Approach to Acoustic Emission Signal Analysis - Theory and Experiment

Thumbnail Image
Date
1978
Authors
Hsu, Nelson
Simmons, John
Hardy, Stephen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Acoustic Emission (AE) signals are notorious for their complexity and irreproducibility. Because AE source characteristics are virtually unknown and because the detected AE signals are colored by the propagation media, the sensor response and the instrumentation set tings, interpretations of test results such as spectral analysis or correlation studies are mostly qualitative and sometimes controversial; theories either are empirically derived or cannot be verified by experiments . In this paper, we sketch an approach to the AE signal analysis problem. We first report the development of a theory which allows the computation of the displacement as a function of time at an arbitrary ·point on an infinite plate due to an arbitrary point source force function . The theory is based on a new Fourier inversion technique which yields exact formulas similar to those developed for seismological "ray" theories. We then report experimental results obtained on a 2. 52 em thick aluminum plate using a reproducible step function stress release pulse as a simulated AE signal and a wide band displacement capacitive transducer as a sensor. The measurements are in quantitative agreement with the predictions of theory. We also discuss applications wherein the simulated signal, capacitive transducer and plate theory are used for AE source signature analysis, and sensor calibration problems.

Comments
Description
Keywords
Citation
DOI
Source
Copyright