1957

"Atoms for Living" Kitchen

The Iowa Homemaker

Follow this and additional works at: http://lib.dr.iastate.edu/homemaker

Part of the Home Economics Commons

Recommended Citation
Available at: http://lib.dr.iastate.edu/homemaker/vol36/iss15/7

This Article is brought to you for free and open access by the Student Publications at Iowa State University Digital Repository. It has been accepted for inclusion in The Iowa Homemaker by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The World's First Kitchen For Atomic Food Preservation:

your

"ATOMS FOR LIVING" KITCHEN

THE WORLD'S FIRST KITCHEN to provide for foods preserved by atomic energy was introduced by the Kelvinator Division of the American Motors Corporation last month at the annual Chicago winter furniture market.

Termed the "Atoms for Living" Kitchen, it meets the needs of the "house of the future," perhaps 5 to 15 years from now. Built of plastic materials in new applications, with disappearing cabinets that drop down from above or pop up from below, the kitchen was designed at the request of the Monsanto Chemical Company for inclusion in Monsanto's plastic "house of the future," to be constructed at Disneyland Park, California, in the spring.

Kelvinator for a number of years has been supporting research by the University of Michigan and working with university researchers in the area of food preservation by gamma irradiation. Without detriment to food wholesomeness, a light dose of irradiation, combined with moderate refrigeration, increases the life of many food products by weeks, months and years, depending on the specific food.

The kitchen specifically includes a freezer compartment, a "normal" refrigerator compartment, and a third refrigerated compartment for irradiated foods, each of about seven cubic feet capacity. All three are ceiling-hung in a "bank" masked by an attractive molded plastic exterior. They drop down to convenient eye-level for use at the touch of a button, and disappear behind the plastic panelling when not in use.

The main counter area includes concealed electronic range that rises to the top of the counter by push-button signal. The range permits microwave cooking of various foods at the same time, and has a mirror-like door-panel of glass coated with metal to keep the microwaves inside. When the oven-light is turned on, the mirror-effect disappears and you can watch the food being cooked inside.

An "island" in the center of the kitchen houses a desk, communications center, work-surface and ultrasonic dishwasher. The ultra-sonic principle employs high-frequency sound waves, which set up vibrations in the wash-water powerful enough to remove all the sticky food particles. A garbage disposal device takes care of waste, and the dishes are warm-air dried and may be left in the dishwasher rack for storage. Plumbing and electrical connections are made through the legs.

Even in the choice of materials, atomic research has implications, since experiments in the exposure of plastics to irradiation, much in the same manner foods are irradiated, already are producing new strength and heat-resistance characteristics in the plastic materials of today.

The area has been deliberately styled not to look like a kitchen when not in use. This fits the open house plan of tomorrow, where people in dining or family living areas will be able to view the kitchen from where they sit. It is possible that the word "kitchen" itself could disappear from our vocabulary in favor of some new term that would describe this family food center.