species in equilibrium with a solid, from which free energy changes and activities of components can be obtained [154, 149].

The main applications of vapor pressure techniques are gas equilibration, and Knudsen effusion (after M. Knudsen [155, 156, 157]). Of the two, Knudsen effusion has been used the most in the application to metallurgical thermodynamics and will be discussed here.

The Knudsen cell is a small cylindrical crucible, containing an equilibrium between a condensed material and a gas phase, in which a small hole (0.1 to 1mm) exists [115]. The principle of the technique is in the small hole, in which a small amount of the gas phase effuses out of the cell, with the assumption that the flow does not disturb the equilibrium in the cell. Additionally the cell contains a thermocouple or port for pyrometric temperature determination.
Knudsen developed a relation for the effusing gas [155],

\[p = \frac{\Delta m}{k s \tau} \sqrt{\frac{2 \pi R T}{M}}, \]

(3.10)

where \(\Delta m \) is the mass loss during a time \(\tau \), \(M \) the molar mass of the vapor, \(s \) the cross-sectional area of the orifice, and \(k \) the Clausing probability factor. The Clausing probability factor can be calculated by the geometry of the orifice [158]:

\[k = \left[1 + 3 \frac{l}{8r} \right]^{-1} \]

(3.11)

where \(l \) is the length, and \(r \) the radius of the orifice. It is evident from Equation 3.10 that measurement of the mass can lead to the determination of the pressure, when the effusion period is known. This has been done by da Silva et al. in the study of crystalline organic compounds [158, 159], where masses are assessed before and after to an accuracy of ± 0.02mg and effusion times are three to eight hours.

The most modern implementation is that of the combination of a Knudsen cell with a mass spectrometer (first done by Drowart [160]). Based on the fact that the vapor pressure measured by a mass spectrometer is low, the fugacity of a monatomic species is assumed to be equal to its partial pressure [161, 162]. The activity of a component \(i \) in the condensed phase is thus [161]

\[a_i(x_i, T) = \left(\frac{p_i}{p_i^o} \right)_T \]

(3.12)

where \(p_i \) and \(p_i^o \) are the partial pressures at constant temperature \(T \) of the pure component \(i \) and the vapor of the component \(i \) from the alloy respectively. The requirement of knowledge of the pressure of both the alloy vapor and pure material vapor introduces experimental difficulty.

The pressure is measured by the mass spectrometer method in the following way [95],

\[P_i = \frac{I_i T}{S_i} \]

(3.13)

where \(P_i \) is the partial pressure of component \(i \), \(I_i \) is the measured intensity of the ion beam, and \(S_i \) is the sensitivity factor which is dependent on the instrument configuration and experimental conditions. Researchers quickly determined that venting the chamber, and switching the cells could lead to modification of the value of the sensitivity by up to a factor of 3 [161]. There are
several ways to get around this limitation. One simple way is to have a valve to separate the knudsen chamber from the ionization chamber, so that the ionization properties can be held constant. Not all experimental setups can be used in this way.

Another is the ion-current-ratio which relies on a Gibbs-Duhem integration and measurements of ion-current ratios over a range of composition. For some alloy AB, the activity can be described as [163]:

\[\ln \gamma_A = - \int_{X_A=0}^{X_A=X_A} x_B d \left[\ln \left(\frac{I_B}{I_A} \right) - \ln \left(\frac{x_B}{x_A} \right) \right] \]

(3.14)

where \(\gamma_A \) is the activity for component A, \(x_A \) is the mole fraction of component A, \(x_B \) the mole fraction of component B, \(I_A \) and \(I_B \) the ion intensities for components A and B.

Another method to obtain activities is that of Berkowitz [164], which requires the system have a dimmer-monomer equilibrium:

\[2A(g) = A_2(g). \]

(3.15)

The activity is then given by:

\[a_A = \frac{I_{A_2}(alloy)I_A(pure)}{I_A(alloy)I_{A_2}(pure)} \]

(3.16)

A modern solution is to use two Knudsen cells in an experimental chamber simultaneously, in which the activity is measured directly [95]:

\[a_i = \frac{p_i}{p_i^o} = \frac{I_i}{I_{i}^o} \]

(3.17)

where the partial pressures of the pure component \((p_i^o) \) and the vapor of the component in an alloy \((p_i) \) which are measured simultaneously using the intensity from the spectrometer. A dual-cell apparatus can be seen in Figure 3.13, and the overall schematic of a Knudsen Effusion Mass Spectrometer apparatus can be seen in Figure 3.14.

The automatic positioning of the effusion cells (all held at a constant \(T \)) allows for the measurement of several pressures in-situ, avoiding the sensitivity issue. The vapor from the cell (dubbed molecular beam by some) is limited by an aperture and then impacted with an electron beam to ionize it, producing this general reaction:

\[M + e^- \rightarrow M^+ + 2e^- \]

(3.18)
where M is some metal and M^+ some metal ion. The ions are then accelerated with a potential and separated with the magnetic sectoring, and then counted. The temperature of the cell can be measured using thermocouples or pyrometry. By creating a blackbody cavity in the effusion cell, the emissivity is approximately unity, eliminating a lot of the uncertainty in using a non-contact pyrometer. Thermocouples require feedthroughs and can require re-calibration if they are held at high temperatures for extended periods of time. The counting of the ions is then related to ion intensities which provides the activity. Further experimental details can be seen in a review by Drowart [165].

3.5 Conclusions

From the review presented here, the following conclusions can be drawn:

- The main experimental techniques for generating thermodynamic data are calorimetry, electromotive force, and vapor pressure techniques.

- The techniques for measuring thermodynamic properties undercooled liquids are emulsification and fluxing techniques in combination with DSC, *in-situ* devitrification in DSC, levitation drop techniques, and levitation free-cool techniques.
Figure 3.14 A schematic of KEMS apparatus by Heyrman et. al. [39].
Figure 3.15 One calorimeter cell of a twin-type calorimeter, here used in a high temperature drop method [40].
CHAPTER 4. Development of Levitation Calorimetry Technique

4.1 Overview

When a metal is placed within an energized induction coil, the time-varying magnetic field generated by the coil induces eddy-currents in the object. The interaction between the induced currents and the applied magnetic field produces an electromagnetic force, known as a Lorentz force [166]. When the strength of the Lorentz force is greater than the strength of gravity, the metal levitates. The induced currents also causes resistive heating (also known as Joule heating) which can melt the metal. The principle of the drop calorimetry technique is the establishment of thermal equilibrium between the experimental sample at high temperature, and the calorimeter at room temperature, with precisely known heat capacity. The metallic liquid is introduced into the calorimeter, and the temperature response of the calorimeter evaluated to determine the enthalpy of metallic melt.

4.2 History

The concept of electromagnetic levitation was proposed and patented by Muck in 1923 [167], however it wasn’t until 30 years later that some engineers at the Westinghouse Research Laboratory constructed and proved the concept [168]. One reason stated in literature for the extended time before Westinghouse further developed the technique was the lack of both a profitable application and the hardware necessary to generate the required electromagnetic field strengths [169]. The motivations behind the construction of the Westinghouse levitator was to reduce contamination from crucibles when processing Titanium, Zirconium, and Tantalum [168, 170]. Several researchers attempted to find industrial applications, and there was even an article in LIFE magazine (seen below in figure 4.1) that spoke of purifying metals for jets
and nuclear power plants by scaling up the Westinghouse design [171] however such industrial applications were never realized due to problems related to relatively large sample sizes (30g) [168]. It can be seen in the LIFE magazine article that one problem related to large samples is that “dripping” of the sample is controlled by the surface tension of the sample. There have been attempts to levitate toroidal samples to minimize dripping for industrial applications [172]. Other applications that were explored included using vacuum to vaporize metals, in which uranium was vaporized and deposited in a controlled manner [173].

Figure 4.1 Excerpt from the June 16, 1952 issue of LIFE magazine showing EML.

Much of the work after this period was the investigation of practical aspects of levitation
such as maintaining levitation until melting, reducing dripping of the liquid metal during levitation, and determining coil designs by build and test methods. However, in 1965, Fromm examined the effect of specific levitation parameters [174], which determined and quantified the result of varying the applied current and frequency, in addition to sample size and electrical conductivity.

Beginning in the 1970s, levitation drop calorimetry was developed to measure the properties of high temperature liquids that would react with traditional containers (such as Ti, Mo [175], Pt, Nb, Ta [176], and many of the rare earth elements [121, 177, 178, 179]). Later, chamber designs for levitation calorimetry began to include vacuum systems which extended the limited undercooling levels achieved previously [180, 33, 28, 181, 182, 90, 183, 184]. Indeed, reduction of heterogeneous nucleation sites by containerless processing enables access to hundreds of degrees of undercooling [185, 35].

Levitation drop calorimetry requires several modifications to an electromagnetic levitation apparatus for successful use of the technique. The development of a levitation drop calorimeter is presented as though a functional electromagnetic levitation chamber (RF generator, vacuum sealed chamber) already exists. Primarily the modifications consist of allowing for stable introduction of cooling gas (without introducing impurities or electrical breakdown) and incorporating a calorimeter to measure the heat content of samples.

4.3 Refinement of EML Apparatus for Levitation Calorimetry

4.3.1 Optimization of Levitation Coils

A fellow group member, Zach Royer, combined a genetic algorithm and an analytical model from Fromm, et al. ([174] to optimize levitation parameters for lower temperatures to better reach the undercooled liquid state. The algorithm determines the power input to the sample (heat flux) and lifting force from a given coil design, then varies one loop to determine if it would be beneficial. This can then be explored thousands of times efficiently with a computer to sample a large variety of coil designs. The resulting experimental coil geometry used for most of the experimental work can be seen in Figure 4.2. His work can be viewed in his thesis.
The optimization resulted in a decrease of 70 degrees from a commonly used seed coil. Later, it became necessary to increase the levitation power. It was found that the existing design could be made smaller (reduced radius) which increased levitation power without an excessive increase in temperature.

4.3.2 Cooling Gas Introduction

The resistive heating inherent to the levitation process is an obstacle to achieving sample temperatures below their melting point. The high power RF sources (5 kW in our case, research levitators usually are 5-25 kW [186]) provide ample opportunity to cause electrical breakdown in a low pressure environment. Practically this means that when introducing cooling gas to an energized vacuum, the cooling gas can form a plasma and create a conduction path between the electrical leads, causing a short circuit and interrupting levitation. This is most likely to occur when the pressure is in a transient state that is not high vacuum, or nearing a full atmosphere (approximately 10 mbar Helium, 4kW power in the experimental chamber), the exact pressure is dependent on the cooling gas used, the power, and lead gap distance, however. The mechanisms of electrical breakdown in vacuum and gas atmospheres have been known for some time [187], and the voltage breakdown of a gas as a function of voltage, pressure, and gap spacing can be calculated by Paschen’s law [188]:

\[V_b = \frac{apd}{\ln(pd) + b} \] (4.1)
where V_b is the breakdown voltage in volts, p is the pressure (bar), d is the electrode gap distance in meters. a and b are constants based on the composition of a gas. By differentiating with respect to pd, and assuming a constant gap distance, breakdown voltage can be calculated as a function of pressure. These are usually referred to as Paschen curves. These have been measured [187] for several gases and can be seen in Figure 4.3.

![Paschen curves](image)

Figure 4.3 Paschen curves measured for various gases assuming a gap distance of $d=1\text{cm}$

It can be seen in figure 4.3 that the minimum voltage for Helium for a gap spacing of 1cm to be approximately 200 V. These gap distances and applied powers are commonly used in EML. Electrical insulation is therefore a requirement for successful use of cooling gas. It was found that the most intense (and therefore most likely) arcing occurred at the high power feedthrough between the high power leads where the gap distance is small, and therefore the most critical area to insulate properly. The solution implemented was to use pure silica, which has a very high electrical resistance and epoxy it in place between the power leads using a high vacuum epoxy which greatly increases the effective gap distance. For future work, the electrical leads
and coil will be wrapped with silica-based fiberglass, which has sufficient electrical resistance and completely encompasses the leads which should more be more effective.

After insulating the power feedthrough, Kapton CR (corona-resistant, where corona is ionized gas that has not yet formed a plasma) film was wrapped along the leads and possessed a suitable resistance to reduce (but not eliminate) ionization. It is possible for discharges to occur that would not interrupt levitation, and the use of film reduced their occurrence.

The next point of electrical interruption was found to be between the coil loops. The solution to this was to use heat shrink on the copper tubing prior to winding the coil. The heat shrink reduced the possibility for the tubing to come in contact with each other and short. Eventually after a period of several months it was found that the heat shrink tubing would wear (potentially from corona formation, the mechanism was not determined). This requires either spot-correction with an insulating material or replacement of the coil.

It is also worth considering the efficiency of the levitation coil. For the study of Al-RE (discussed later) a relatively inefficient coil was used that resulted in lower temperature levitation but required more care when dealing with insulation. Alternatively when using an approximately 50% more efficient coil, electrical concerns were minimized when 50% lower power could be used for the same materials. It has been reported for researchers using 15 kW power supplies that vacuum operation was not possible at all due to the formation of corona, although there was no reports of use of insulation [176, 121].

Cooling gases have been used in many cases in EML, although if the target is undercooling the most sensible gas to use is Helium. When the experimental goal is higher temperature levitations, argon can be used to increase the chamber pressure and reduce vaporization without the potent temperature reduction of Helium. Gas purity and vacuum purity go somewhat hand-in-hand, and when considering gas purity (and therefore price) it is prudent to consider the overall purity of the system. Considering a 99.999% pure gas, impurities are 0.001% or one part per thousand which corresponds to the low pressure edge of medium vacuum (1 mbar). 99.9995% (UHP gas) therefore nets double the purity, or .5 mbar which is on the high pressure edge of high vacuum. For experiments in which the chamber is to be backfilled with Argon, for instance, researchers should note that extended vacuum pumping times to achieve higher
purity is not worthwhile. For situations in which the sample is going to be melted in vacuum, and then cooling gas is introduced, it can still be beneficial to improve the vacuum level beyond that of the purity of the gas.

4.3.3 Motion Translation and Vaporization Shield

Over the years there have been several strategies for initially holding the metallic sample prior to levitation. There has been use of thin cotton string that eventually burns off [176], but the more common use of an actuator in conjunction with a small crucible. Depending on the desired measurement, it may be sufficient to only have a linear actuator in which the crucible can move within the axis of the levitation coil. For drop calorimetry, it is necessary to rotate the crucible out of the way of the coil to allow the sample to fall into the calorimeter. Rotational actuators therefore must have the linear travel in order to move the crucible out of the coil and at least enough rotation to move it out of the way. In our studies it was also helpful to mount a vaporization shield approximately 45 degrees rotated from the crucible. Once the sample is levitated, the crucible is moved out of the coil and vaporization shield rotated into the path between the sample and the pyrometer. This allows for protection of the optical path in case of vaporization prior to the introduction of cooling gas, which eliminates concerns of vaporization changing the apparent temperature measurement between experiments.

The modified EML apparatus can be seen in Figure 4.4

4.4 Isoperibolic Calorimeter Development

The principle of the drop calorimetry technique is the establishment of thermal equilibrium between the experimental sample at high temperature, and the calorimeter at room temperature, with precisely known heat capacity. Isoperibolic describes calorimeters for which a constant surrounding temperature is maintained [101]. In contrast to adiabatic calorimeters, heat is lost to the surroundings during the sample-calorimeter heat transfer period, which requires temperature correction in order to accurately determine the enthalpy of the sample. In the isoperibolic design employed here the initial calorimeter temperature is the same temperature as the surroundings prior to the introduction of heat from the sample, at which point the
Figure 4.4 Description of levitation drop calorimeter apparatus.
calorimeter temperature rises (sample-calorimeter heat transfer period) and eventually returns to the initial temperature (calorimeter-surroundings heat transfer period).

Due to the use of vacuum and high temperature samples, aneroid (metal block) calorimeters must be used. The most suitable block material was determined to be pure copper due to its high thermal conductivity and reasonable cost. Several block shapes were evaluated throughout the process of development and will be described below. All of the calorimeter blocks were made from sections of a 1” copper rod as the intention was to have the calorimeter block be relatively small. A smaller calorimeter block will have a greater signal to noise ratio when measuring a change in temperature of the calorimeter block as well as a faster heat transfer period.

Compared to the ∼2.5kg aluminum calorimeters of Bonnell [176] or the ∼6.4 kg copper calorimeter of Schaefers et. al. [28], the main heat transfer period is considerably shorter. The heat transfer period duration reported by Bonnell is on average 1000 seconds, and the average heat transfer period duration reported by Schaefers is 780 seconds. The heat transfer period for the final calorimeter presented here is approximately 40 seconds. The natural result is a shorter period for which heat can be lost, reducing the overall temperature correction and requirement for strict environmental control. For comparison, the reported temperature corrections by Bonnell are on average 1-2°C [176], in this work the overall temperature correction is .1-.5°C.

The calorimeter is thermally connected to the stainless steel chamber via a finite heat conduction path through the insulation. In this way, the initial and final calorimeter temperatures vary with each experiment but are approximately constant. The sample-calorimeter heat transfer period is on average 40 seconds, and the calorimeter-surroundings heat transfer period on average is two hours. The final calorimeter temperature after the period of two hours is on average within 3% of the initial temperature. As described previously, the small-size calorimeter was designed to minimize the sensitivity to overall temperature correction, and it is assumed the minor fluctuations in the final calorimeter temperature contribute to random error in the temperature correction. As will be demonstrated, the overall sensitivity of the technique is within the expected accuracy, ±1-3 % error, while having considerable advantages of size and construction simplicity making the technique suitable for implementation in existing EML systems designed for other purposes.
In the development of the calorimeter, several block geometries and thermocouple configurations were tested. The first calorimeter was an approximately 100g solid copper cylinder with a hole drilled in the block with an ordinary drill bit, with additional holes drilled in the side for thermocouples. It was used in proof of concept measurements, however it was quickly replaced due to the inability to remove samples after experiments. The second calorimeter was a two-piece construction to separate the bottom and remove the sample. This was used in vacuum, however the calibration was not suitable for examining materials of vastly different densities because it was found that less dense materials would contact the upper calorimeter block and change the temperature response. Thus it was determined that a one-piece calorimeter block would be best. It was also at this point that open-cell polyimide foam was used as an insulating material. Open cell foams are suitable for use in vacuum systems and the use of foam prevents convection over most of the surface area of the calorimeter block (with the exception being the inside surface area). The third calorimeter was designed with an extreme taper to simplify sample removal after experiments, which was suitable for evaluating pure copper however when attempting to test aluminum there was excessive splashing, however in spite of the splashing the calorimeter was able to successfully measure the enthalpy of Cu and Al within reasonable error when calibrated for only one material, proving that the one-piece calorimeter block was essential to the accurate measurement of enthalpy. The second and third calorimeters can be seen in Figure 4.5.

The final calorimeter utilized a flat bottom hole to minimize splashing, and a 4° taper throughout to ensure sample removal. In Figure 4.6 the specifications and an image can be seen. The deep hole also minimizes the angle for which a sample could potentially splash out.

4.4.1 Calorimeter Temperature Measurement

In the past (and relatively recent years), there have been use of quartz thermometers [175, 28] however quartz thermometers are no longer being produced. There also have been arguments for the construction of thermistor circuits due to their fast time constant and high sensitivity [189]. Thermocouples were chosen due to their ease of use and commercial availability of passthrough and data acquisition hardware. It was initially determined that the method
should be evaluated with thermocouples, and if greater sensitivity were later required other avenues would be pursued.

The thermocouples were constructed by welding 0.005 inch diameter chromel and alumel wires into a Type-K thermocouple using a thermocouple wire welder. Thermocouples were fixed in place by drilling a shallow 5/64” hole and held in place with conductomet silver epoxy. The placement of thermocouples was evaluated and in general the best position was considerable distance from the heat introduction location. This is primarily due to the possibility of “heat damming” [93] which is a temporary spike related to the transient conduction of heat before the entire block is the same temperature. This can be seen in Figure 4.7.

Type-K thermocouple feedthroughs were used to pass the thermocouple signals to a National Instruments USB-9211 data acquisition system. LabView Signal Express software is used to record the temperature of the calorimeter block at a rate of 3 Hz and accuracy of ±0.02 K.

Isoperibolic describes calorimeters for which a constant surrounding temperature is maintained [101]. In contrast to adiabatic calorimeters, heat is lost to the surroundings during the sample-calorimeter heat transfer period, which requires temperature correction in order
Figure 4.6 Final calorimeter design featuring a flat bottom hole to minimize splashing and tapered sides for sample removal.

to accurately determine the enthalpy of the sample. In the isoperibolic design employed here the initial calorimeter temperature is the same temperature as the surroundings prior to the introduction of heat from the sample, at which point the calorimeter temperature rises (sample-calorimeter heat transfer period) and eventually returns to the initial temperature (calorimeter-surroundings heat transfer period). The temperature response of the calorimeter from a 880.2mg copper sample at 1426.4 K can be seen in Figure 4.8. The calorimeter presented here is designed to be compact to minimize the duration of the sample-calorimeter heat transfer period, as well as the drop distance to reduce the overall sensitivity to temperature corrections for both the calorimeter as well as radiative and convective losses during the drop period.

The method for determining the true temperature was presented by Bonnell [176] in which a newtonian cooling fit (where \(dT/dt\) is proportional to the temperature difference of the object and its surroundings) is applied to the cooling portion of the temperature response curve, which is then used to determine the time-lag free temperature rise of the calorimeter. In the work
Figure 4.7 Transient heat conditions can render the peak temperature unknowable, green line represents newtonian cooling fit, blue line experimental measurement. On left, improper thermocouple placement results in temperature spike.

of Bonnell [176], the calorimeter jacket temperature is fixed at a temperature which is greater than the calorimeter temperature throughout the experiment. The calorimeter temperature then constantly drifts towards the jacket temperature, and the corrected temperature rise is calculated at the mid-point of heat transfer. In this work, the initial and final calorimeter temperatures are assumed to be constant, thus the temperature correction is calculated at the time in which the sample was introduced. T_δ is defined as the resulting temperature from the heat input, $T_i + \Delta T$.

4.4.2 Non-contact Sample Temperature Measurement

Levitated sample temperatures are measured using a non-contact infrared pyrometer, in which the basis of temperature measurement is from Planck’s law, which describes the radiation emitted by a blackbody at a given temperature at thermal equilibrium. Levitated samples are considered greybodies, in which emissivities are used to relate the sample to blackbody conditions.

4.4.2.1 One-color pyrometry and multiple-color pyrometry

One-color pyrometry was chosen in this application, however the merits of multiple-color pyrometry will be discussed. Multi-color pyrometry has been described as one of the most commonly misunderstood approaches to solving the emissivity problem related to levitated
Implicit in the assumption of multi-color pyrometry is that the ratio of the emissivity at two temperatures does not vary. If we consider pyrometry, with two radiated intensities I_1 and I_2, at wavelengths γ_1 and γ_2 respectively, where the intensity is described as,

$$I(\gamma_1, T_a) = C\gamma \exp\left(-\frac{C_2}{\gamma_1 T_b}\right)\epsilon_1$$

and

$$I(\gamma_2, T_a) = C\gamma \exp\left(-\frac{C_2}{\gamma_2 T_b}\right)\epsilon_2$$

where C_2 is the second radiation constant that has the value 14.3877×10^6 nm K $\textbf{[190]}$, T_b is the black-body temperature, and ϵ the emissivity to relate the observed temperature, T_a, to the blackbody temperature T_b. The assumption of two-color pyrometers is the ratio of the above equations, such that $\frac{\epsilon_1}{\epsilon_2}$ is implicit in the measurement,

$$\ln\left(\frac{I_1}{I_2}\right) = \frac{C_2}{T_b}\left(\frac{1}{\gamma_2} - \frac{1}{\gamma_1}\right).$$

Figure 4.8 Temperature response of the calorimeter block from a 880.2mg copper sample at 1426.4 K
Figure 4.9 Corrected temperature rise of the calorimeter block from a 880.2mg copper sample at 1426.4 K

The validity of this assumption has been analyzed by Coates [191], in which the conclusion is that the best usage of multi-color wavelengths is as multiple-single color pyrometers, where the emissivity must be calibrated.

The pyrometer used is a Pyrometer Instrument Company Pyrofiber II, which measures radiated intensities at 1.550 µm with focusing optics that produce a 1.9 mm spot size at a working distance of 14". The operating mode used produces readings at a rate of 8 Hz. The emissivities of the melts were determined using an equilibrium thermal signal, such as a melting plateau, to measure the apparent temperature at which point the emissivity may be corrected such that the known thermal signal is represented in the temperature measurement. Using
Wien’s approximation to Planck’s law the emissivity can be determined by \[182, 28\]

\[\epsilon(\gamma) = \exp\left(\frac{C_2}{\gamma T_m} - \frac{1}{T_a}\right), \quad (4.5)\]

where \(T_m\) is the published or experimentally determined temperature of the thermal signal, \(T_a\) is the measured apparent temperature of the thermal signal from the pyrometer, \(\gamma\) is the wavelength measured by the pyrometer, and \(C_2\) is the second radiation constant that has the value \(14.3877 \times 10^6 \text{ nm K} [190]\). The temperature measurement is therefore dependent on the assumption that the emissivity of the liquid is constant. This assumption has been used by many other researchers using this technique \([192, 175, 176, 121, 90, 183]\).

Another factor to consider when determining the emissivity of the melt is removal of an oxide layer if present. The physical mechanism for oxide removal has not been fully established. A consistent mass loss can be observed for aluminum samples of nearly the same size and it has been presented that the oxide layer is removed along with a vaporization of a small amount of aluminum \([193]\). Limited publications in this area seem to confirm that higher temperatures can remove oxide layers \([194]\). The oxide layer and underlying liquid can be identified by the stark difference in brightness due to an approximately 50% difference in emissivity \([180]\). The oxide removal process can be seen below in Figure 4.10. It has been determined that higher vacuum levels allow for more rapid vaporization of the oxide layer, but cooling gas should be introduced quickly to reduce further vaporization than is necessary. Once the temperature measurement is determined to be stable, the RF power supply is turned off and the sample drops into the calorimeter.

4.5 Enthalpy Increment Calculation

The enthalpy increment of a sample at temperature, \(T\), can be calculated with respect to the increased calorimeter temperature, \(T_\delta\), in the following manner,

\[H(T) - H(T_\delta) = C_p^{cal} \Delta T \frac{M}{m} + Q_{lost} \frac{M}{m}, \quad (4.6)\]

in which \(C_p^{cal}\) is the heat capacity of the calorimeter, \(\Delta T\) is the corrected temperature rise of the calorimeter, \(M\) is the molar mass, \(m\) is the sample mass, and \(Q_{lost}\) represents the heat lost
Figure 4.10 Removal of oxide layer of pure Al in vacuum conditions: a) oxidized b) partially removed c) 99% removed.

during the drop from radiation and convection ($Q_{\text{lost}} = Q_{\text{rad.}} + Q_{\text{conv.}}$). It is generally more useful to have measured enthalpy increments be in reference to the same final temperature, usually 298 K. This requires the addition of the remaining enthalpy from T_δ to 298 K, which requires experimental determination of the heat capacity or estimation from thermodynamic data. The heat capacity is generally assumed to be constant over the small range (6-10 K) [28, 90] of T_δ to 298 K. In this work, the heat capacity for pure materials is obtained from the Scientific Group Thermodata Europe (SGTE) database [42], and if no reference is available the heat capacity is measured in reference to a sapphire standard with application of the isothermal step method [129, 130] using a Perkin-Elmer Pyris 1 DSC. The room temperature heat capacity of the sample is used in the following manner,

$$H(T_\delta) - H(298) = C_p^{298}(T_\delta - 298), \quad (4.7)$$

which is added to Equation 4.6 to calculate the enthalpy increment for a fixed reference temperature, $H(T) - H(298)$, which has been commonly used [121, 169, 90, 184],

$$H(T) - H(298.15) = C_b\Delta T_b \frac{M}{m} + Q_{\text{lost}} \frac{M}{m} + [H(T_\delta) - H(298)]. \quad (4.8)$$

A schematic of the enthalpy increment measurement can be seen in Figure 4.11.
Figure 4.11 Schematic of enthalpy as a function of temperature. Each arrow represents an enthalpy increment measurement. Dashed line represents the undercooled liquid.

4.5.1 Heat Loss During Drop Period

The total Q_{lost} during the sample drop period can be calculated individually as losses from radiation and convection, i.e.

$$Q_{\text{lost}} = Q_{\text{rad.}} + Q_{\text{conv.}}.$$ \hspace{1cm} (4.9)

$Q_{\text{rad.}}$, the heat lost due to radiation, can be calculated by the integration of Stefan and Boltzmann’s law for the sample drop period,

$$Q_{\text{rad.}} = \int_{0}^{t_d} \epsilon_t \sigma A (T_s^4 - T_r^4) \, dt$$ \hspace{1cm} (4.10)

which results in [28],

$$Q_{\text{rad.}} = \epsilon_t \sigma A (T_s^4 - T_r^4) t_d$$ \hspace{1cm} (4.11)

where ϵ_t is the total hemispherical emissivity, σ is the Stefan-Boltzmann constant of value 5.67×10^{-8} J S$^{-1}$ m$^{-2}$ K$^{-4}$, A is the surface area of the sample, t_d is the time of the drop period, T_s is the temperature of the sample, and T_r is the temperature of the surroundings, room temperature in this calculation. The total hemispherical emissivity is generally not known,
others have presented estimating the value from the determined spectral emissivity [176]. The surface area can be estimated from the assumption of a spherical sample, where the volume can be calculated from the liquid density to determine the surface area \((A = 4\pi r^2)\). In some cases the liquid density is reported, otherwise it has been presented that estimating the liquid density to be 10% less than the room temperature crystalline state is reasonably consistent with reported data [186]. The drop time, \(t_d\) can be determined by assuming free fall conditions,

\[
t_d = \left(\frac{2h}{g}\right)^{1/2}
\]

where \(h\) is the drop height, and \(g\) the standard acceleration due to gravity, 9.806 m/s\(^2\).

The magnitude of the radiative losses during the drop period is small for moderate temperatures, noting the \(T^4\) dependence. Considering pure aluminum, \(m = 509.4\) mg, \(A = 8.02 \times 10^{-4}\) m\(^2\) (from liquid density of 2.375 g/cm\(^3\) [195]), \(T_s = 1389\) K, \(T_r = 298\) K, \(t_d = 0.178\) seconds, \(\epsilon_t = 0.084\) (value estimated as 20% more than the spectral emissivity, from [121], the enthalpy lost was 133.9 J/mol which represents 0.3% of the measured enthalpy increment.

Convective heat losses are calculated using the method presented by Stretz [121], where the primary assumptions are a stationary spherical sample where the gas flow velocity is approximated as the free-fall sample drop velocity. The heat losses due to convection can be written as

\[
Q_{\text{conv.}} = A(T_s - T_g) \int_0^{t_d} \alpha \, dt,
\]

where \(t_d\) is the sample drop time, \(A\) the surface area, \(T_s\) the sample temperature, \(T_g\) the gas temperature (usually assumed 298 K), and \(\alpha\) the heat transfer coefficient,

\[
\alpha = \frac{\lambda}{D} \left[2 + 0.6(\text{Re})_f^{1/2}(\text{Pr})_f^{1/3} \right],
\]

where \(\lambda\) is the gas thermal conductivity, \(D\) the sample diameter, \(\text{Re}\) the Reynolds number, and \(\text{Pr}\) the Prandtl number. The Reynolds and Prandtl number are calculated using the gas film temperature \((T_f = \frac{T_s - T_g}{2})\). The Reynolds number and Prandtl number are defined as

\[
\text{Re}_f = \left(\frac{D \rho_{\text{gas}} v_{\text{gas}}}{\mu_f} \right)
\]

and

\[
\text{Pr}_f = \left(\frac{C_{p\text{gas}} \mu_f}{\lambda} \right)
\]
where \(v_{gas} \) is the gas velocity, \(\rho_g \) the gas density, \(\mu_f \) the dynamic viscosity at \(T_f \), \(C_p^{gas} \) the gas heat capacity. As an approximation for the gas velocity, the sample velocity as a function of drop time is substituted, where the modified Reynolds number takes the following form,

\[
Re'_f = \left(\frac{D \rho_g g t_d}{\mu_f} \right).
\]
(4.17)

When the modified Reynolds number is combined into Equation 4.14, and Equation 4.13 evaluated, the final form can be written as

\[
Q_{\text{conv.}} = A (T_s - T_g) \frac{\lambda}{D} \left[2t_d + 0.4(t_d)^{3/2} \left(Re'_f \right)^{1/2} \left(Pr_f \right)^{1/3} \right].
\]
(4.18)

Considering again pure aluminum, \(m = 509.4 \text{ mg} \), \(A = 8.02 \times 10^{-4} \text{ m}^2 \), \(T_s = 1389 \text{ K} \), \(T_g = 298 \text{ K} \), the total enthalpy lost is 265 J/mol, which is 0.61% of the total heat content. Convective losses are linearly temperature dependent \((T_s - T_g)\) compared to the fourth order dependence for radiative losses \((T_s^4 - T_r^4)\), meaning the overall sensitivity to temperature dependent changes is decreased. Due to a hardware limitation, gas pressure measurements are limited to the range \(1 \times 10^{-6}\) to 30 mbar, whereas experimental conditions can exceed 30 mbar for some materials. Due to this limitation, convective losses are assumed to be negligible.

Table 4.1 Summary of variables for calculation of radiative and convective losses. Some values are calculated for each sample condition.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>Al liquid density</td>
<td>2.35 g/cm(^3)</td>
</tr>
<tr>
<td>(r)</td>
<td>Sample radius</td>
<td>calculated, assume sphere</td>
</tr>
<tr>
<td>(A)</td>
<td>Surface area of sample</td>
<td>calculated</td>
</tr>
<tr>
<td>(t_d)</td>
<td>Sample drop time</td>
<td>0.178 seconds</td>
</tr>
<tr>
<td>(\epsilon_t)</td>
<td>Total hemispherical emissivity of liquid Al</td>
<td>0.084</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Stefan-Boltzmann constant</td>
<td>5.670 \times 10^{-8} W/m(^2)K(^4)</td>
</tr>
<tr>
<td>(T_s)</td>
<td>Sample temperature</td>
<td>298 K</td>
</tr>
<tr>
<td>(T_r)</td>
<td>Temperature of surroundings (room temp)</td>
<td>298 K</td>
</tr>
<tr>
<td>(\lambda_f)</td>
<td>Thermal conductivity of fluid at (T_f)</td>
<td>calculated</td>
</tr>
<tr>
<td>(\mu_f)</td>
<td>Dynamic viscosity at (T_f)</td>
<td>calculated</td>
</tr>
<tr>
<td>(\rho_g)</td>
<td>Density of gas</td>
<td>calculated</td>
</tr>
<tr>
<td>(C_p^{gas})</td>
<td>Heat capacity of helium</td>
<td>5193.1 J/ kg(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>(T_f)</td>
<td>Fluid temperature</td>
<td>calculated</td>
</tr>
<tr>
<td>(MW)</td>
<td>Molecular weight of helium</td>
<td>40.002602 g/mol</td>
</tr>
</tbody>
</table>

4.5.2 Calibration

The heat capacity of the calorimeter, \(C_b \), is determined using 99.999% pure aluminum. Enthalpy increments are measured and calculated with Equation 4.8, and the results compared to
the value in the SGTE database [42]. The heat capacity of the calorimeter, C_b, is then adjusted to minimize the error between the measured results and the reference. The apparent spectral emissivity of unoxidized liquid aluminum at 1.550 μm, ϵ_γ, was determined to be 0.07. The results from calibration are listed in Table 4.3, and can be seen in Figure 4.12. There are many other techniques that have been used for calibration of calorimeters, including electrical calibration (joule heating) [176, 189], Peltier cooling, or other techniques such as radioactive materials, summarized by Ferro [198]. Each calibration method has advantages and disadvantages, and it was determined that calibration using a known material would be sufficient.

![Figure 4.12](image)

Figure 4.12 Measured enthalpy increments of pure aluminum for calibration (\circ), and experimental fit (solid line). Red dashed line for reference is from the SGTE database [42].

Once the calorimeter is calibrated, another material of well known enthalpy is evaluated using the levitation calorimeter to confirm the calibration value. Pure copper is well described in literature and is chosen to evaluate the calibration. The apparent spectral emissivity of liquid copper, ϵ_γ at 1.550 μm, was determined to be 0.019. The measured enthalpy increments are summarized in Figure 4.13 and Table 4.4. The determined heat capacities, C_p, for aluminum
and copper are presented in Table 4.2.

Table 4.2 Determined liquid and undercooled liquid heat capacity from linear fit of enthalpy data, and intercept for the form \(H(T) - H(298) = C_p \cdot T + b \), with 95% confidence intervals given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(C_p) (J/mol K)</th>
<th>(b) (kJ/mol)</th>
<th>% Deviation from [42]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>31.76±0.31</td>
<td>-0.808±0.37</td>
<td>-0.03</td>
</tr>
<tr>
<td>Cu</td>
<td>31.59±7.06</td>
<td>-0.479±10.67</td>
<td>-0.67</td>
</tr>
</tbody>
</table>

Figure 4.13 Measured enthalpy increments of pure copper (○) and fit (solid line). Red dashed line for reference is from the SGTE database [42].

Indeed, the drop calorimetry method is successful in determining the enthalpy of liquid melts within 1%. The error observed is likely a combination of the uncertainty involved in experimental emissivity determination for copper and aluminum, which is a result of the limitation of IR pyrometry.

4.6 Conclusions

In summary, in order to achieve high accuracy enthalpy measurements the following must be considered when developing a levitation drop calorimeter:
• Cooling gas introduction requires proper electrical insulation and evacuation of the gas lines prior to use.

• The calorimeter block shape and thermocouple placement require consideration for achieving a proper temperature response without splashing or measurement of transient heat conditions.

• The non-contact sample temperature measurement requires some emissivity calibration from a known temperature signal.

• The enthalpy increment calculation requires the calorimeter be properly calibrated, and the heat lost during the fall period be calculated.

| Table 4.3 Measured enthalpy increments of pure aluminum used for calorimeter calibration. |
Mass (mg)	Temperature (K)	$H_T - H_{298}$ (kJ/mol)	% Deviation from [42]
509.43	1389.7	43.30	0.05
514.64	1227.5	38.20	-0.07
515.57	1264.0	39.37	-0.09
518.00	1184.5	36.81	0.01
512.75	1342.9	41.85	-0.03
516.01	1153.0	35.76	0.11
509.10	1114.7	34.65	-0.12
514.52	1072.1	33.22	0.03
487.59	1182.4	36.70	0.10

| Table 4.4 Measured enthalpy increments of pure copper. |
Mass (mg)	Temperature (K)	$H_T - H_{298}$ (kJ/mol)	% Deviation from [42]
878.2	1426.5	44.56	0.32
848.5	1536.3	47.87	0.60
728.3	1568.8	49.14	0.09
740.0	1505.6	47.23	-0.06
CHAPTER 5. Thermal Analysis of Aluminum-RE Binary Glass Forming Alloys

5.1 Introduction

Aluminum based materials have traditionally been investigated due to their low weights, and adequate strength for use in transport applications. Rapidly solidified binary aluminum alloys were initially investigated using splat quenching techniques with an aluminum-metalloid system, such as Al-Si by Predecki, et al. in 1965 [199], and Al-Ge in 1972 by Ramachan. et. al. [200]. In the Al-Ge system, it was found that at high cooling rates the high temperature metastable phase could almost be completely retained. Also in 1972, Davies and Hull successfully formed a fully amorphous phase in a metal-metal sample with splat cooling of the Al-Cu system [201]. In 1977 Furrer and Warlimont further investigated a fully amorphous phase by performing in-situ annealing experiments and monitoring crystallization in the Al-Cr system [202]. Until 1981, the amorphous phases formed were in the extremely thin sections of foils resulting from the rapid solidification. The increased cooling rate from the melt spinning technique by Liebermann and Graham in 1976 [203] aids in the formation of larger amorphous samples. Inoue, et. al. were able to make fully amorphous samples that were large enough to perform mechanical testing (microhardness) using melt spinning in the Al-Fe-B, Al-Ni-B, and Al-Co-B systems [204]. The resulting alloys were very brittle, and had limited ductility. The first results of Al-based amorphous alloys with good ductility were achieved also by Inoue, et. al. in 1987 [205]. In 1988, a lot of progress was made with ductile Al-based amorphous alloys by Inoue et. al [206, 207, 208, 209, 210], as well as He et. al. [211]. The results were high strength (1000 MPa fracture strength) and a strength to weight ratio that exceeded high strength aluminum alloys [206]. In 1991, Kim et. al. discovered fcc-Al nanocrystals dispersed
in an amorphous matrix, providing another great leap in tensile strength to 1300 MPa [212]. It was presented that the great increase in strength was a result of the homogenous dispersion of the fcc-al crystallites, which are free of defects and smaller than shear defects, which blocks the shear mechanism greatly increasing strength.

Initially the Al-RE (RE = rare earth) binary alloys were investigated because it was thought they would be good for dispersion strengthening for high temperature applications due to several reasons that can be explained by the phase diagram in Figure 5.1.

![Figure 5.1 Al-Sm phase diagram from Okamoto [43].](image)

It can be seen that there exists several properties for a high temperature dispersion strengthened alloy [213]:

- a high melting point intermetallic compound ($\text{Al}_{11}\text{Sm}_3$)
- high liquid solubility
- low solid solubility in Al
- the solid state diffusion of rare earths in Al is slow [214]
Inoue et. al then investigated the rapid quenching of Al-RE binary systems with melt spinning, determining the range of glass formation for many of the binary Al-based glass formers [215]. A plot of the formation ranges, larger in scope from a later review by Inoue, can be seen in Figure 5.2. Their results attracted some attention because the determined composition range for glass formation is off-eutectic, making them an exception to the commonly used empirical rules for glass formation: the eutectic liquid by definition is stable at a lower temperature, making it easier to reach the glass transition [216]. The systems also form a high density of nanocrystals (order of $10^{23–25}$ m$^{-1}$) embedded in an amorphous matrix which also exhibit exceptional tensile strengths beyond that of an entirely amorphous sample [217, 44, 218].

![Figure 5.2 Glass forming range of Al-Re alloys [44].](image)

The mechanisms for the formation and growth of the nanocrystals began to be investigated soon after their discovery in 1990. Al-Fe-Co glass forming alloys violate another rule of glass formation, the atomic size criterion proposed by Egami [219], which lead Hsieh, et. al. to investigate Al-Fe-Ce alloys with 90 at. % Al using pulsed neutron and synchrotron X-ray
Figure 5.3 Compositional profile for Al-Ni-Ce showing strong chemical isolation of α-Fcc [45].

scattering in 1990 [220]. Their results indicated strong chemical and topological ordering that they indicated reduced the effective atomic radius to aid glass formation. A compilation of the scattering investigations of amorphous Al-based ternary alloys is available in a section in a review by Cheng and Ma [50].

Nakazato et. al investigated Al-Ni-Ce with DSC and TEM in 1993 [221], and their main conclusions were that the crystal growth was very fast, only existed when Al content exceeded 87 at. %, and that there was no signal for nucleation in DSC, thus they suggested that the nuclei pre-existed. This argument was supported by another investigation using DSC [222]. In 1994, Hono et. al investigated Al-Ni-Ce using an atom probe field ion microscope [45], and their results indicated strong compositional segregation, which can be seen in Figure 5.3.

The amorphous-nanocrystal composites are formed by growing the FCC aluminum nanocrystals at a temperature at which the growth of the Al-R compound is suppressed [44]. It has been presented that nucleation of the other phases is suppressed due to interfacial effects isolating the pure Al regions, and that the long-range diffusion necessary (also the sluggish diffusion of RE in Al) prevents primary crystallization [218].

In 1997, Tsai et. al. used small angle X-ray scattering to determine strong composition fluctuations in Al-Ni-Ce at the composition of 87 at. % Al [223], further supporting the argument of Nakazato and confirming the results obtained by Hono. Wilde, et. al. investigated the Al-Sm binary system and formed an amorphous sample using mechanical means [224].
Usually when the glass transition temperature is investigated in these systems the onset FCC aluminum growth obfuscates the glass transition temperature. The amorphous samples formed by mechanical means did not exhibit crystal growth, and thus the \(T_g \) was able to be accurately determined to be 172° C in \(\text{Al}_{92}\text{Sm}_8 \). In 2001, Wu et. al. applied modulated DSC of melt-spun ribbons to measure the glass transition [225], which agreed well with the measurement by Wilde. In 2005, Stratton et. al. used fluctuation electron microscopy (FEM) to investigate the ordering in Al-sm [226]. The technique examines spatial fluctuations in scattering patterns, a review of the technique was presented by Treacy, et. al. [227]. Stratton found medium-range order in amorphous \(\text{Al}_{92}\text{Sm}_8 \) at. % formed by rapid quenching, which supported the quenched-in nuclei theory, although the formation of the nuclei was not yet elucidated. Investigations by Kalay et. al. in 2008 using high resolution transmission electron microscopy, atom probe topography, and high energy X-ray diffraction confirmed that the nuclei were indeed quenched in from the melt, and that local ordering existed [228]. Further investigation of the structure of rapidly solidified Al-Sm in 2010 by Kalay et. al. lead to the claim that the medium range ordering in the liquid was the mechanism for nanocrystal formation [229], and additional analysis of Al-Tb using atom probe topography and fluctuating electron microscopy confirmed chemical separation of pure Al and Tb rich clusters, confirming the pure Al regions are the precursor to the FCC Al nanocrystals [230].

To date, all investigations of the Al-Sm and Al-Tb systems in far-from-equilibrium conditions were done by rapid cooling. In the current work, the deeply undercooled liquid state was examined using levitation drop calorimetry to investigate the unique liquid properties inherent to the Al-based glass forming alloys. Levitation processing enables access to high undercoolings for a period of minutes.

5.2 Enthalpy Measurements

The following Al-Tb and Al-Sm enthalpy measurements are going to be included in a publication titled “Thermal Analysis of Undercooled \(\text{Al}_{90}\text{Tb}_{10} \) and \(\text{Al}_{90}\text{Sm}_{10} \) at.% Melts by Electromagnetic Levitation Drop Calorimetry” with authors C. Tackes, Z. L. Royer, and R. E. Napolitano, the entire publication can be viewed in the appendix.
Al\textsubscript{90}Tb\textsubscript{10} and Al\textsubscript{90}Sm\textsubscript{10} at.% alloys were created from 99.999% pure Al, and rare earth purity of at least 99.995% overall by the Materials Preparation Center at Ames Laboratory \[a\] in an arc-melting furnace. The apparent spectral emissivity of each sample composition was determined using Eq. 4.5, with the reference T_m value from both calculated phase diagrams \[231, 232\] and DTA. The room temperature heat capacities were measured using stepwise DSC, the results of which are in Table 5.1. Applying the levitation drop calorimetry technique described in chapter 4 to Al\textsubscript{90}Tb\textsubscript{10} and Al\textsubscript{90}Sm\textsubscript{10} at.% alloys the enthalpy of the liquid as well as the undercooled liquid were obtained. In both cases it was determined that a linear fit is sufficient to represent the experimental data. The measured enthalpy increments are presented in Figure 5.4 and Figure 5.5. The heat capacity, $\frac{\delta H}{\delta T}$, is the slope of the fit and is presented in Table 5.2. For each material, it was necessary to check that the crystalline phases formed after being dropped into the calorimeter were consistent, as the formation of differing phases would affect the measured enthalpies. Using XRD and SEM, it was determined that the Al\textsubscript{90}Tb\textsubscript{10} at.% samples formed Al\textsubscript{3}Tb-δ and and f.c.c. aluminum, and the Al\textsubscript{90}Sm\textsubscript{10} at.% samples formed Al\textsubscript{4}Sm-β and f.c.c. aluminum. There is more variation in the Al\textsubscript{90}Sm\textsubscript{10} at.% enthalpy measurements, which is likely a result of the higher vapor pressure of Samarium which is an experimental obstacle considering the necessity of removing the oxide layer in vacuum. This results in less oxide layer removal compared to the Al\textsubscript{90}Tb\textsubscript{10} at.% samples, which acts as a heterogenous nucleation site, influencing the maximum undercooling achieved. The maximum relative undercooling achieved for Al\textsubscript{90}Tb\textsubscript{10} at. %, $\Delta T/T_m = 0.185$, is consistent with the range reported for EML \[185\].

<table>
<thead>
<tr>
<th>Sample (at. %)</th>
<th>C_p at 298 K (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al\textsubscript{90}Tb\textsubscript{10}</td>
<td>23.3 ±0.19</td>
</tr>
<tr>
<td>Al\textsubscript{90}Sm\textsubscript{10}</td>
<td>23.8 ±0.36</td>
</tr>
</tbody>
</table>

The present work employs levitation drop calorimetry to quantify the enthalpy of undercooled marginal glassforming Al\textsubscript{90}Tb\textsubscript{10} and Al\textsubscript{90}Sm\textsubscript{10} at.% alloys. High energy X-ray diffraction (HEXRD) studies of liquid Al\textsubscript{91}Tb\textsubscript{9} at.% above melting indicate a small intensity pre-peak at
Table 5.2 Determined heat capacity from linear fit of enthalpy data, and intercept for the form $H(T) - H(298) = C_p T + b$ with 95% confidence intervals given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_p (J/mol K)</th>
<th>b (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al${90}$Tb${10}$</td>
<td>45.79±0.86</td>
<td>-17.09±1.010</td>
</tr>
<tr>
<td>Al${90}$Sm${10}$</td>
<td>32.24±3.62</td>
<td>-1.521±4.397</td>
</tr>
</tbody>
</table>

Figure 5.4 Measured enthalpy increments of Al$_{90}$Tb$_{10}$ alloy (\circ), and fit (solid line). T_{melt} is indicated by the dashed line.

low Q which is evidence for the existence ordering in the liquid [230]. HEXRD of as quenched samples revealed a higher intensity peak at the same location[230], and further analysis using fluctuation electron microscopy, atom probe topography suggested a highly networked medium range order structure.

The temperature dependence of the undercooled heat capacity can vary depending on the liquid behavior, i.e. ‘fragile’ or ‘strong’ liquids. For a strong liquid, Pd$_{40}$Ni$_{40}$P$_{20}$, the temperature dependence of the undercooled heat capacity has been shown to be linear [20], and it has also been shown that there can be essentially no temperature dependence to the heat capacity prior to a peak near T_g, such as the measured results for Pd$_{77.5}$Cu$_6$Si$_{16.5}$, a ‘fragile’
Figure 5.5 Measured enthalpy increments of Al$_{90}$Sm$_{10}$ alloy (○), and fit (solid line). T_{melt} is indicated by the dashed line.

liquid [20]. One of the best bulk metallic glass forming alloys, Mg$_{65}$Cu$_{25}$Y$_{10}$, has been shown to display very little temperature dependence of the heat capacity [4], similar to the results for other excellent glassforming alloys such as the Zr-based Vitreloy compositions [2]. Recent MD investigations reveal a strong correlation between the fraction of polyhedral structures observed as a function of temperature and the specific heat capacity as a function of temperature [24], indicating that fragile liquids undergo a large degree of structural ordering prior to glass formation. The heat capacity measurements presented here do not include any temperature dependence, which raises several questions regarding the dynamics of the ordering processes and liquid behavior of Al-RE alloys. The continued ordering could occur at lower temperatures, or the highly networked MRO may not reflect an experimentally observable deviation in heat capacity. For the Al-Re alloys, further undercooling is a difficult experimental range to access. Given the quenched in nanocrystal nuclei, the heat capacity of the undercooled liquid cannot
be determined from in-situ devitrification, and thus the only likely solution to further quantify the structural dynamics of Al-Re alloys is through the use of computational techniques, such as molecular dynamics.

5.3 Calculation of the Enthalpy of Mixing from Levitation Calorimetry

The following is a description of the motivation and use of the levitation calorimetry technique to determine the enthalpy of mixing, which will be included in a publication. Given that the publication also involves first-principles calculations and solution based modeling, the following text summarizes only the levitation calorimetry experiments. The manuscript is titled “Phase stability for the Al-Tb system: first-principles, experiments and solution-based modeling”, by authors S.H. Zhou, Y. Huo, C. Tackes, and R. E. Napolitano.

The primary motivation for calculation the enthalpy of mixing using the levitation calorimeter is because the technique can be applied to reactive alloys. Group member S. Zhou applied the CALPHAD method to the Al-Tb system [232], and used solution calorimetry measurements to provide a comparison to the calculated model. It was found that significant reactions with the crucible occurred when terbium content of the alloy exceeded 10 at. %. Therefore the levitation calorimeter was employed to measure the enthalpy of Al\textsubscript{80}Tb\textsubscript{20} at. %, and measured results for Al\textsubscript{90}Tb\textsubscript{10} at. % were also used. It will be presented how the enthalpy of mixing can be determined from levitation calorimeter measurements.

Defining the enthalpy of liquid Al-Tb alloy as the sum of contributions of both the pure materials and the enthalpy of mixing,

\[
H_{\text{Liq}} = x_{\text{Al}}H_{\text{Al}(\text{Liq})} + x_{\text{Tb}}H_{\text{Tb}(\text{Liq})} + \Delta H_{\text{mix}},
\]

and considering the measurement from the levitation calorimeter,

\[
\Delta H = H_{\text{Liq}} - H_{298},
\]

it is evident that if \(H_{298}\) was known, the enthalpy of mixing could be determined.

Now considering a definition of \(H_{298}\),

\[
H_{298} = x_{\text{Al}}H_{\text{Al}(\text{FCC})} + x_{\text{Tb}}H_{\text{Tb}(\text{HCP})} + \Delta H_f,
\]
in which the contributions from the pure materials includes specification of the equilibrium phases, if we also have the enthalpy of formation of the compound the enthalpy at 298 K can be calculated.

The enthalpy of formation was calculated by S. Zhou using the Vienna ab initio simulation package (VASP), which calculates the total energy of the system and energy of each phase at 0 K, \(E^0 \). The enthalpy of formation can then be calculated by subtracting the energy of each phase:

\[
\Delta H_f^0 = E_{total}^0 - x_{Al}E_{Al}^{0fcc} - x_{Tb}E_{Tb}^{0hcp} \quad (5.4)
\]

More details are available in other publications using the same technique by S. Zhou [10, 46]. The enthalpies of the pure materials (\(H_{Al(fcc)} \) and \(H_{Tb(hcp)} \)) are determined from the SGTE database [42].

For \(Al_{80}Tb_{20} \) at. % the calculation of \(H_{298} \) is presented with \(H \) values from SGTE [42] and \(H_f \) from upcoming publication by S. Zhou:

\[
H_{298} = 0.8 \cdot 4540 \frac{J}{mol} + 0.2 \cdot 9426 \frac{J}{mol} - 40 \frac{kJ}{mol} = -34.48 \frac{kJ}{mol} \quad (5.5)
\]

Levitation samples were prepared by the Materials Preparation Center, and the enthalpy measured as outlined in Chapter 4. It was then necessary to check that the phases present were consistent with those used in the calculations, which was done with XRD and SEM. The XRD patterns for \(Al_{90}Tb_{10} \) and \(Al_{80}Tb_{20} \) at. % were overlaid as well as the peak positions for the equilibrium fcc Al and AlTb\(_3\) phase and can be seen in Figure 5.18. SEM images for \(Al_{90}Tb_{10} \) and \(Al_{90}Tb_{20} \) can be seen in Figure 5.19.

The calculation can be seen in Table 5.3 and the results can be seen in Figure 5.6.

<table>
<thead>
<tr>
<th>x(Tb) at. %</th>
<th>(T_{drop}) (K)</th>
<th>(\Delta H_{alloy})</th>
<th>(H_{T\delta})</th>
<th>(H_{liq})</th>
<th>(\Delta H_{mix})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1326.0</td>
<td>43.07</td>
<td>-17.11</td>
<td>25.69</td>
<td>-16.32</td>
</tr>
<tr>
<td>0.2</td>
<td>1406.5</td>
<td>54.54</td>
<td>-34.52</td>
<td>20.02</td>
<td>-25.48</td>
</tr>
<tr>
<td>0.2</td>
<td>1439.5</td>
<td>56.77</td>
<td>-34.55</td>
<td>22.21</td>
<td>-24.45</td>
</tr>
</tbody>
</table>
5.4 *In-situ* Metastable Phase Formation and Evolution

The following text describes some metastable phase observation experiments, some of which will likely be included in a publication. The publication is titled “Energetic investigation of metastable Al$_5$Sm-π, Al$_4$Sm-γ, Al$_{11}$Sm$_3$ – α and Al$_4$Sm-β phase formation”, the author list has not been finalized yet.

Throughout the course of the Al$_{90}$Sm$_{10}$ enthalpy measurements, it was observed that the sample would solidify near maximum undercoolings with little or only a small recalescence. It was therefore hypothesized that the remaining energy was used to form a metastable phase. The maximum cooling rate provided by the cooling gas is 10 K/s, thus it is likely that the stable phase was not kinetically suppressed, but rather growth controlled due to reduction of heterogenous nucleation sites. This small recalescence can be seen in Figure 5.7. The visual difference in solidification behavior can be seen in Figure 5.13 and Figure 5.14. Considering only the Gibbs free energy of the phases, it can be seen that it would be plausible to form the high temperature metastable Al$_4$Sm-β phase on undercooling. The metastable Al$_4$Sm-β phase
would also require less diffusion to form, which is also an important factor in phase selection. The Gibbs free energy was calculated by S. Zhou, whose modeling for the metastable phases can be seen in his publication [46].

Figure 5.7 Temperature evolution of undercooled Al$_{90}$Sm$_{10}$. Recalescence events are indicated with arrows.

It was determined that applying isothermal holds would allow for investigation of the metastable phase evolution independent of other power input effects to the sample. This was achieved by maintaining a constant current setting in the power supply and a constant pressure gas atmosphere to cause a steady-state temperature condition. The isothermal holds can be seen in Figure 5.9.

It can be seen that after a period of time there is some ΔT resulting from some reaction. It was then attempted to quench the sample and perform XRD analysis to analyze the phases present. A summary of the sample temperatures and quenches are shown in Figure 5.10. The XRD results confirmed Al$_4$Sm-β + FCC Al phase formation for the ‘metastable’ behavior observed (the blue line in Figure 5.7) when quenched. The XRD results for the transformed state
Figure 5.8 Calculated Gibbs free energies for liquid, FCC Al + Al\textsubscript{4}Sm-\textbeta phase, and FCC Al + Al\textsubscript{11}Sm\textsubscript{3}-\textalpha phase. Calculated by S. Zhou from previously reported model [46].

have been inconclusive, where it has been found that either Al\textsubscript{4}Sm-\textbeta + FCC Al or Al\textsubscript{11}Sm\textsubscript{3}-\textalpha + FCC Al were detected. Mixtures of compounds were not detected. The most likely transformation is Al\textsubscript{4}Sm-\textbeta to Al\textsubscript{11}Sm\textsubscript{3}-\textalpha based on the reported Gibbs free energy of the system [46]. The orthorhombic Al\textsubscript{4}Sm-\textgamma phase, and the Al\textsubscript{3}Sm-\textdelta phase were never observed. Observations by Zhou et al. reported extended annealing times were required at the same temperatures to transform the Al\textsubscript{11}Sm\textsubscript{3}-\textalpha phase to Al\textsubscript{3}Sm-\textdelta phase [46] which is likely why the Al\textsubscript{3}Sm-\textdelta phase was never observed. The XRD pattern for the small recalescence event seen in Figure 5.7 can be seen in Figure 5.15.

Further XRD was performed on the lower undercooling sample in Figure 5.10 and refined using GSAS. The refinement initially indicated Al\textsubscript{11}Sm\textsubscript{3}-\textalpha + FCC Al, however the crystallographic information file (.cif) used for Al\textsubscript{4}Sm-\textbeta was incorrect. The refinement was submitted to Dr. Kramer who used an experimental .cif file, which when used in refinement more clearly indicates that the sample was a mixture of Al\textsubscript{11}Sm\textsubscript{3}-\textalpha, Al\textsubscript{4}Sm-\textbeta, and FCC Al. Several 2\texttheta ranges are demonstrated below to show the phases present.

The quench results for the ‘transformed’ state are inconclusive for unknown reasons. Further experimentation would likely resolve this question. All other results, XRD and visual observations, show the transformation is as expected. The quench process is an experimental compromise, where the sample is dropped into the pure copper calorimeter. There is less heat
extraction control available in this process than what is desirable.

An interesting note is that studies investigating nucleation within the mushy zone have revealed that formation of metastable phases within the mushy zone causes a double recalescence event, as the nucleated metastable phase provides an interface to form the stable phase [47]. The double recalescence event can be seen in Figure 5.12. The presented hypothesis is the metastable Al$_4$Sm-β phase formation would provide a site for formation of a more stable phase (either Al$_{11}$Sm$_3$-α or Al$_3$Sm-δ), however the diffusion is likely so sluggish that a period of minutes is required for the formation of the stable phase. Ideally, in-situ scattering could be used to identify the phases directly.
Figure 5.9 Approximate isothermal temperature holds for Al$_{90}$Sm$_{10}$ samples. The data presented represents a collection of multiple trials under similar experimental conditions. Sample sizes varied from 400-500 mg.
Figure 5.10 Summary of temperature data and determined phases from XRD. Upper figure describes the formation of Al$_4$Sm-β and Al$_{11}$Sm$_3$-α phases. Lower figure describes the quench and XRD for an isothermal temperature hold.
Figure 5.11 GSAS refinement data for low undercooling Al-Sm levitation sample in Figure 5.10. The teal markers (phase2 in legend) are the $\text{Al}_{11}\text{Sm}_3$-$\alpha$ reflections, the purple markers (phase6) are the experimental reflections for Al_4Sm-β, and pink markers (phase1) are FCC Al reflections. It can be most clearly seen in the bottom figure near 35-2θ that the sample is both Al_4Sm-β, $\text{Al}_{11}\text{Sm}_3$-$\alpha$, and FCC Al.
Figure 5.12 Double recalescence event in undercooled Fe-Cr-Ni (stainless steel) alloys from Matson [47].

Figure 5.13 Observed ‘equilibrium’ solidification behavior of undercooled Al₉₀Sm₁₀, stirring can be observed as solid moves across the surface.

Figure 5.14 Observed ‘metastable’ solidification behavior of undercooled Al₉₀Sm₁₀, there appears to be considerably less stirring. The third and seventh frames show the same shape of solid as the sample rotates.
Figure 5.15 XRD pattern for 'metastable' temperature profile after quench. The pattern indicates the Al$_4$Sm-β + FCC Al phases.

Table 5.4 Measured enthalpy increments of Al$_{90}$Tb$_{10}$ at% alloy.

<table>
<thead>
<tr>
<th>Mass (mg)</th>
<th>Temperature (K)</th>
<th>$H_T - H_{298}$ (kJ/mol)</th>
<th>% Deviation from fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>644.00</td>
<td>1331.9</td>
<td>43.86</td>
<td>0.01</td>
</tr>
<tr>
<td>738.65</td>
<td>1238.8</td>
<td>39.49</td>
<td>0.28</td>
</tr>
<tr>
<td>754.89</td>
<td>1223.6</td>
<td>38.81</td>
<td>0.25</td>
</tr>
<tr>
<td>594.55</td>
<td>1195.9</td>
<td>37.68</td>
<td>-0.11</td>
</tr>
<tr>
<td>479.64</td>
<td>1292.1</td>
<td>41.99</td>
<td>0.11</td>
</tr>
<tr>
<td>464.98</td>
<td>1259.2</td>
<td>40.48</td>
<td>0.13</td>
</tr>
<tr>
<td>603.91</td>
<td>1147.5</td>
<td>35.34</td>
<td>0.25</td>
</tr>
<tr>
<td>426.98</td>
<td>1068.0</td>
<td>31.55</td>
<td>0.73</td>
</tr>
<tr>
<td>464.13</td>
<td>1156.4</td>
<td>36.03</td>
<td>-0.55</td>
</tr>
<tr>
<td>347.12</td>
<td>1206.6</td>
<td>38.48</td>
<td>-0.93</td>
</tr>
<tr>
<td>509.67</td>
<td>1020.8</td>
<td>29.77</td>
<td>-0.49</td>
</tr>
<tr>
<td>516.47</td>
<td>984.4</td>
<td>28.07</td>
<td>-0.38</td>
</tr>
<tr>
<td>487.95</td>
<td>1262.8</td>
<td>40.66</td>
<td>0.10</td>
</tr>
<tr>
<td>454.60</td>
<td>983.5</td>
<td>27.75</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Figure 5.16 XRD analysis of Al$_{90}$Sm$_{10}$, at high undercooling (blue) and high temperature (red). Peak positions are given from crystal database for notated phases.

Table 5.5 Measured enthalpy increments of Al$_{90}$Sm$_{10}$ at% alloy

<table>
<thead>
<tr>
<th>Mass (mg)</th>
<th>Temperature (K)</th>
<th>$H_T - H_{298}$ (kJ/mol)</th>
<th>% Deviation from fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>534.40</td>
<td>1294.3</td>
<td>40.20</td>
<td>0.02</td>
</tr>
<tr>
<td>493.28</td>
<td>1234.5</td>
<td>38.77</td>
<td>1.28</td>
</tr>
<tr>
<td>611.06</td>
<td>1248.6</td>
<td>38.73</td>
<td>0.02</td>
</tr>
<tr>
<td>567.90</td>
<td>1185.1</td>
<td>36.73</td>
<td>0.11</td>
</tr>
<tr>
<td>407.30</td>
<td>1192.6</td>
<td>37.13</td>
<td>0.54</td>
</tr>
<tr>
<td>493.87</td>
<td>1331.7</td>
<td>41.25</td>
<td>0.39</td>
</tr>
<tr>
<td>441.33</td>
<td>1181.6</td>
<td>36.35</td>
<td>0.61</td>
</tr>
<tr>
<td>472.00</td>
<td>1171.1</td>
<td>35.76</td>
<td>1.31</td>
</tr>
<tr>
<td>369.50</td>
<td>1147.6</td>
<td>35.31</td>
<td>0.48</td>
</tr>
<tr>
<td>350.88</td>
<td>1139.4</td>
<td>35.53</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Figure 5.17 XRD analysis of Al$_{90}$Tb$_{10}$ at.% at high undercooling. Peak positions are given from crystal database for notated phases. The Al$_3$Tb phase is the most stable phase.
Figure 5.18 XRD analysis of Al₉₀Tb₁₀ and Al₈₀Tb₂₀. Peak positions are consistent showing in both cases the same phases were formed.
Figure 5.19 SEM images of AlTb alloys, upper image is $\text{Al}_{80}\text{Tb}_{20}$ at% and lower $\text{Al}_{90}\text{Tb}_{10}$ at%. EDS analysis revealed phases formed were consistent with XRD.
CHAPTER 6. Conclusions and Future Directions

In this work, the value of a levitation calorimeter apparatus is presented for investigations of various avenues relevant to analysis of the structures and dynamics of glass forming alloys. The undercooled heat capacity can be determined as a function of temperature, which provides insight into the configuration of the liquid that underpins its behavior and response to processing. Considering the available experimental pathways to the heat capacity of the undercooled liquid, levitation calorimetry is one of very few suitable techniques. The critical parameter in the thermodynamic models reviewed is the heat capacity of the undercooled liquid, which can be used to calculate the Gibbs free energy difference between the undercooled liquid and crystalline states, and elucidate the various pathways that can be selected by the far-from-equilibrium liquid.

Furthermore, the heat capacity is derived from measured enthalpy results. High temperature (\(\sim 1000^{\circ}C\)) enthalpy measurements are often hard to achieve, and the method presented here can be reliably used for both undercooled liquids and be extended to higher temperatures. This was demonstrated for the measurement of both undercooled Al\(_{90}\)Tb\(_{10}\) at.% and higher temperature reactive Al\(_{80}\)Tb\(_{20}\) at.%.

Given the energetic hierarchy and associated structural pathways between various unstable and metastable states, a combination of computational and experimental methods are required to understand the complex dynamics. Computational methods can be very useful in the identification and energetic “ranking” of viable structures. Dynamic pathways are more difficult to predict, particularly when medium- or long-range interactions become important. In such cases, experimental techniques for \textit{in-situ} measurement of such transitions become extremely valuable. EML is one such method, offering the ability to generate large nucleation-controlled undercooling conditions and formation of metastable phases, as well as retaining the ability to
control the sample temperature and monitor phase transitions.

From our results and analyses, we can draw the following conclusions:

- With appropriate instrument analysis through the testing of material standards, the electromagnetic levitation drop-calorimetry technique can provide reliable high-accuracy measurements of enthalpy and related heat capacity for metallic liquids.

- The technique was applied to two difficult to achieve experimental conditions, the far-from-equilibrium undercooled liquid, as well as a reactive liquid for which there was no suitable crucible for conventional calorimetry.

- Levitation calorimetry yielded the following two important measurements of alloy liquid heat capacity:

 \[C_p(\text{Al}_{90}\text{Tb}_{10}) = 45.79 \text{ J/mol K over the temperature range } 983.5 \text{ K - 1331.9 K} \]

 \[C_p(\text{Al}_{90}\text{Sm}_{10}) = 32.24 \text{ J/mol K over the temperature range } 1139.4 \text{ K - 1294.3 K} \]

- The Al-Tb measurements reported here for 10 and 20 at.% Tb, are consistent with solution-based (CALPHAD) mixing enthalpy models.

- The reduction of heterogenous nucleation sites for levitation processed Al_{90}Sm_{10} allowed for the \textit{in-situ} formation of Al_{4}Sm-\beta and Al_{11}Sm_{3}-\alpha metastable phases.

6.1 Future Directions

Given the small experimentally measured pre-peak in liquid Al_{90}Tb_{10} at.%, which increases in intensity for melt-spun samples [230], the continued growth of the existing ordering is expected as temperatures decrease, however the dynamics of continued growth have not been well established. The measured results here for undercooled Al_{90}Tb_{10} at.% and Al_{90}Sm_{10} at.% melts indicate a constant specific heat capacity, which suggests two plausible scenarios. The continued ordering could occur at lower temperatures (consistent with fragile liquid behavior), or the highly networked MRO may not reflect an experimentally observable deviation in heat capacity. MD analyses are likely the only technique to further quantify the structures and
dynamics of the Al-Re systems due to the fact that lower temperatures are experimentally inaccessible.

The EML technique is robust in design and operating conditions, from high vacuum (10^{-6} mbar) to 1 atm and anywhere between with a variety of inert gas environments available. In this way, the technique is only limited to samples which are sufficiently conductive, and samples with issues such as vapor pressure can still be evaluated. In this way, it is presented that for whichever future directions may be taken in the analysis of structures and dynamics of metallic liquids, it is likely that the EML apparatus could provide insight when far-from-equilibrium conditions are required. As demonstrated, EML can be used for both the formation of metastable phases as well as quantification of the thermodynamic properties of the undercooled liquid.

A potential future direction would be the investigation of liquid ordering as temperatures are increased. Some BMG alloys have extended short-range order in the liquid near the melting point, and thus show small changes to the heat capacity as a function of temperature on undercooling. Measuring the heat capacity as temperatures increase would likely show a decrease in the heat capacity as the fraction of short-range ordering decreases. Additionally, in containerless processing, often the liquid is superheated prior to cooling. It would be of interest to quantify if this practice has some basis related to the elimination of pre-existing liquid structures.
APPENDIX A. Manuscript for Publication

The following is a manuscript intended for publication which includes the enthalpy measurements of Al$_{90}$Tb$_{10}$ and Al$_{90}$Sm$_{10}$. The other results in Chapter 5 are going to be included in separate publications with S.H. Zhou as primary author.

Thermal Analysis of Undercooled Al$_{90}$Tb$_{10}$ and Al$_{90}$Sm$_{10}$ at.% Melts by Electromagnetic Levitation Drop Calorimetry

C. Tackes, Z. L. Royer, R. E. Napolitano

Material Science and Engineering, Ames Laboratory, US DOE, Ames IA 50011, USA
Department of Material Science and Engineering, Iowa State University, Ames IA 50011, USA

Abstract

The enthalpies of Al-Tb and Al-Sm metallic liquids are measured over temperature ranges that extend well into the sub-liquidus (undercooled) regime. Deep undercooling is achieved experimentally using containerless electromagnetic levitation (EML), and enthalpy is quantified using an isoperibolic drop calorimetry technique. The constant pressure heat capacity, C_p, is determined from enthalpy measurements, and the results show that both alloys exhibit constant C_p over the entire ranges measured. Specifically, we find C_p(Al$_{90}$Tb$_{10}$) = 45.79±0.86 J/K-mol over the range 983-1332 K, and C_p(Al$_{90}$Sm$_{10}$) = 32.24±3.62 J/K-mol over the range 1139-1294 K. The results are discussed with respect to liquid behavior and the structural dynamics of binary Al-RE (rare-earth) alloys. Experimental details and the design of a compact calorimeter are presented.
Introduction

A principal barrier to the effective utilization of metallic glasses and the range of remarkable properties that they can exhibit is an incomplete understanding of the behavior of undercooled metallic liquids and the structural dynamics involved in the liquid-glass transition. A long history of research has focused on the glass transition, the related structural characteristics, and the various thermodynamic and kinetic factors that contribute to observed behavior, as summarized in a number of comprehensive reviews [233, 53, 2, 50, 51]. From the standpoint of controlling phases, structure, and properties through far-from-equilibrium processing routes that utilize the undercooled liquid or glassy phase as a transient or final state, making the connection between the short- and medium-range structure, chemical ordering and segregation, and bulk thermodynamic properties is a necessary but elusive objective of fundamental research. Central to this task is the quantification of basic properties such as heat capacity, density, viscosity, and diffusivity, where correlations between the measured temperature dependence of these properties has led to the identification of glass-forming liquid archetypes [76, 60].

Quantification of the fundamental thermodynamic properties of an undercooled liquid is a challenging prospect, given the inherent instability of the liquid phase below its liquidus or melting temperature. Reported measurements are scarce, as experimental techniques must suppress the energetic advantage for nucleation provided by container walls or impurities. Computational approaches have emerged as an extremely valuable tool here, but these must employ atomistic potentials that accurately predict the atomic bonding and associated short- and medium-range order, a criterion that is extremely difficult to verify directly, since such verification, again, calls for measurement of structural and physical properties in the undercooled state. For these reasons, any method capable of providing reliable direct measurement of the basic properties of the undercooled liquid state promises to break the considerable barriers to making the requisite connections required to understand and take full advantage of the novel transformation pathways afforded by glass-forming metals.

In the investigation reported here, we focus on the constant-pressure heat capacity, and employ a containerless electromagnetic levitation (EML) technique to study the behavior of
selected glass-forming metals over a temperature range that extends well into the sub-liquidus or highly undercooled regime. Through appropriate coil design [41] and the use of gas-cooling [35], this method can achieve a high degree of temperature control. A critical aspect of our study is the development and implementation of an isoperibolic drop calorimeter, with which we quantify the heat capacity and its temperature dependence for the selected test alloys.

We focus our study specifically on the Al-Tb and Al-Sm binary alloys, a sampling of the group of Al-RE alloys which have attracted interest for a combination of unique features such as multiple competitive crystalline phases [234, 46] and growth morphologies that can be observed at attainable cooling rates [235]. In addition, these marginal glass formers may illustrate several important features of structural and chemical ordering and their relationship to glass/crystal competition, where recent investigations [226, 228, 229, 230] of these binary systems have identified medium-range network structures, suggesting the origin of Al separation and nanocrystal formation which have been reported in these systems [44]. To date, all investigations of the glass forming behavior of Al-Sm and Al-Tb alloys has been conducted using rapid cooling techniques, such as melt-spinning. In the current work, the bulk thermodynamic properties of the undercooled liquid state are examined quasi-statically using levitation drop calorimetry.

Experimental Approach

The experimental procedure relies on the EML apparatus, which is used to melt and undercool the metallic samples, and a calorimeter, which has a precisely determined heat capacity. The metallic liquid is introduced into the calorimeter, and the temperature response of the calorimeter evaluated to determine the enthalpy of metallic melt.

Electromagnetic Levitation System

When a conductor is placed within a high-frequency induction coil, the time-varying magnetic field generated by the coil induces eddy-currents in the object. The interaction between the induced currents and the applied magnetic field produces an electromagnetic force, known as a Lorentz force. When the strength of the Lorentz force is greater than the strength of
gravity, the conductor levitates. The induced currents also generate resistive heating, which eventually melts the levitated conductor.

The EML system is contained within a stainless steel vacuum chamber, as Figure A.1 illustrates. The vacuum system consists of a roughing pump and a Pfeiffer turbo molecular pump which enables high-vacuum conditions (10^{-6} mbar). The high frequency power source is an Ameritherm Hot-Shot 6 kW power supply. The experimental coil geometry used in this work is from [48], in which optimized coil geometries are determined using a genetic algorithm coupled with an analytical model to determine a coil design with a reduced equilibrium sample temperature. The coil geometry is given in Figure A.2. A rotational actuator is used for initial sample manipulation, and once the sample is levitated, the actuator is rotated to position a vaporization shield for the infrared pyrometer. The cooling gas system consists of an inert gas cylinder (99.999% pure He), and a manually operated needle valve connected with copper tubing which is pointed at the sample approximately 6 inches away. When the pressure regulator on the gas cylinder is closed, the needle valve can be opened and evacuated along with the chamber to reduce the oxygen content in the gas lines. Once the sample temperature is decreased, and chamber pressure increased, the vaporization shield is rotated from the optical path of the IR pyrometer, enabling temperature measurements.

Levitated sample temperatures are measured using a non-contact infrared pyrometer, in which the basis of temperature measurement is from Planck’s law, which describes the radiation emitted by a blackbody at a given temperature at thermal equilibrium. Levitated samples are considered greybodies, in which emissivities are used to relate the sample to blackbody conditions. The pyrometer used is a Pyrometer Instrument Company Pyrofiber II, which measures radiated intensities at 1.550 μm with focusing optics that produce a 1.9 mm spot size at a working distance of 14”. The operating mode used produces readings at a rate of 8 Hz. The emissivities of the melts were determined using an equilibrium thermal signal, such as a melting plateau, to measure the apparent temperature at which point the emissivity may be corrected such that the known thermal signal is represented in the temperature measurement.
Using Wien’s approximation to Planck’s law the emissivity can be determined by

\[\epsilon_{\gamma}(T_m) = \exp\left[\frac{C_2}{\gamma} \left(\frac{1}{T_m} - \frac{1}{T_a} \right) \right], \]

(A.1)

where \(T_m \) is the published or experimentally determined temperature of the thermal signal, \(T_a \) is the measured apparent temperature of the thermal signal from the pyrometer, \(\gamma \) is the wavelength measured by the pyrometer, and \(C_2 \) is the second radiation constant that has the value \(14.388 \times 10^6 \) nm K. Once the temperature measurement is determined to be stable, the RF power supply is turned off and the sample drops into the calorimeter.

Isoperibolic Drop Calorimeter

The principle of the drop calorimetry technique is the establishment of thermal equilibrium between the experimental sample at high temperature, and the calorimeter at room temperature, with precisely known heat capacity. Isoperibolic describes calorimeters for which a
<table>
<thead>
<tr>
<th>z-Position (m)</th>
<th>Radius (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>0.016</td>
</tr>
<tr>
<td>0.013</td>
<td>0.012</td>
</tr>
<tr>
<td>0.004</td>
<td>0.016</td>
</tr>
<tr>
<td>0.004</td>
<td>0.012</td>
</tr>
<tr>
<td>0.000</td>
<td>0.012</td>
</tr>
<tr>
<td>-0.0045</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Figure A.2 Experimental coil geometry, from [48]. The first two positions in the table (the upper windings) are wound in an opposite direction to the lower windings to provide a restoring force.

constant surrounding temperature is maintained [101]. In contrast to adiabatic calorimeters, heat is lost to the surroundings during the sample-calorimeter heat transfer period, which requires temperature correction in order to accurately determine the enthalpy of the sample. In the isoperibolic design employed here the initial calorimeter temperature is the same temperature as the surroundings prior to the introduction of heat from the sample, at which point the calorimeter temperature rises (sample-calorimeter heat transfer period) and eventually returns to the initial temperature (calorimeter-surroundings heat transfer period). The calorimeter presented here is designed to be compact to minimize the duration of the sample-calorimeter heat transfer period, as well as the drop distance to reduce the overall sensitivity to temperature corrections for both the calorimeter as well as radiative and convective losses during the drop period.

The calorimeter, shown in Figure A.3, consists of a 1 inch diameter copper rod with an overall length of 2.25 inches that is insulated with open-cell polyimide foam. The open-cell foam is suitable for use in vacuum systems and prevents convection for a large fraction of the surface area of the calorimeter. The overall size of the copper rod is considerably smaller than what has been reported for use in this method previously, with a weight of approximately 160 grams. Compared to the ~2.5 kg aluminum calorimeters of Bonnell [176] or the ~6.4 kg copper calorimeter of Schaefers et. al. [28], the main heat transfer period is considerably shorter. The heat transfer period duration reported by Bonnell is on average 1000 seconds, and the average heat transfer period duration reported by Schaefers is 780 seconds. The heat transfer period
for the calorimeter presented here is approximately 40 seconds. The natural result is a shorter period for which heat can be lost, reducing the overall temperature correction and requirement for strict environmental control. For comparison, the reported temperature corrections by Bonnell are on average 1-2°C [176], in this work the overall temperature correction is .1-.5°C.

The calorimeter is thermally connected to the stainless steel chamber via a finite heat conduction path through the insulation. In this way, the initial and final calorimeter temperatures vary with each experiment but are approximately constant. The sample-calorimeter heat transfer period is on average 40 seconds, and the calorimeter-surroundings heat transfer period on average is two hours. The final calorimeter temperature after the period of two hours is on average within 3% of the initial temperature. As described previously, the small-size calorimeter was designed to minimize the sensitivity to overall temperature correction, and it is assumed the minor fluctuations in the final calorimeter temperature contribute to random error in the temperature correction. As will be demonstrated, the overall sensitivity of the technique is within the expected accuracy, ±1-3 % error, while having considerable advantages of size and construction simplicity making the technique suitable for implementation in existing EML systems designed for other purposes.

The temperature of the calorimeter block is measured using two type-K thermocouples and a National Instruments USB-9211 data acquisition system, in which the data is recorded at a rate of 3 Hz and accuracy of ±0.02 K. The temperature response of the calorimeter from a 880.2mg copper sample at 1426.4 K is plotted in Figure A.4, where it can be seen that the temperature of the calorimeter increases from the sample introduction and then begins to drift towards the initial calorimeter temperature.

Temperature Rise Correction

Considering the temperature response from before, shown in Figure A.4, the method for determining the corrected temperature rise is illustrated in Figure A.5. The method for determining the true temperature was presented by Bonnell [176] in which a newtonian cooling fit (where dT/dt is proportional to the temperature difference of the object and its surroundings) is applied to the cooling portion of the temperature response curve, which is then used to
determine the time-lag free temperature rise of the calorimeter. In the work of Bonnell [176],
the calorimeter jacket temperature is fixed at a temperature in which it is greater than the
calorimeter temperature throughout the experiment. The calorimeter temperature then con-
stantly drifts towards the jacket temperature, and the corrected temperature rise is calculated
at the mid-point of heat transfer. In this work, the initial and final calorimeter temperatures
are assumed to be constant, thus the temperature correction is calculated at the time in which
the sample was introduced. Illustrated in Figure A.5 is the increased calorimeter temperature,
\bar{T}, defined as $T_i + \Delta T$ where T_i is the initial calorimeter temperature. \bar{T} is the thermal
equilibrium temperature between the sample and calorimeter.

Enthalpy Determination

The enthalpy increment of a sample at temperature, T, can be calculated with respect to
the increased calorimeter temperature, \bar{T}, in the following manner,

$$H(T) - H(\bar{T}) = C_p^{cal} \Delta T \frac{M}{m} + Q_{lost} \frac{M}{m}, \quad (A.2)$$
in which C_{cal}^p is the heat capacity of the calorimeter, ΔT is the corrected temperature rise of the calorimeter, M is the molar mass, m is the sample mass, and Q_{lost} represents the heat lost during the drop from radiation and convection ($Q_{lost} = Q_{rad.} + Q_{conv.}$). It is generally more useful to have measured enthalpy increments be in reference to the same final temperature, usually 298 K. This requires the addition of the remaining enthalpy from T_δ to 298 K, which requires experimental determination of the heat capacity or estimation from thermodynamic data. The heat capacity is generally assumed to be constant over the small range (6-10 K) [28, 90] of T_δ to 298 K. In this work, the heat capacity for pure materials is obtained from the Scientific Group Thermodata Europe (SGTE) database [42], and if no reference is available the heat capacity is measured in reference to a sapphire standard with application of the isothermal step method [129, 130] using a Perkin-Elmer Pyris 1 DSC. The room temperature heat capacity of the sample is used in the following manner,

$$H(T_\delta) - H(298) = C_{p}^{298}(T_\delta - 298),$$ \hspace{1cm} (A.3)
Figure A.5 Corrected temperature rise of the calorimeter block from the introduction of a 880.2mg copper sample at 1426.4 K.

which is added to Equation A.2 to calculate the enthalpy increment for a fixed reference temperature, $H(T) - H(298)$, which has been commonly used [121, 169, 90, 184],

$$ H(T) - H(298) = C_b \Delta T_b \frac{M}{m} + Q_{lost} \frac{M}{m} + [H(T_{\delta}) - H(298)]. $$

(A.4)

Q_{rad} can be calculated using Stefan and Boltzmann’s law for the sample drop period [28],

$$ Q_{rad} = \epsilon_t \sigma A (T_s^4 - T_r^4) t_d $$

(A.5)

where ϵ_t is the total hemispherical emissivity, σ is the Stefan-Boltzmann constant of value 5.67×10^{-8} J S$^{-1}$ m$^{-2}$ K$^{-4}$, A is the surface area of the sample, t_d is the time of the drop period, T_s is the temperature of the sample, and T_r is the temperature of the surroundings, room temperature in this calculation. The total hemispherical emissivity is generally not known, others have presented estimating the value from the determined spectral emissivity [176]. The surface area can be estimated from the assumption of a spherical sample, where the volume can be calculated from the the liquid density to determine the surface area ($A = 4\pi r^2$). In some
cases the liquid density is reported, otherwise it has been presented that estimating the liquid density to be 10% less than the room temperature crystalline state is reasonably consistent with reported data [186]. The drop time, t_d can be determined by assuming free fall conditions,

$$t_d = \left(\frac{2h}{g} \right)^{1/2}$$ \hspace{1cm} (A.6)

where h is the drop height, and g the standard acceleration due to gravity, 9.806 m/s2.

The magnitude of the radiative losses during the drop period is small for moderate temperatures, noting the T^4 dependence. Considering pure aluminum, $m = 509.4$ mg, $A = 8.02 \times 10^{-4}$ m2 (from liquid density of 2.375 g/cm3 [195]), $T_s = 1389$ K, $T_r = 298$ K, $t_d = 0.178$ seconds, $\epsilon_t = 0.084$ (value estimated as 20% more than the spectral emissivity, from [121], the enthalpy lost was 133.9 J/mol which represents 0.3% of the measured enthalpy increment.

Convective heat losses are calculated using the method presented by Stretz [121], where the primary assumptions are a stationary spherical sample where the gas flow velocity is approximated as the free-fall sample drop velocity. The heat losses due to convection can be written as

$$Q_{conv.} = A(T_s - T_g) \int_0^{t_d} \alpha \, dt,$$ \hspace{1cm} (A.7)

where t_d is the sample drop time, A the surface area, T_s the sample temperature, T_g the gas temperature (usually assumed 298 K), and α the heat transfer coefficient,

$$\alpha = \frac{\lambda}{D} \left[2 + 0.6(Re_f)^{1/2}(Pr_f)^{1/3} \right],$$ \hspace{1cm} (A.8)

where λ is the gas thermal conductivity, D the sample diameter, Re the Reynolds number, and Pr the Prandtl number. The Reynolds and Prandtl number are calculated using the gas film temperature ($T_f = \frac{(T_s - T_g)}{2}$). The Reynolds number and Prandtl number are defined as

$$Re_f = \left(\frac{D \rho_g v_{gas}}{\mu_f} \right)$$ \hspace{1cm} (A.9)

and

$$Pr_f = \left(\frac{C_p^{gas} \mu_f}{\lambda} \right)$$ \hspace{1cm} (A.10)

where v_{gas} is the gas velocity, ρ_g the gas density, μ_f the kinematic viscosity at T_f, C_p^{gas} the gas heat capacity. As an approximation for the gas velocity, the sample velocity as a function
of drop time is substituted, where the modified Reynolds number takes the following form,

$$\text{Re}_f' = \left(\frac{D \rho g t_d}{\mu_f} \right).$$ \hspace{1cm} (A.11)

When the modified Reynolds number is combined into Equation A.8, and Equation A.7 evaluated, the final form can be written as

$$Q_{\text{conv.}} = A (T_s - T_g) \frac{\lambda}{D} \left[2t_d + 0.4(t_d)^{3/2} (\text{Re}_f')^{1/2} (\text{Pr}_f)^{1/3} \right].$$ \hspace{1cm} (A.12)

Considering again pure aluminum, $m = 509.4$ mg, $A = 8.02 \times 10^{-4}$ m2, $T_s = 1389$ K, $T_g = 298$ K, the total enthalpy lost is 265 J/mol, which is 0.61% of the total heat content. Convective losses are linearly temperature dependent ($T_s - T_g$) compared to the fourth order dependence for radiative losses ($T_s^4 - T_r^4$), meaning the overall sensitivity to temperature dependent changes is decreased. Due to a hardware limitation, gas pressure measurements are limited to the range 1x10$^{-6}$ to 30 mbar, whereas experimental conditions can exceed 30 mbar for some materials. Due to this limitation, convective losses are assumed to be negligible.

Calorimeter Calibration

The heat capacity of the calorimeter is determined using 99.999% pure aluminum. Enthalpy increments are measured and calculated with Equation A.4, and the results compared to the value in the SGTE database [42]. The heat capacity of the calorimeter, C_b, is then adjusted to minimize the error between the measured results and the reference. The apparent spectral emissivity of unoxidized liquid aluminum at 1.550 μm, ϵ_γ, was determined to be 0.07. The results from calibration are listed in Table A.1 and shown in Figure A.6 where it can be seen that the technique is precise, in that experimental measurements show little variation in comparison to the reference for a given calorimeter heat capacity.

Once the calorimeter is calibrated, another material of well known enthalpy is evaluated using the levitation calorimeter to confirm the calibration value. Pure copper is well described in literature and is chosen to evaluate the calibration. The apparent spectral emissivity of liquid copper, ϵ_γ at 1.550 μm was determined to be 0.019. The measured enthalpy increments are summarized in Figure A.7 and Table A.2.
Table A.1 Measured enthalpy increments of pure aluminum used for calorimeter calibration.

<table>
<thead>
<tr>
<th>Mass (mg)</th>
<th>Temperature (K)</th>
<th>$H_T - H_{298}$ (kJ/mol)</th>
<th>% Deviation from [42]</th>
</tr>
</thead>
<tbody>
<tr>
<td>509.43</td>
<td>1389.7</td>
<td>43.30</td>
<td>0.05</td>
</tr>
<tr>
<td>514.64</td>
<td>1227.5</td>
<td>38.20</td>
<td>-0.07</td>
</tr>
<tr>
<td>515.57</td>
<td>1264.0</td>
<td>39.37</td>
<td>-0.09</td>
</tr>
<tr>
<td>518.00</td>
<td>1184.5</td>
<td>36.81</td>
<td>0.01</td>
</tr>
<tr>
<td>512.75</td>
<td>1342.9</td>
<td>41.85</td>
<td>-0.03</td>
</tr>
<tr>
<td>516.01</td>
<td>1153.0</td>
<td>35.76</td>
<td>0.11</td>
</tr>
<tr>
<td>509.10</td>
<td>1114.7</td>
<td>34.65</td>
<td>-0.12</td>
</tr>
<tr>
<td>514.52</td>
<td>1072.1</td>
<td>33.22</td>
<td>0.03</td>
</tr>
<tr>
<td>487.59</td>
<td>1182.4</td>
<td>36.70</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table A.2 Measured enthalpy increments of pure copper.

<table>
<thead>
<tr>
<th>Mass (mg)</th>
<th>Temperature (K)</th>
<th>$H_T - H_{298}$ (kJ/mol)</th>
<th>% Deviation from [42]</th>
</tr>
</thead>
<tbody>
<tr>
<td>878.2</td>
<td>1426.5</td>
<td>44.56</td>
<td>0.32</td>
</tr>
<tr>
<td>848.5</td>
<td>1536.3</td>
<td>47.87</td>
<td>0.60</td>
</tr>
<tr>
<td>728.3</td>
<td>1568.8</td>
<td>49.14</td>
<td>0.09</td>
</tr>
<tr>
<td>740.0</td>
<td>1505.6</td>
<td>47.23</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

Indeed, the drop calorimetry method is successful in determining the enthalpy of liquid melts within 1%. The error observed is likely a result of the combination of uncertainty involved in experimental emissivity determination for both copper and aluminum, which is a limitation resulting from the necessity of non-contact temperature measurement.

Results

$\text{Al}_{90}\text{Ta}_{10}$ and $\text{Al}_{90}\text{Sm}_{10}$ at.% alloys were created from 99.999% pure Al, and rare earth purity of at least 99.995% overall by the Materials Preparation Center at Ames Laboratory [a] in an arc-melting furnace. The apparent spectral emissivity of each sample composition was determined using Eq. A.1, with the reference T_m value from both calculated phase diagrams [231, 232] and DTA. The room temperature heat capacities were measured using stepwise DSC, the results of which are in Table A.4. Applying the levitation drop calorimetry technique to $\text{Al}_{90}\text{Ta}_{10}$ and $\text{Al}_{90}\text{Sm}_{10}$ at.% alloys the enthalpy of the liquid as well as the undercooled liquid were measured. In both cases it was determined that a linear fit is sufficient to represent
Figure A.6 Measured enthalpy increments of pure aluminum for calibration (○), and linear fit (solid line). Red dashed line for reference is from the SGTE database [42].

the experimental data. The measured enthalpy increments are presented in Figure A.8 and Figure A.9. The heat capacity, $\frac{\Delta H}{\Delta T}$, is the slope of the fit and is presented in Table A.5. For each material, it was necessary to check that the crystalline phases formed after being dropped into the calorimeter were consistent, as the formation of differing phases would affect the measured enthalpies. Using XRD and SEM, it was determined that the Al$_{90}$Tb$_{10}$ at.% samples formed Al$_3$Tb-δ and and f.c.c. aluminum, and the Al$_{90}$Sm$_{10}$ at.% samples formed Al$_4$Sm-β and f.c.c. aluminum. There is more variation in the Al$_{90}$Sm$_{10}$ at.% enthalpy measurements, which is likely a result of the higher vapor pressure of Samarium which is an experimental obstacle considering the necessity of removing the oxide layer in vacuum. This results in less oxide layer removal compared to the Al$_{90}$Tb$_{10}$ at.% samples, which acts as a heterogenous nucleation site, influencing the maximum undercooling achieved. The maximum relative undercooling achieved for Al$_{90}$Tb$_{10}$ at. %, $\Delta T/T_m = 0.185$, is consistent with the range reported for EML [185].
Figure A.7 Measured enthalpy increments of pure copper (○) and linear fit (solid line). Red dashed line for reference is from the SGTE database [42].

Table A.3 Determined liquid and undercooled liquid heat capacity from linear fit of enthalpy data, and intercept for the form $H(T) - H(298) = C_p \cdot T + b$, with 95% confidence intervals given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_p (J/mol K)</th>
<th>b (kJ/mol)</th>
<th>% Deviation from [42]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>31.76±0.31</td>
<td>-0.808±0.37</td>
<td>-0.03</td>
</tr>
<tr>
<td>Cu</td>
<td>31.59±7.06</td>
<td>-0.479±10.67</td>
<td>-0.67</td>
</tr>
</tbody>
</table>

Discussion

The present work employs levitation drop calorimetry to quantify the enthalpy of undercooled marginal glassforming Al$_{90}$Tb$_{10}$ and Al$_{90}$Sm$_{10}$ at.% alloys. High energy X-ray diffraction (HEXRD) studies of liquid Al$_{91}$Tb$_9$ at.% above melting indicate a small intensity pre-peak at low Q which is evidence for the existence ordering in the liquid [230]. HEXRD of as quenched samples revealed a higher intensity peak at the same location[230], and further analysis using fluctuation electron microscopy, atom probe topography suggested a highly networked medium range order structure.

The temperature dependence of the undercooled heat capacity can vary depending on the
Table A.4 Measured heat capacities at 298 K from stepwise DSC for use in Equation A.3 with 95% confidence intervals given.

<table>
<thead>
<tr>
<th>Sample (at. %)</th>
<th>C_p at 298 K (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Al}{90}\text{Tb}{10}$</td>
<td>23.3 ±0.19</td>
</tr>
<tr>
<td>$\text{Al}{90}\text{Sm}{10}$</td>
<td>23.8 ±0.36</td>
</tr>
</tbody>
</table>

Table A.5 Determined heat capacity from linear fit of enthalpy data, and intercept for the form $H(T) - H(298) = C_p \cdot T + b$ with 95% confidence intervals given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_p (J/mol K)</th>
<th>b (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Al}{90}\text{Tb}{10}$</td>
<td>45.79±0.86</td>
<td>-17.09±1.010</td>
</tr>
<tr>
<td>$\text{Al}{90}\text{Sm}{10}$</td>
<td>32.24±3.62</td>
<td>-1.521±4.397</td>
</tr>
</tbody>
</table>

liquid behavior, i.e. ‘fragile’ or ‘strong’ liquids. For a strong liquid, $\text{Pd}_{40}\text{Ni}_{40}\text{P}_{20}$, the temperature dependence of the undercooled heat capacity has been shown to be linear [20], and it has also been shown that there can be essentially no temperature dependence to the heat capacity prior to a peak near T_g, such as the measured results for $\text{Pd}_{77.5}\text{Cu}_{6}\text{Si}_{16.5}$, a ‘fragile’ liquid [20]. One of the best bulk metallic glass forming alloys, $\text{Mg}_{65}\text{Cu}_{25}\text{Y}_{10}$, has been shown to display very little temperature dependence of the heat capacity [4], similar to the results for other excellent glassforming alloys such as the Zr-based Vitreloy compositions [2]. Recent MD investigations reveal a strong correlation between the fraction of polyhedral structures observed as a function of temperature and the specific heat capacity as a function of temperature [24], indicating that fragile liquids undergo a large degree of structural ordering prior to glass formation. The heat capacity measurements presented here do not include any temperature dependence, which raises several questions regarding the dynamics of the ordering processes and liquid behavior of Al-RE alloys. The continued ordering could occur at lower temperatures, or the highly networked MRO may not reflect an experimentally observable deviation in heat capacity. For the Al-Re alloys, further undercooling is a difficult experimental range to access. Given the quenched in nanocrystal nuclei, the heat capacity of the undercooled liquid cannot be determined from in-situ devitrification, and thus the only likely solution to further quantify the structural dynamics of Al-Re alloys is through the use of computational techniques, such as molecular dynamics.
Table A.6 Measured enthalpy increments of Al$_{90}$Tb$_{10}$ at% alloy.

<table>
<thead>
<tr>
<th>Mass (mg)</th>
<th>Temperature (K)</th>
<th>$H_T - H_{298}$ (kJ/mol)</th>
<th>% Deviation from fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>644.00</td>
<td>1331.9</td>
<td>43.86</td>
<td>0.01</td>
</tr>
<tr>
<td>738.65</td>
<td>1238.8</td>
<td>39.49</td>
<td>0.28</td>
</tr>
<tr>
<td>754.89</td>
<td>1223.6</td>
<td>38.81</td>
<td>0.25</td>
</tr>
<tr>
<td>594.55</td>
<td>1195.9</td>
<td>37.68</td>
<td>-0.11</td>
</tr>
<tr>
<td>479.64</td>
<td>1292.1</td>
<td>41.99</td>
<td>0.11</td>
</tr>
<tr>
<td>464.98</td>
<td>1259.2</td>
<td>40.48</td>
<td>0.13</td>
</tr>
<tr>
<td>603.91</td>
<td>1147.5</td>
<td>35.34</td>
<td>0.25</td>
</tr>
<tr>
<td>426.98</td>
<td>1068.0</td>
<td>31.55</td>
<td>0.73</td>
</tr>
<tr>
<td>464.13</td>
<td>1156.4</td>
<td>36.03</td>
<td>-0.55</td>
</tr>
<tr>
<td>347.12</td>
<td>1206.6</td>
<td>38.48</td>
<td>-0.93</td>
</tr>
<tr>
<td>509.67</td>
<td>1020.8</td>
<td>29.77</td>
<td>-0.49</td>
</tr>
<tr>
<td>516.47</td>
<td>984.4</td>
<td>28.07</td>
<td>-0.38</td>
</tr>
<tr>
<td>487.95</td>
<td>1262.8</td>
<td>40.66</td>
<td>0.10</td>
</tr>
<tr>
<td>454.60</td>
<td>983.5</td>
<td>27.75</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Conclusions

From the measured results and analysis, we draw the following conclusions:

(i) With appropriate instrument analysis through the testing of material standards, the electromagnetic levitation drop-calorimetry technique can provide reliable high-accuracy measurements of enthalpy and related heat capacity for metallic liquids.

(ii) The measured results of Al-Tb and Al-Sm within the best glass forming range (10% at. RE) are best described with a linear fit, indicating a constant heat capacity over the experimental range. Extensions of the thermodynamic value for the liquid, 45.79 J/mol K and 32.24 J/mol K for Al$_{90}$Tb$_{10}$ at.% and Al$_{90}$Sm$_{10}$ at.%, respectively, are confirmed to be suitable for 220 K undercooling for Al$_{90}$Tb$_{10}$ at.% and 94 K undercooling for Al$_{90}$Sm$_{10}$ at.%.

(iii) Further quantification of the structural dynamics of Al-RE systems requires additional investigation of lower temperature liquid regimes, which are difficult to access experimentally, even with containerless processing.
Figure A.8 Measured enthalpy increments of Al$_{90}$Tb$_{10}$ alloy (○), and fit (solid line). T_{melt} is indicated by the dashed line.

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Material Sciences and Engineering. The research was performed at Ames Laboratory, Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.
Table A.7 Measured enthalpy increments of Al$_{90}$Sm$_{10}$ at% alloy

<table>
<thead>
<tr>
<th>Mass (mg)</th>
<th>Temperature (K)</th>
<th>$H_T - H_{298}$ (kJ/mol)</th>
<th>% Deviation from fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>534.40</td>
<td>1294.3</td>
<td>40.20</td>
<td>0.02</td>
</tr>
<tr>
<td>493.28</td>
<td>1234.5</td>
<td>38.77</td>
<td>1.28</td>
</tr>
<tr>
<td>611.06</td>
<td>1248.6</td>
<td>38.73</td>
<td>0.02</td>
</tr>
<tr>
<td>567.90</td>
<td>1185.1</td>
<td>36.73</td>
<td>0.11</td>
</tr>
<tr>
<td>407.30</td>
<td>1192.6</td>
<td>37.13</td>
<td>0.54</td>
</tr>
<tr>
<td>493.87</td>
<td>1331.7</td>
<td>41.25</td>
<td>0.39</td>
</tr>
<tr>
<td>441.33</td>
<td>1181.6</td>
<td>36.35</td>
<td>0.61</td>
</tr>
<tr>
<td>472.00</td>
<td>1171.1</td>
<td>35.76</td>
<td>1.31</td>
</tr>
<tr>
<td>369.50</td>
<td>1147.6</td>
<td>35.31</td>
<td>0.48</td>
</tr>
<tr>
<td>350.88</td>
<td>1139.4</td>
<td>35.53</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Figure A.9 Measured enthalpy increments of Al$_{90}$Sm$_{10}$ alloy (○), and fit (solid line). T_{melt} is indicated by the dashed line.
APPENDIX B. Drop Calorimetry Calculation with Matlab

The logic of the code can be summarized below:

1. Specify material analyzed and relevant material parameters (melting temperature, molar mass)

2. Import calorimeter file

3. Analyze calorimeter file, determine ΔT

4. Calculate enthalpy from calorimeter response, heat loss from radiation and convection, adjust for final calorimeter temperature (T_δ) with respect to the desired interval (Usually $H(T) - H_{298}$).

5. Store enthalpy values

6. Import next calorimeter file, repeat until complete

7. Output graphs and summarized enthalpy data

The code follows:
% This script is for calculation of enthalpy increments of liquid drops for a Levitation Calorimetry system.
% It was created by Carl Tackes with some contributions from Zach Royer.

clear all
% Set the material case, can be convenient to switch between systems
material = 'Cu';
%material = 'Al';
%material = 'AlTb';
%material = 'AlSm';
%material = 'AlTb20';

plotswitch = 0;
extendfitswitch = 0;
fitswitch = 1;
lastincrementplot = 0;
TCswitch = 1;

% The header file contains the sample ID, the drop temperature, and the sample mass recovered from the calorimeter.

headerfilename = sprintf('/newheaders/%sheaderv13.csv',material);
header = csvread(headerfilename);
[a,b]=size(header);
report = size(header);

%f=fittype('a*exp(b*x)+c');

% the molecular weight, melting temperature, and heat of fusion are described. Only the MW is used in calculations but the others are useful when calibrating the calorimeter.
if Cuflag == 1
 % coeff=[a;b;c] from Gaskell, J/mol K
 coeff=[22.64;6.28e−3]; % for Copper Cp
 MW=63.546; %g/mol
 Tm=1084.62 + 273.15; %K
 Hf=13263.28; %j/mol
 Eexp=0.019;
 density = 8.02; %g/cm^3 for liquid from literature
 etotal = .16; %total hemispherical emissivity
 CpCuRt = 24.5;
end
if Alflag == 1
 CpAlRt = 24.2894; %298.15 - 700
 coeff=[20.67;12.38e−3]; % for Al Cp
 MW=26.9815; %g/mol
 Tm=933.47; %K
 Hf=10711.04; %j/mol
 Eexp=0.07;
 density = 2.35; %g/cm^3
 etotal = .084; %estimate
end
if AlTlflag == 1
 CpAlTlRt = 24.79; %neumann kopp
 coeff=[20.67;12.38e−3]; %TEMPORARY ESTIMATION AS ALUMINUM
 MW = 41.49; %g/mol assuming 89-11 at%
 Tm = 930 + 273.15; %K
 Hf = 4371; %j/mol K
 Eexp=0.067;
 density = 3.3;%g/cm^3
etotal = 0.0804;
end
if AlTb2flag ==1
AlTbflag = 1;
CpAlTbRt = 25.67; %neumann kopp
MW = 53.37; %g/mol assuming 80-20 at%
Tm = 1130 + 273.15; %K
Hf = 4371; %j/mol K
Eexp=0.118;
density = 3.3 * .9; %g/cm^3
etotal = Eexp * 1.2;
end
if AlSmflag == 1
CpAlSmRt = 23.7314; % fromDSC, 3 line
MW = 39.3194;
Tm = 952.8 + 273.15; %K
Hf = 4371; %unknown
Eexp=0.065;
density = 3.21; %g/cm^3
etotal = .0780; %estimate
end
%heat capacity of calorimeter, determined by calibration.
%61.85
%64.4 adiabatic
Wcal(1) = 61.643427; %for V3 with new thermocouple
if TCswitch == 0
Wcal(2) = Wcal(1);
else
Wcal(2) = 63.05;
end
counter = 0; %the counter displays the increment of calorimeter file being processed
%Data to account for radiation during sample fall time, which is 0.178s.
C2 = 1.52e4; %for Wien approx
droptime = 0.178; %s
sigma = 5.67e-8;
%zeroing variables can lead to faster processing time, eventually variables
%consumed too much RAM to use the feature.
ID = zeros(1:a);
Tdrop = zeros(1:a);
mass = zeros(1:a);
tstart = zeros;
tmin = zeros;
Tf = zeros;
T1 = zeros;
tau = zeros;
t4 = zeros;
tmid = zeros;
Tpeak = zeros;
DT = zeros;
Hdt = zeros;
Qdt = zeros;
cpadd = zeros;
Qrd = zeros;
H = zeros;
storeRd = zeros;
%For loop to import each calorimeter file
for j=1:a
%importing header files
ID(j)=header(j,1);
Tdrop(j)=header(j,2) + 273.15;
mass(j)=header(j,3); %convert mass to grams
mass(j) = mass(j)/1000;
%If calibration changes, can define range of experiments
if ID(j) >= 414
Wcal(j) = 61.6; %for V3 with new thermocouple
Wcal(2) = 61.3;
end
if ID(j) >= 439
 Wcal(1) = 59.9; %for V3 with new thermocuple
 Wcal(2) = 59.5;
end

%setting the filename and importing/cropping the data
if ID(j) >= 100
 filename = sprintf('CA%i.xlsx', ID(j));
else
 filename = sprintf('CA-0%i.xlsx', ID(j));
end
if TCswitch == 1
 sheet1size = xlsread(filename, 2, 'B:B');
 sheet1crop = sheet1size(11:end);
 sheet2size = xlsread(filename, 1, 'B:B');
 sheet2crop = sheet2size(11:end);
else
 if ID >= 336
 sheet1size = xlsread(filename, 2, 'B:B');
 sheet1crop = sheet1size(11:end);
 sheet2crop = sheet1crop;
 else
 sheet1size = xlsread(filename, 1, 'B:B');
 sheet1crop = sheet1size(11:end);
 sheet2crop = sheet1crop;
 end
end

%filling in the amount of time based on the length of the cal data
%time = (0.367; (size(sheet1crop) / (1 / 0.367) - 0.367));
DataC = [sheet1crop sheet2crop];

%finding tstart, time of the start of the temperature increase. This is done by taking the approximate derivative (using the gradient function) and finding the maximum. This corresponds to the moment of maximum temperature increase. Subtracting 6 points ensures that the tstart is still within the room temperature regime of the calorimeter response. Using [-, tstart(k)] is a useful way to pull out the time step t(X) of a desired t.
for k = 1:2
 [~, tstart(k)] = max(gradient(DataC(:, k)));
 tstart(k) = tstart(k) - 6;
 Tmax(k) = max(DataC(tstart-10:tstart,k));
end
%determining the time of the maximum temperature, which is the peak temperature of the calorimeter response.
[-, tTmax] = max(DataC);
tmax = tTmax;
[a2, b2] = size(DataC); %more counting variables
%determining time of minimum temperature after tTmax, should be the end of the data set
for k = 1:b2
 [~, tTmin(k)] = min(DataC(tTmax(k):a2,k)); %&ok<*SAGROW>
 tTmin = tTmin + tTmax;
end
%some functions require column variables
Tmin = tTmin';
%
[m, n] = size(DataC);
%The time shift is used for adjusting the fitting of the cooling curve, occasionally the fit requires manual adjustment
shift = 0;
%fitting the cooling portion of the data with the specified fit type f from before.
for k = 1:2
fitmodel = fit(time(tTmax(k):end), DataC(tTmax(k):end,k), 'StartPoint', [25, -0.003, 25]);
l ineartest = fit(time(tTmax(k)+300:tTmax(k) + 500), DataC(tTmax(k)+300:tTmax(k) + 500,k), 'poly1');
savemodel = fit(time(tTmax(k):end), DataC(tTmax(k):end,k), 'StartPoint', [25, -0.003, 25]);
modelvals = coeffvalues(fitmodel);
modela = modelvals(1)*1.185;
modelb = modelvals(2)*0.93;
modelc = modelvals(3);
n ewfitmodel = cfit(f, modela, modelb, Tstart(k));

% CI2 = confint(savemodel,.95);
% Tf2=(CI(1,3)+CI(2,3))/2;
% T12=(CI(1,1)+CI(2,1))/2+Tf;
% tau2=(CI(1,2)+CI(2,2))/2;
% Tpredict(:,k)=(T1-Tf)*exp(tau*time(:))+Tf

% This portion calculates the end period of heat transfer by determining
% the fit model of the cooling curve intercepts the experimental data
% in the heat transfer period. When the difference between them is zero, the
% time is chosen
for k = 1:b2
 for p=l:m
 difft=Tpredict(p,k)-DataC(p,k);
 if difft<=0
 t4(k)=p;
 break
 end
 end
end

% This portion determines the middle of the heat transfer period by using
% the area under the cooling curve (during the heat transfer period) and
% the area under the heat transfer period to tmid (the middle of the heat
% transfer period). It can be seen in literature as a method for corrected
% temperature rise.
for k=1:2
 tmid(k)=tstart(k)+1;
 F1=DataC(tmid(k),k)-DataC(tstart(k),k);
 F2=0;
 for p=tmid(k)+1:t4(k)
 F2=F2+Tpredict(p,k)-DataC(p,k);
 end
 while (F2>F1)
 F1=F1;
 F2=F2;
 tmid(k)=tmid(k)+1;
 for p=tstart(k):tmid(k)
 F1=F1+DataC(p,k)-DataC(tstart(k),k));
 end
 for p=tmid(k)+1:t4(k)
 F2=F2+Tpredict(p,k)-DataC(p,k);
 end
 end
end

% This portion plots the calorimeter response and marks the areas of tstart,
% tmid, tfinal (t4) and the model of the cooling curve. This is useful for
% troubleshooting.
if lastincrementplot == 1
 if j == a
 plotswitch = 1;
 end
end
if plotswitch == 1
 for k = 1:2
 figure
 hold on
 plot(time,DataC(:,k),time+.367, Tpredict(:,k))
 plot(tstart(k)*.367,DataC(tstart(k),k),’or’)
 plot(tstart(k)*.367,Tstart(k),’og’) %plot(time(tstart(k)-10:tstart(k)),Tstart(k))
 if extendfitswitch ==1
 plot(test)
 end
 if k==1
 title(sprintf(’0%i TC1’,ID(j)));
 else
 titlesprintf(’0%i TC2’,ID(j));
 end
 hold off
 end
end
%this calculates the delta T, which is the corrected temperature rise of
%the block from room temperature, the source of the enthalpy measurement.
%This is done by taking the value of the cooling curve at the mid point of
%heat transfer from literature.
for k=1:2
 Tpeak(k)=Tpredict(tstart(k),k); %Tpeak(k) = Tmax(k);
 Tpeak(k) = Tpeak(k) + 273.15; %convert to K
 oldTpeak(k) = Tpredict(tmid(k),k) + 273.15;
 DiffPeakmax(j,:) = Tpeak(k) - 273.15 - Tmax(k);
 DT(k)=Tpredict(tstart(k),k)-Tstart(k);
 Linearpredict(k) = lineartest(tstart(k));
 storelinearpre(j,k) = Linearpredict(k);
 peakcompare(j,:) = [Linearpredict(k),Tpeak(k) - 273.15];
 DT(k)=Tpredict(tstart(k),k)-Tstart(k);
 DT(k) = Tmax(k) - Tstart(k);
 storaekt(j,k) = DT(k);
 storePeak(j,:) = (Tpeak(k),oldTpeak(k));
 integral(k) = trapz(sheet1crop(tstart:end),1) + trapz(test(length(sheet1crop):end));
 %storeintegral(j,:) = [integral(k)];
end
%this is the temperature range relevant to the material being studied
numrange = (298.15:0.5:348);
%enthalpy of the solid, accounted for the enthalpy increment nature of the
%experiment
% He = (coeff(1)*numrange + 0.5*coeff(2)*(numrange.^2));
% Hs = He - ((coeff(1)*298.15 + 0.5*coeff(2)*(298.15.^2));
%these are used for calculating the radiation loss during falling
P=[0.001,0.001, 0.0022,0.0063,0.00074,0.0001,0.014,0.03,0.0063];
P=0.03,0.03, 0.0322,0.0363,0.00074,0.001,0.014,0.03,0.0063,
0.0022,0.0063,0.00074,0.001,0.014,0.03,0.0063];
vol = mass(j)/density;
volrad = (vol*(3/4*3.14))^(1/3); %cm
volrad = volrad / 100; %m
Sa = 4*3.14*volrad^2; %m^2
storesa(j) = Sa;
d = volrad*2;
$T_s = T_{drop}(j);$
$T_g = 298;$
$T_f = (T_s - T_g)/2; \text{ %Film Temp, K}$
deltat = $T_s - T_g;$
$T_0 = 273.15; \text{ K}$
$M_{W_{gas}} = 40.002602/1000; \text{ kg/mol}$
$R_{gas} = 8.3144621E-5; \text{ bar K mol}$
$C_g = 5193.1; \text{ J/kg heat capacity of gas}$
g = 9.81; \text{ m/s}^2$

%calculated gas properties
$\lambda = 0.144*(1 + 2.7E^{-4}*P(j))*\left(\frac{T_f}{T_0}\right)^{(0.71*(1-2E^{-4}*P(j)))}; \text{ %heat transfer coef}$
$R_{g_{og}} = (P(j) * M_{W_{gas}})/\left(R_{gas}*T_g\right); \text{ %Gas density}$
$M_{u_f} = 1.866E^{-5}*(T_f/T_0)^{0.7}; \text{ %dynamic viscosity}$
$R_{og} = \left(C_{g}*M_{u_f}\right)/\lambda;$
$\mu_{kin} = M_{u_f}/R_{og}; \text{ %kinematic viscosity}$
$\rho_{rest} = \text{droptime}*(d*R_{g_{og}}*g)/\left(M_{u_f}\right);$
$Pr = \frac{C_{g}*M_{u_f}}{\lambda}.$

%calculated gas properties
$\text{convloss} = S_a*deltat*\lambda/d*(M_{W/mass(j)})*\left((2*\text{droptime} + 0.4*\text{droptime}^{3/2}*Pr^{(1/3)}*\left(\text{Restar}\right)^{1/2})\right);$
$\text{convloss} = \text{convloss';}$
$\text{storeconvloss}(j) = \text{convloss};$

%the main enthalpy calculation
for k=1:2
 RTadjust(k) = 25 - Tstart(k);
 Qdt(k) = Wcal(k)*DT(k) * M_{W/mass(j)};
 if AlSmflag == 1
 cpadd(k) = C_{pAlSmRt}*(Tpeak(k) - 298);
 end
 if AlTbflag == 1
 cpadd(k) = C_{pAlTbRt}*(Tpeak(k) - 298);
 end
 if Alflag == 1
 cpadd(k) = C_{pAlRt}*(Tpeak(k) - 298);
 end
 if Cuflag == 1
 cpadd(k) = C_{pCuRt}*(Tpeak(k) - 298);
 end
 storecpadd(j) = cpadd(k);
 H(k) = Wcal(k)*DT(k) * M_{W/mass(j)} + cpadd(k);
 $H_2(k) = Wcal(k) * \text{integral(k)} * M_{W/mass(j)}; \text{ %heat loss correction while falling}$
 $Q_{rd}(k) = \left(\text{etotal}\ast\sigma\ast\text{droptime}^4*(T_{drop(j)}^4 - 298.15^4)\ast S_a\right) \ast M_{W/mass(j)}; \text{ %e = 0.83 from bonnell thesis}$
 $\text{storeRd}(j) = Q_{rd}(k);$
 $\text{Hdt}(k) = (H(k) + Q_{rd}(k));$
end
%stored values is the main storing variable. Currently the script does not
%function without clearing relevant variables from calorimeter data to next
%calorimeter data. This is used to store the information and is not cleared
%at the end
if extendfitswitch == 1
 storedvalues(j,:) = [ID(j),mass(j),Tdrop(j),Hdt,storedt(j,1),(test(end) - Tstart(1))];
else
 storedvalues(j,:) = [ID(j),mass(j),Tdrop(j),Hdt];
end
%this is used to fit a linear model to the enthalpy data and plot the
%results
if j == a
 if fitswitch == 1
 Hfit = fit(storedvalues(:,3),storedvalues(:,4),'poly1')
 Hfitconf = confint(Hfit);
 Hc = coeffvalues(Hfit);
 numrange2 = (Tm-240:0.5:2008);
 Hfitplot = Hc(1)*numrange2 + Hc(2);
 Hfitconfplot1 = Hfitconf(1,1)*numrange2 + Hfitconf(1,2);
 Hfitconfplot2 = Hfitconf(2,1)*numrange2 + Hfitconf(2,2);
}
%calculate deviations from fit
for m = 1:a
 storedeviation(m) = (Hc(1)*(Tdrop(m))+Hc(2)) - (storedvalues(m,4));
end
percentdeviation = percentdeviation';
numrange3 = numrange';

%it is useful to see the enthalpy of solid as well
%Hsfit = fit(numrange3, Hs', 'poly1');
%Hsc = coeffvalues(Hsfit);

%plot all of enthapy data
if Alflag == 1
 newrange = (1232.5-250:0.5:1232.5+250);
 SGTEliquid = -795.996 + 31.748192*numrange2;
 SGTEliquid2 = -795.996 + 31.748192*newrange;
 EvalHfit = Hfit(newrange)';
 Evaldiff = (SGTEliquid2 - EvalHfit)';
 x1 = mean(Evaldiff);
 SGTEvalcompare = -795.996 + 31.748192*Tdrop;
 EvalWcal = SGTEvalcompare - storedvalues(:,4);
 x2 = mean(EvalWcal);
end
if Cuflag == 1
 SGTEliquid = -46.545 + 31.38*numrange2;
 SGTEvalcompare = -46.545 + 31.38*Tdrop;
end
if AlTbflag == 1
 SGTEliquid = -13247.649 + 46.4842*numrange2;
end

%plot reference data
figure
hold on
plot(storedvalues(:,3),storedvalues(:,4), 'o')
if Alflag == 1
 plot(numrange2, SGTEliquid, 'r')
 plot(sgteT1, Hsolid1, 'g')
 plot(sgteT2, Hsolid2, 'g')
end
if Cuflag == 1
 plot(numrange2, SGTEliquid, 'r')
end

plot(numrange2, Hfitplot);set(gca, 'FontSize',14)
%plot(numrange2, Hfitconfplot1)
%plot(numrange2, Hfitconfplot2)
[-,tmtestindex] = min(abs(numrange2 - Tm));

plot(Tm, Hfitplot(tmtestindex), 'Marker', '.', 'MarkerSize', 10);

% L+S region
% plot(l113.2, 28069, 'x')
% title([material, ' Levitation Calorimetry ', date])
ylabel('Enthalpy Increment (H_T - H_{298}) J/mol', 'FontSize', 16)
xlabel('Temperature (K)', 'FontSize', 16)
xlim([1100 1500])
ylim([30000 50000])
hold off

% above section repeated

Example code:

```matlab
\texttt{[-,tmtestindex] = min(abs(numrange2 - Tm));}
\texttt{plot(Tm, Hfitplot(tmtestindex), 'Marker', '.', 'MarkerSize', 10);
% L+S region
% plot(l113.2, 28069, 'x')
% title([material, ' Levitation Calorimetry ', date])
ylabel('Enthalpy Increment (H_T - H_{298}) J/mol', 'FontSize', 16)
xlabel('Temperature (K)', 'FontSize', 16)
xlim([1100 1500])
ylim([30000 50000])
hold off
% above section repeated}
```

```matlab
% example code:
\texttt{[-,tmtestindex] = min(abs(numrange2 - Tm));}
\texttt{plot(Tm, Hfitplot(tmtestindex), 'Marker', '.', 'MarkerSize', 10);
% L+S region
% plot(l113.2, 28069, 'x')
% title([material, ' Levitation Calorimetry ', date])
ylabel('Enthalpy Increment (H_T - H_{298}) J/mol', 'FontSize', 16)
xlabel('Temperature (K)', 'FontSize', 16)
xlim([1100 1500])
ylim([30000 50000])
hold off
% above section repeated}
```
Bibliography

[18] C. V. Thompson and F. Spaepen. Approximation of the free-energy change on crystal-

[21] H. J. Fecht. Thermodynamic properties of amorphous solids - glass-formation and glass-

[24] Jun Ding, Yongqiang Cheng, and Evan Ma. Charge-transfer-enhanced prism-type loc-
al order in amorphous mg65cu25y10: Short-to-medium-range structural evolution under-

