
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Modifications to classification and regression trees
to solve problems related to imperfect detection
and dependence
Mark McKelvey
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Statistics and Probability Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
McKelvey, Mark, "Modifications to classification and regression trees to solve problems related to imperfect detection and
dependence" (2013). Graduate Theses and Dissertations. 13523.
https://lib.dr.iastate.edu/etd/13523

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13523?utm_source=lib.dr.iastate.edu%2Fetd%2F13523&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Modifications to classification and regression trees to solve problems related to

imperfect detection and dependence

by

Mark Wesley McKelvey

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Statistics

Program of Study Committee:

Philip Dixon, Major Professor

Petrutza Caragea

Stephen Dinsmore

Heike Hofmann

Daniel Nordman

Iowa State University

Ames, Iowa

2013

Copyright c© Mark Wesley McKelvey, 2013. All rights reserved.



ii

DEDICATION

I would like to dedicate this thesis to my wife Beth and to my children without whose

support I would not have been able to complete this work.



iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. Incorporating Detection into Classification and Regression

Trees for Occupancy Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Extra material: R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 User Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.2 Companion functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.3 Four Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



iv

2.7.4 Run code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 3. Incorporating Dependence into Classification and Regression

Trees for Occupancy Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Methods for Rats Example–dependence only . . . . . . . . . . . . . . . 44

3.2.2 Methods for Birds Example–dependence PLUS detection/occupancy . . 52

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Results for Rats Example . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Results for Birds Example . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Simulation Evaluation of the Patchup Factor . . . . . . . . . . . . . . . 60

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Extra material: R code for Unequal Variances method . . . . . . . . . . . . . . 66

3.6.1 User splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Companion functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.3 Proposed method each.parent . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6.4 Run code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

CHAPTER 4. Pruning Classification and Regression Trees with Modifica-

tions for Occupancy Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Simulated Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



v

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Extra material: Detailed simulation results . . . . . . . . . . . . . . . . . . . . 98

CHAPTER 5. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



vi

LIST OF TABLES

Table 2.1 Node estimates of occupancy and detection from the näıve, orig.parent,
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ABSTRACT

Classification and Regression Tree (CART) models provide a flexible way to model species’

habitat occupancy status, but standard CART algorithms have plenty of room for extensions.

One such extension explores the survey error of imperfect detection. When an individual is

not detected, that is often taken as sign of non-presence. However, the principle of imperfect

detection tells us that just because one cannot find what they are looking for, that does not

mean that what they are looking for is not present. We outline four methods for including de-

tection probability in the process of growing the tree, and illustrate these methods using data

from a study of mountain plovers (Dinsmore et al. 2003). The results depend on the method

used to estimate detection and occupancy. For the mountain plover data, the tree structures

produced by three of the methods are identical to that produced by the näıve tree in which

detection is ignored. The fourth method yields different splitting choices. Estimates of occu-

pancy probability are consistently lower when using the näıve tree than those computed using

detection-adjusted trees. Accounting for imperfect detection is crucial even when occupancy is

modeled using a CART tree.

In addition to imperfect detection, another extension to standard CART algorithms deals with

spatial correlation. Many studies include a cluster-type sampling design where there is a clear

spatial correlation between sampling locations. This correlation causes the variance of the

node occupancy estimates in CART to be biased. We suggest a generalized estimating equa-

tion (GEE)-based approach in which the näıve variance estimates (calculated as if all locations

were independent) are “corrected” based on the data available in each parent node of the tree.

The corrected variance estimates are then used to revise the binary-split decision criterion of

the tree. The variances of each node in the split are assumed to be unequal. We demonstrate

this method using data from a study on rats and also from a study on bird occurrences in

Oregon.
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When creating alternative methods of growing trees (i.e. how nodes are split) in CART, we

expect to see [potentially] different trees. However, using those new methods also means that

methodology involved in pruning the trees may need their own corresponding changes. For

example, both of the types of methodology proposed above, incorporating imperfect detection

and correlated data, led to an examination of current pruning criteria. Taking both of those

new algorithms into account, we will discuss several pruning criteria that could be used in

conjunction with our proposed CART methodology. We evaluated the performance of each

criteria by using simulated examples for each criteria, which resulted in error rates that were

used to assess the performance of the pruning criteria.



1

CHAPTER 1. OVERVIEW

1.1 Introduction

A classification and regression tree (CART) is a flexible alternative to logistic and linear

regression models (De’ath and Fabricius 2000, Breiman et al. 1984). Unlike regression, CART

can account for interactions in its binary tree structure because it does not require the as-

sumption of additivity. CART allows the simultaneous use of both quantitative and qualitative

covariates, makes no distributional assumptions, and is invariant to monotone transformations

of variables (Breiman et al. 1984). Another advantage of CART is its ability to handle missing

values. Whereas logistic regression would discard any individual with data missing from any

one (or more) of the covariates, CART can still use that individual’s data to help formulate

the model (Clark and Pregibon 1992, Harrell 2001, De’ath and Fabricius 2000, Breiman et

al. 1984). These properties, along with its relative ease of construction and interpretation,

have lead to widespread use of CART in ecology (e.g. Pesch et al 2011, Davidson et al 2010,

Lehmann et al 2011, Maslo et al 2011).

CART creates a binary tree through recursive partitioning of the observations in the data

set. A group of observations in the tree is called a “node”. At each single “parent” node in the

tree, CART attempts to partition the data from the parent node into two more-homogeneous

“daughter” nodes. CART uses an exhaustive processing algorithm that uses all of the covari-

ates, checking every possible way to split the observations based on breaks in the covariate

distributions.

Homogeneity of a node is often referred to as impurity. A measure of impurity is generally

continuous and bounded on the lower end by zero, although it can be any formula which has

a value to identify a perfectly homogeneous node (such as zero) and an increasing scale to
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measure the relative strength of the split. A measure of zero indicates that no further splitting

is required, while measures further from zero indicate an increasing propensity toward splitting.

Impurity could also take the form of a statistical deviance (De’ath and Fabricius 2000, Clark

and Pregibon 1992) when using a specific statistical model.

Some common measures of impurity for a classification tree (Breiman et al. 1984) are Entropy,

Misclassification, Twoing and the Gini Index, which is often the default measure used for

splitting in classification trees. When the responses are binary (yes / no), the Gini Index

defines impurity at a node with n observations as

(2× #Y es

n
) ∗ (1− #Y es

n
) (1.1)

A calculated measure is used to rank each of the possible splits of a parent node. This

measure is often based on a measure of impurity taken from each node in the triad (the parent

node and two daughter nodes). In literature, this value might be referred to as a “decrease in

impurity” or a “drop in deviance”. We also note that at times in the literature, “Deviance”

appears to have referred to impurity in general, a specific function of impurity, or a statistical

deviance based on a model. The combined impurity at the two daughter nodes is the sum of the

impurity (e.g. the Gini Index) for each node. Then the decrease in impurity of the proposed

split is defined as the difference between the impurity of the parent node and the combined

impurity of the two daughter nodes. The proposed split with the largest decrease would be

chosen for use in the tree.

When creating a CART model, the tree could potentially continue growing until every

terminal node has only 1 observation in it. In order to avoid overfitting, CART employs several

rules on when to stop growing the tree. The simplest of these rules is to stop splitting if the

parent node in question is perfectly homogeneous with respect to the response variable.

Another very basic rule is that of node size. This constraint specifies the minimum parent

node size required to even consider splitting, as well as setting the minimum daughter node size

required to accept a proposed split. For example, it may be unreasonable to consider splitting

a node with only 10 observations. Also, regardless of the homogeneity it may provide, splitting

a node with 50 observations into a node with 48 observations and another with 2 observations
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may not be statistically prudent.

Another stopping mechanism involves a choice of a value for the complexity parameter (cp).

During tree construction, an estimated complexity value (cp*) is calculated for each potential

split. If the estimated complexity cp* is not as large as the specified level (cp), then the split

being considered is not made. The cp value can also be used post-tree formation to further

prune the tree.

The user can also gain extra control through the definition of the measure of node impurity

(node deviance) or through the calculation of the drop in deviance of potential splits. For

classification modeling, the node deviance (D), along with the complexity parameter (cp), can

be used together in a cost-complexity pruning algorithm. If

Dparent −
∑

Dchild + cp

is not greater than zero for at least one set of splits below the parent node, then that initial

split is not worth keeping at the current level of cp (Therneau and Atkinson 2011).

Of particular interest to this paper are uses of CART for occupancy modeling (e.g. De’ath

and Fabricius 2000; Bourg et al. 2005; Castellón and Sieving 2006). It predicts occurrence or

abundance of a species using environmental covariates such as temperature, distance to water,

and food availability. Occupancy modeling can be especially useful when the subject is difficult

to find (due to mobility, concealment, or if the area being searched is very large in size), thus

leading to scenarios with imperfect detection! It can also be used to predict occurrence in

un-surveyed areas or potentially to understand the biological mechanisms. Sample data are

often represented in clusters, which can cause issues with precision in model estimates.

This thesis addresses two main issues. The first issue being the application of CART to a

set of occupancy data collected with the potential for imperfect detection. In order to build

a classification (or regression) tree, a general assumption is that the identification status (or

quantitative characteristic) of the individuals which you are using to create the tree are known,

which then makes the internal calculations fairly straightforward. Modeling occupancy data

with detection issues complicates this idea. If a status or characteristic value is uncertain,
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that should change the creation process and interpretation of the CART tree. We will propose

several methods as solutions to this problem.

The second issue involves any study in which the data were collected from clustered observa-

tions. This violates another assumption of CART, which is that of independence. Independence

is a highly sought-after commodity when collecting data, and is the default for many statis-

tical methods. Without independence, we are left scrambling to compensate for the changes

in variance that are sure to occur, and must adjust the modeling techniques accordingly. We

propose a method that will adjust CART for the presence of correlated data.

Chapter 2 will focus on methods to solve the problem of using CART to model occupancy

data with imperfect detection. Chapter 3 will be concerned with a proposal to adjust CART for

the presence of correlated data. Chapter 4 presents a new way to think about evaluating and

reducing CART trees to a manageable size in light of the methodology introduced in Chapters

2 and 3. Finally, Chapter 5 will summarize the findings of the previous three chapters.
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CHAPTER 2. Incorporating Detection into Classification and Regression

Trees for Occupancy Modeling

Classification and Regression Tree (CART) models provide a flexible way to model species’

habitat occupancy status, but standard CART algorithms ignore imperfect detection. We out-

line four methods for including detection probability in the process of growing the tree, and

illustrate these methods using data from a study of mountain plovers (Dinsmore et al. 2003).

The results depend on the method used to estimate detection and occupancy. The tree struc-

tures produced by three of the methods are identical to that produced by the näıve tree in which

detection is ignored. The fourth method yields different splitting choices. Estimates of occu-

pancy probability are consistently lower when using the näıve tree than those computed using

detection-adjusted trees. Accounting for imperfect detection is crucial even when occupancy is

modeled using a CART tree.

2.1 Introduction

Occupancy modeling (OM) is a widely used tool among ecologists and wildlife researchers.

It predicts occurrence or abundance of a species using environmental covariates, such as temper-

ature, distance to water, and food availability. OM can be especially useful when the subject is

difficult to find (due to mobility, concealment, or if the area being searched is very large in size).

It can also be used to predict occurrence in un-surveyed areas or potentially to understand the

biological mechanisms. Recent examples include predicting occupancy for the Siberian flying

squirrel (Reunanen et al. 2002), describing the spatial population structure of the leaf-mining

moth (Gripenberg et al. 2008), conservation planning for Finnish butterflies at different spatial

scales (Cabeza et al. 2010), examining the role of habitat quality on chinook salmon spawning
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(Isaak et al. 2007), and modeling nest-site occurrence for the Northern Spotted Owl (Stralberg

et al. 2009).

A recent trend in OM research is to develop models that allow imperfect detection. With

perfect detection, one model for occupancy at site i is a Bernoulli distribution, Yi ∼ Bern(πi)

, where Yi = 1 if Seen (i.e. Detected) at site i, and πi = Prob(Occupancy) at site i =

f(X1, X2, · · ·Xk). The function f(X1, X2, · · · , Xk) relates Prob(occupancy) to the k environ-

mental covariatesX1, X2, · · ·Xk. However, when detection is imperfect, i.e. Prob(Detect|Occupied)

= πd < 1, then πocc becomes partially masked by πd. A better model would be Yi ∼

Bern(πoccπd), The expected probabilities of observed data at a site on a given occasion are

then:

P (Y = 1) = probability of ‘Seen’ = πoccπd

P (Y = 0) = probability of ‘Not Seen’ = 1− πoccπd

= (1− πocc) + πocc(1− πd)

= P (Not there) + P (there but not seen)

Logistic regression is often used to predict occupancy probabilities. The logit function,

log[πocc/(1− πocc)] relates occupancy probability to the environmental covariates.

log(
πocc

1− πocc
) = β0 + β1 ∗ x1 + ...+ βp ∗ xp

Failure to account for imperfect detection in logistic regression models is known to lead to

biased estimates of occupancy probability (Tyre at al. 2003, Gu and Swihart 2004).

Logistic regression requires an explicit model for the influence of the environmental covari-

ates. Commonly, the logistic regression model assumes linearity and additivity. The additivity

assumption can be relaxed by including interaction terms, but without good knowledge of the

appropriate interactions to include, this often leads to a large number of model terms and

over-fitting (Hosmer and Lemeshow 2000).

A classification and regression tree (CART) is a flexible alternative to logistic classification

models (De’ath and Fabricius 2000, Breiman et al. 1984). Unlike logistic regression, CART can

account for interactions in its binary tree structure because it does not require the assumption of
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additivity. CART allows the simultaneous use of both quantitative and qualitative covariates,

makes no distributional assumptions, and is invariant to monotone transformations of variables

(Breiman et al. 1984). Another advantage of CART is its ability to handle missing values.

Whereas logistic regression would discard any individual with data missing from one of its

covariates, CART can still use that individual’s data to help formulate the model (Clark and

Pregibon 1992, Harrell 2001, De’ath and Fabricius 2000, Breiman et al. 1984). These properties,

along with its relative ease of construction and interpretation, have lead to widespread use of

CART in occupancy modeling (e.g. De’ath and Fabricius 2000; Bourg et al. 2005; Castellón

and Sieving 2006).

CART creates a binary tree by recursively paroning the observations in the data set. At each

split, CART attempts to partition the data in a parent node into two more-homogeneous nodes.

A calculated measure, often based on node impurity, is used to rank each of the possible splits

of a parent node. Some common measures of node impurity for a classification tree (Brieman et

al. 1984) are Entropy, Misclassification, Twoing, and the Gini index, which is often the default

measure for splitting in a classification tree. When the responses are binary (yes / no), the

Gini Index defines impurity at a node with n observations as

(2× #Y es

n
) ∗ (1− #Y es

n
) (2.1)

The combined deviance at the two daughter nodes is the sum of (2.1) for each node. Then

the calculated measure of the proposed split is defined as the drop in deviance from the parent

node to the two combined daughter nodes. In general, a bigger change implies a better split.

However, the default use of a CART tree with seen/not seen data to model occupancy does

not account for imperfect detection. Our goal is to modify the CART node-split We use a pair

of simulated data sets and data on mountain plover sightings to illustrate our method. We

present four methods for CART that incorporate detection probability into the tree-splitting

process. Each method was evaluated using the same test data set and the results are compared.

We present a measure (AIC) to evaluate the quality of the resulting tree. Our results from

the mountain plover data suggest that using a single parameter to model detection probability

within the whole tree is preferable.
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2.1.1 Examples

2.1.1.1 Simulated Examples

We simulated two data sets in which the detection probability varied with environmental

variables and their interaction. The Test1 data set has 3 variables. X3 is associated with

detection probability, while X1 and X2 are associated with occupancy probability. The Test2

data set has 6 variables. X4 and X5 are associated with detection probability, variables X1,

X2, X4, and X6 are associated with the occupancy probability, and X3 was irrelevant.

2.1.1.2 Plovers Example

Our motivating example is a multi-year study of Mountain Plovers in Montana, USA (Dins-

more et al 2003). Mountain Plovers were searched for on prairie dog colonies during three

sampling periods each year (20 May-10 June, 11-30 June, and 1-20 July) over a period of 13

years (1995-2007). During each search plovers were either seen (1) or not seen (0) on each

prairie dog colony. There were a total of 81 colony sites involved in the survey, although not

every site was sampled in every year. In 9 of the 13 years, some covariate information for each

colony was collected simultaneously with the occupancy data. The covariates in the data set

include the area of the prairie dog colony (AREA) and two colony shape metrics , a patch

shape index (PSI) and a measure of perimeter-to-area ratio (PARA).

We removed the third sampling period in each year after exploratory analysis indicated

that the detection probability in that period was substantially different from detection in the

first two surveys. There is previous evidence for declining detection probabilities within each

year (Dinsmore et al. 2003). We chose to work with the data from 2002. That year had a

large number of sites visited twice (54) and a relatively low rate of näıve detection (#ones over

2*#sites), thus the probability of misclassifying sites as ’non-occupied’ may be higher than in

other years.
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2.2 Methods

Taking a likelihood-based approach, we propose four possible approaches to incorporate

detection into a potential split from a parent node to two daughter nodes. We use πP , πL, and

πR to denote occupancy probabilities for the parent, left daughter, and right daughter nodes,

respectively. At each node, n0, n1 and n2 are the number of sites with no detections, one

detection or two detections. The four approaches are:

1. Separate detection and occupancy parameters (πd and πocc) at each node (6 total).

(This method is referred to as parent.v.daughter.v.daughter, or p.v.d.v.d.)

The likelihood at each node in this situation is

L(πd, πocc|n0, n1, n2) ∝ [(1− πocc) + πocc(1− πd)2]n0 ∗ [2πoccπd(1− πd)]n1 ∗ [πoccπd
2]n2

and the solutions to the score equations at a node are

π̂occ =
n1 + n2

(2πd − πd2)(n0 + n1 + n2)
(2.2)

π̂d =
2n2

2n2 + n1
(2.3)

2. One detection parameter, πd, that applies to all 3 nodes (parent, left daughter and right

daughter), but 3 separate occupancy parameters (4 parameters total). We consider three

estimators of πd:

(a) estimate πd from the root of the tree (all observations)and assume that detection

remains constant throughout the tree.

(This method is referred to as orig.parent.)

(b) estimate πd from the parent node for each split, and assume that detection remains

constant only within that split.

(This method is referred to as each.parent.)

(c) estimate πd from the two proposed daughter nodes and assume that detection re-

mains constant that split.
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(This method is referred to as parent.v.2daughters, or p.v.2d)

The joint likelihood is

L(πd, πL, πR|n0L, n1L, n2L, n0R, n1R, n2R) ∝ [(1− πL) + πL(1− πd)2]n0L ∗ [2πLπd(1− πd)]n1L

∗[πLπd2]n2L ∗ [(1− πR) + πR(1− πd)2]n0R

∗[2πRπd(1− πd)]n1R ∗ [πRπd
2]n2R

Examining the solutions to the score equations ((2) and (3)), it can be seen that in the case

when there are no ‘11’ sites (i.e. n2 = 0) and there is at least one ‘01’ or ‘10’ site (i.e. n1 > 0),

then π̂d = 0 and π̂occ =∞. There are other situations (not easily identifiable) when π̂d ∈ [0, 1]

but π̂occ > 1. The use of optim() and a logit transformation of the probabilities prevents these

situations, as well as preventing estimates of exactly 1 or exactly 0, which can cause errors in

the calculation of the likelihoods.

For each method, the “drop in deviance” of a split takes the form of the test statistic of a

Likelihood Ratio Test (LRT) between the parent node (same occupancy probability in all sites)

and the two daughter nodes (two different occupancy probabilities). From all potential splits,

the split with the largest test statistic is taken as the split used in the tree.

Akaike Information Criterion (AIC) is used as a measure of model selection between the

models produced from each of the four proposed methods. AIC is calculated as -2*l(θ) + 2k,

where l(θ) represents the maximized value of the Likelihood function based on the estimates

π̂d = 0 and π̂occ, and k is the number of parameters in the model. Models are penalized for

added complexity (additional parameters). Models with the lowest AIC values are generally

preferred over other models.

2.2.1 Implementation

To obtain results using the näıve method, which ignores the issue of detection, we combined

the two sampling periods into one set (i.e. one “occasion”) of response data. We labeled each

site with at least one ’1’ (i.e. ’11’, ’01’, or ’10’) as ’occupied’ and sites that had a ’00’ received a

’not-occupied’ designation. We then used the Gini Index as the measure of impurity to produce

the näıve tree.
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For the imperfect detection methods, we replaced the Gini Index with a statistical deviance

calculated using likelihood functions so that we could include a parameter for the detection

probability. We maximized the log-likelihoods using the optim() function in R with the BFGS

method. The two parameters (πocc and πd) were estimated on the logistic scale and then the

results were back-transformed, thereby ensuring that our estimates fell within the parameter

space (i.e. between 0 and 1) without having to truncate any estimates. Those estimated prob-

abilities were then used to calculate the log-likelihood at each of the three nodes, which in turn

was used to calculate the drop in deviance (in the form of a LRT) of the proposed split. This

was done for every possible split from a parent node.

We performed the CART analyses with the rpart() function from in program R, which can

be found in the rpart package (Therneau and Atkinson 2010). We utilized the “user splits”

option, which allows the creation and use of non-standard splitting functions and criteria.

2.3 Results

2.3.1 Simulation Results

From the test1 and test2 simulations, the best (using AIC) imperfect detection models

were parent.v.2daughters (for test1) and the orig.parent model (for test2) method. We then

compared the tree from the best models of each simulation to the trees produced assuming

perfect detection. Figure 2.1 displays these results. We show only the tops of the trees in an

effort to conserve space. The test1 trees show two differences in splits, in Nodes 2 (1st left-

daughter node) and 13 (among the lower-right branches). The nodes in both trees split on the

x1 variable, but do so in different places. For Node 2, this may only result in a small change

in estimated πocc, since the resulting nodes are still classified as “unoccupied”. However, for

Node 13, the change in estimated πocc, coupled with allowing πdet < 1, is enough to declare

the sites “occupied”. Between the test2 trees, we see only one structural difference, in Node 2,

that has a similar effect as the Node 2 changes seen in the test1 trees.
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 Test1 Naive

|
x2< 1.5

x1< 6.265
x1< 8.577

x3>=2.5

x1>=8.646
x1< 1.499

0
68/1 0

18/6
1

6/8

0
9/1

0
7/3

0
25/24

1
20/54

Test1 pv2d

|
x2< 1.5

x1< 5.87
x1< 8.577

x3>=2.5
x1>=8.646

x1< 6.0280
63/0 0

23/7
1

6/8
1

9/1
1

25/18
1

7/9

1
20/54

Test2 Naive

|
x4b< 1.5

x1< 8.666
x6b>=2.5

x3< 1.561

0
79/6

0
10/2

1
3/9

0 1

Test2 orig.parent

|
x4b< 1.5

x1< 4.288
x1< 8.666

x6b>=2.5

x3< 1.561

0
44/0 0

35/6

0
10/2

1
3/9

0 1

Figure 2.1 Trees produced from the test1 and test2 simulations, comparing the näıve method
to the imperfect detection methods parent.v.2daughters (test1) and orig.parent
(test2). Both sets of trees display structural changes that can occur when ac-
counting for imperfect detection. In the test1 trees, this occurs in Node 2 (the
1st left-daughter node) and Node 13 (among the lower-right branches). The test2
trees only reveal a structural difference in Node 2.
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2.3.2 Study Results

From the analysis of the plover data, we see that site estimates of occupancy probability for

three of the proposed methods are quite similar (Figure 2.2, Table 2.1), but the fourth method,

p.v.d.v.d., produces very different estimates from the other methods (Table 2.2). The näıve

method generally produces smaller estimates of occupancy probability than do the proposed

methods. However, despite the estimates of occupancy and detection changing between meth-

ods, the tree structure for all of the proposed methods except p.v.d.v.d. was identical to that

of the näıve tree (Figure 2.3).

orig.parent

0.0 0.4 0.8

●

●

●●

●●●●●

●

●

●

●●
●

●●

●●

●

●●
●
●
●
●●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●●●●

●

●

●

●●
●

●●

●●

●

●●
●
●
●
●●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

0.0 0.4 0.8

●

●

● ●

●● ●●●

●

●

●

●●
●

●●

●●

●

● ●
●

●
●

● ●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

0.
0

0.
4

0.
8

●

●

●●

●●● ●●

●

●

●

●●
●

●●

●●

●

●●
●

●
●

●●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

0.
0

0.
4

0.
8

●

●

●●

●●●●●

●

●

●

●●●

●●

●●

●

●●● ●● ●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

each.parent

●

●

●●

●●●●●

●

●

●

●●●

●●

●●

●

●●●●●●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●● ●●●

●

●

●

●● ●

●●

●●

●

● ● ●● ●● ●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●●

●●● ●●

●

●

●

●●●

●●

●●

●

●●● ●● ●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●●●

●●

●●

●

●●● ●● ●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●●

●●●●●

●

●

●

●●●

●●

●●

●

●●●●●●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

parent.v.2daughters

●

●

● ●

●● ●●●

●

●

●

●● ●

●●

●●

●

● ● ●● ●● ●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

0.
0

0.
4

0.
8

●

●

●●

●●● ●●

●

●

●

●●●

●●

●●

●

●●● ●● ●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

0.
0

0.
4

0.
8

●
●

●

● ●

●

●

●●

● ●

●

●●

●
●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●● ●

●

●●●

●●

●
●

●●

●

●
●

●

● ● ●
●

●

● ●

●

●

●●

● ●

●

●●

●
●

● ●●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●● ●

●

●●●

●●

●
●

●●

●

●
●

●

● ● ●
●

●

● ●

●

●

●●

● ●

●

●●

●
●

● ●●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●● ●

●

●●●

●●

●
●

●●

●

●
●

●

● ●

p.v.d.v.d.

●
●

●

● ●

●

●

●●

● ●

●

●●

●
●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●● ●

●

●●●

●●

●
●

●●

●

●
●

●

● ●

0.0 0.4 0.8

●

●

●●

●●

●

●

●

●

●

●

●●
●

●●

●●

●

●●
●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●●

●●

●

●●
●
●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

0.0 0.4 0.8

●

●

●●

●●

●

●

●

●

●

●

●●
●

●●

●●

●

●●
●
●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●
●

●●

●●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

0.0 0.4 0.8

0.
0

0.
4

0.
8

naive

Figure 2.2 Comparing estimates of occupancy at each site between the 5 methods. The
straight lines have a slope of 1 and represent equality. Three of the proposed
methods are quite similar (orig.parent, each.parent, and parent.v.2daughter), while
the fourth proposed method produces very different estimates. The näıve method
generally produces smaller estimates of occupancy than the proposed imperfect
detection methods do.
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Table 2.1 The node estimates of occupancy and detection from the näıve method, as well as
from the proposed methods orig.parent (orig.par), each.parent (each.par), and par-
ent.v.2daughters (p.v.2d). A (*) represents a terminal node of the tree. Note that
while the tree structure is the same for each of these methods, the node estimates
are very different from the nä’ive method.

näıve näıve Orig.par Orig.par Each.par Each.par p.v.2d p.v.2d

tree node Split seen/n π̂occ π̂det π̂occ π̂det π̂occ π̂det π̂occ π̂det

1 root 36/54 0.667 1 0.803 0.588 0.803 0.588 0.803 0.588

2 AREA <= 4366.5 21/36 0.583 1 0.702 0.588 0.702 0.588 0.701 0.590

4 PARA <= 4565.0 15/28 0.536 1 0.645 0.588 0.714 0.500 0.713 0.501

8* PARA > 2038.0 2/7 0.286 1 0.344 0.588 0.381 0.500 0.381 0.500

9 PARA <= 2038.0 13/21 0.619 1 0.745 0.588 0.825 0.500 0.825 0.500

18* AREA > 1803.0 6/14 0.429 1 0.516 0.588 0.534 0.556 0.488 0.651

19* AREA <= 1803.0 7/7 1.000 1 0.999 0.588 0.999 0.556 0.999 0.651

5* PARA > 4565.0 6/8 0.750 1 0.903 0.588 0.998 0.500 0.995 0.501

3* AREA > 4366.5 15/18 0.833 1 0.999 0.588 0.999 0.588 0.998 0.590

Table 2.2 The node estimates of occupancy and detection resulting from the p.v.d.v.d.
method. A (*) represents a terminal node of the tree. While occupancy estimates
appear similar to those in Table 2.1, they should not be compared because of the
different tree structures.

tree node Split seen/n π̂occ π̂det

1 root 36/54 0.8028 0.5882

2* PSI > 231 5/9 0.5926 0.7500

3 PSI <= 231 31/45 0.8560 0.5581

6* AREA <= 1261 4/8 0.5625 0.6667

7 AREA > 1261 27/37 0.9250 0.5406

14 AREA <= 6103 19/26 0.9997 0.4617

28* AREA <= 2835 11/15 0.9998 0.4334

29* AREA > 2835 8/11 0.9167 0.5454

15* AREA > 6103 8/11 0.7682 0.7692
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|
AREA<=4366.5

PARA<=4565
PARA>2038

5/2

AREA>1803

8/6 0/7

2/6
3/15

Figure 2.3 The tree produced using methods orig.parent, each.parent, and par-
ent.v.2daughters, shown here, is identical to the näıve tree produced without ac-
counting for imperfect detection. However, Table 2.1 displays the differences in
the parameter estimates, which show the advantage of the imperfect detection
methods.

Based on the AIC values shown in Table 2.3, the best model for the plover data appears

to be the orig.parent model, which only estimates one detection probability parameter that is

constant across all nodes (and thus all sites). Assuming a closed population, our original data

clearly shows that the näıve method is incorrect; any sites with observed data 0-1 or 1-0 (seen

once, not seen once) indicate a need to account for imperfect detection.

Table 2.4 shows the progression of AIC as we continue down the tree. Even though we

are adding one additional [occupancy] parameter at each split (one parent parameter becomes

two daughter parameters), the AIC remains very similar until the final split, when it drops

noticeably.
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Table 2.3 AIC values computed using the plover data. AIC is calculated as -2*l(θ) + 2k. The
best model is the orig.parent model.

Model AIC

Orig.parent 116.22

p.v.2d 121.15

Each.parent 121.93

p.v.d.v.d. 131.26

Table 2.4 The results from the proposed orig.parent method, along with AIC computed at
each split in the tree. Although the AIC calculation involves both leaves, the value
is shown only for the left-daughter node of each split. A (*) represents a terminal
node of the tree.

Orig.parent Orig.parent AIC at each split

tree node Split seen/n π̂occ π̂det

1 root 36/54 0.8028 0.5882 121.65

2 AREA <= 4366.5 21/36 0.7024 0.5882 120.03

4 PARA <= 4565.0 15/28 0.6451 0.5882 120.79

8* PARA > 2038.0 2/7 0.3441 0.5882 120.41

9 PARA <= 2038.0 13/21 0.7454 0.5882

18* AREA > 1803.0 6/14 0.5161 0.5882 116.22

19* AREA <= 1803.0 7/7 0.999979 0.5882

5* PARA > 4565.0 6/8 0.9031 0.5882

3* AREA > 4366.5 15/18 0.9996 0.5882
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2.4 Discussion

The simulated test1 and test2 data reveal that there can be structural changes caused by

failing to account for imperfect detection when using CART, in addition to the less-visible (but

still important) changes in parameter estimates at each node. Site classifications, using a cutoff

of πocc = 0.5, were changed from “unoccupied” to “occupied” designations.

The plover data, while an excellent real-world example of a situation where imperfect de-

tection methodology should be applied, failed to lead to any structural differences between the

näıve tree and the trees for three of the four proposed methods. It is possible that similar

detection probabilities throughout the tree, or the use of so few covariates, contributed to the

lack of tree diversity.

The p.v.d.v.d. method classified all sites as being occupied (using a cutoff of πocc = 0.5).

This seems very unusual, and you might think that allowing detection probabilities to change

throughout the tree caused the tree structure to change. This is partially true, but allowing

detection to differ at each node leads to erroneous use of the LRT. For the p.v.d.v.d. method,

the LRT is a test of ANY difference between nodes (i.e. splitting decisions could be due to

differences in detection and not just occupancy).

The idea of incorporating detection into classification and regression trees can be extended

to random forests (Breiman 2001). Unfortunately, the random forest approach does not result

in one final tree; it only reports an estimate for each individual, aggregated over all trees (the

modal group for classification or the average for regression). A random forest would estimate

πocc for each site, averaged over a collection of trees, but it will not identify a single tree

structure. A single-tree CART approach may be more desirable due to its interpretability and

ability to visually represent results (Prasad et al., 2006). Another CART extension that could

benefit from using a detection parameter is boosted regression trees. Elith et al (2006), in their

review of more than a dozen models for predicting species’ distributions from occurrence data,

count boosted regression trees among the best models tested for various scenarios. These trees

could still be improve by using detection to help estimate occupancy during the creation of

each individual decision tree.
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2.5 Conclusion

Classification and regression trees have proven their worth as an effective statistical model-

ing tool for many situations. One area where they have previously lacked the ability to create

an accurate model is in situations involving multiple surveys with imperfect detection. Being

able to account for detection probability in the pursuit of predicting presence/absence of a

desired individual (or characteristic, etc.) allows CART to be more accurate in its predictions.

While they are by no means the final say in modifications to CART for detection, the four

alternative methods presented here enable CART to be extended to statistical analyses which

would otherwise use a different modeling tool.
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2.7 Extra material: R Code

2.7.1 User Splits

# Mark McKelvey attempting to use the "user splits" option in R

# Requires 3 pieces: Init, Eval, and Splits

# Optional 4th part called ’parms’ to pass in other information

# *NOTE: parms MUST be part of the call to rpart().

# It will not work from the global environment.

# I also change init$functions$print and init$functions$text

options(warn = 1) #prints warnings as they occur,

# rather than waiting until the end

options(digits=4) # controls number of digits/decimals (default is 7)

# if digits is set too low, numbers may go to

# scientific notation

library(rpart)

set.seed(7)

################################################################

# The ’evaluation’ function. Called once per node.

# Produce a label (1 or more elements long) for labeling each node,

# and a deviance. The latter is

# - of length 1

# - equal to 0 if the node is "pure" in some sense (unsplittable)

# - does not need to be a deviance: any measure that gets larger

# as the node is less acceptable is fine.

# - the measure underlies cost-complexity pruning, however

###############

############### Mark’s eval() code

temp1 <- function(y, wt, parms) {

print("***** START: Evaluating *****")

Ns <- timesseen(y);
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# NOTE: Ns[1] = n0 = never seen, Ns[2] = n1 = seen once,

# Ns[3] = n2 = seen twice...

# If using orig.parent, I’d like to report the same prob.det

# being used in the split function; also the corresponding prob.occ

if(parms$mygoodness==1){ param.parent <- optim(c(0.5), lnl.t.fixed,

gr=NULL, method="BFGS", control=list(fnscale=-1),

prob.det = parms$prob.det, Ns = Ns )$par

param.parent <- backt(param.parent)

prob.occ <- param.parent[1]

prob.det <- parms$prob.det

}

# Anything else, I will report the node-specific prob.det and prob.occ

# Note that for each.parent and p.v.2d methods, this does not reflect

# the values being used in the split() function

else{

param.parent <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns=Ns )$par

param.parent <- backt(param.parent)

prob.occ <- param.parent[1]

prob.det <- param.parent[2]

}

labels <- matrix(nrow=1, ncol=5)

# labels[1] is the fitted y category

# labels[2] is sum(y == 0) i.e. the "unseen" sites

# labels[3] is sum(y >= 1) i.e. the "seen" sites

# labels[4] is prob.occ

# labels[5] is prob.det

labels[1] <- ifelse(prob.occ >= parms$cutoff, 1, 0)

labels[2] <- Ns[1]

labels[3] <- sum(Ns[-1])

labels[4] <- prob.occ

labels[5] <- prob.det

print(labels)

dev <- ifelse(prob.occ >= parms$cutoff, Ns[1], sum(Ns[-1]))

ret <- list(label=labels, deviance=dev)

print("***** END: Evaluating *****")

ret

}

############### end Mark’s eval() code

###############

# The split function, where most of the work occurs.

# Called once per split variable per node.
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# If continuous=T

# The actual x variable is ordered

# y is supplied in the sort order of x, with no missings,

# return two vectors of length (n-1):

# goodness = goodness of the split, larger numbers are better.

# 0 = couldn’t find any worthwhile split

# the ith value of goodness evaluates splitting obs 1:i vs (i+1):n

# direction= -1 = send "y< cutpoint" to the left side of the tree

# 1 = send "y< cutpoint" to the right

# this is not a big deal, but making larger "mean y’s" move towards

# the right of the tree, as we do here, seems to make it easier to

# read

# If continuous=F, x is a set of values defining the groups for an

# unordered predictor. In this case:

# direction = a vector of length m= "# groups".

# direction actually displays the names/labels for each group.

# It asserts that the best split can be found by

# lining the groups up in this order and going from left to right,

# so that only m-1 splits need to be evaluated rather than 2^(m-1)

# goodness = m-1 values here.

#

# The reason for returning a vector of goodness is that the C routine

# enforces the "minbucket" constraint. It selects the best return value

# that is not too close to an edge.

###############

############### Mark’s split() code

temp2 <- function(y, wt, x, parms, continuous) {

#print("***** START: Splitting *****")

if(parms$mygoodness==1){mygoodness=LRT.orig.parent}

if(parms$mygoodness==2){mygoodness=LRT.each.parent}

if(parms$mygoodness==3){mygoodness=LRT.parent.v.2daughters}

if(parms$mygoodness==4){mygoodness=LRT.parent.v.daughter.v.daughter}

idx <- order(x); x <- x[idx]; y <- y[idx,];

#Just in case ordering is not already done elsewhere

y <- cbind(y)

# If y is a vector, this allows me to calculate n using only one method

n <- nrow(y)

parent <- y # In my code, the node being split is called the parent

if (continuous) { # continuous x variable

# Get the goodness

## MAKE SURE IT IS A VECTOR!!

## Because rpart does the min. node size requirements elsewhere,

## I just have to compute n-1 deviances here.



23

possibles <- rep(0,n-1)

direction <- rep(-1, n-1)

prob.occ.L = prob.occ.R <- rep(0, n-1)

for (i in 1:(n-1)) {

left <- matrix(parent[1:i,], ncol=ncol(parent))

right <- matrix(parent[(i+1):n,], ncol=ncol(parent))

if(x[i]==x[i+1]) {next}

### NOT allowed to split up observations with the same x value

info <- mygoodness(parent, left, right, orig.prob.det=parms$prob.det)

possibles[i] <- info[1] # test stat. for a likelihood ratio test

prob.occ.L[i] <- info[2]

prob.occ.R[i] <- info[3]

# Get the direction ALSO A VECTOR!!

if(prob.occ.L[i] > prob.occ.R[i]){ direction[i] <- 1}

# Compares occupancy probabilities, sends the higher one to the right

} # end ’for’ loop

goodness <- possibles

ret <- list(goodness=goodness, direction=direction)

#print("***** END: Splitting *****")

ret

}

else {

# Categorical X variable

# we can order the categories by their means

# (i.e. estimated prob.occ values)

# then use the same code as for a non-categorical

ux <- sort(unique(x))

# Sort does smallest to largest (either numerical or alphabetical)

m <- length(ux)

occs <- 0

for(i in 1:m){

group <- y[x==ux[i], ]

Ns <- timesseen(group);

param <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns=Ns )$par

param <- backt(param)

prob.occ <- param[1]

occs[i] <- prob.occ

} # end ’i’ loop

ord <- order(occs) #tells where each number belongs in order

# e.g. 2 1 4 3 means that the first number is second-lowest,

# 2nd number is smallest
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# Get the goodness

## MAKE SURE IT IS A VECTOR!!

## Because rpart does the minimum node size elsewhere,

## I just have to compute m-1 deviances here.

possibles <- rep(0,m-1)

prob.occ.L = prob.occ.R <- rep(0, m-1)

for (i in 1:(m-1)) {

left <- parent[ x<=ux[i], ]

right <- parent[ x>ux[i], ]

info <- mygoodness(parent, left, right, orig.prob.det=parms$prob.det)

possibles[i] <- info[1]

prob.occ.L[i] <- info[2]

prob.occ.R[i] <- info[3] }

# Get the direction ALSO A VECTOR!!

direction <- ux[ord]

goodness <- possibles

ret <- list(goodness=goodness, direction=direction)

#print("***** END: Splitting *****")

ret

}

}

############### end Mark’s split() code

###############

# The init function:

# fix up y to deal with offsets

# return a parms list--this can be passed in from the call to rpart(),

# but it MUST be reproduced (or changed) in init()

# parms includes cutoff (for predictions/labeling),

# occasions (# sampling times),

# prob.det (if specified by the user), and

# goodness (which imperfect detection method is used)

# numresp is the number of values produced by the eval routine’s "label"

# numy is the number of columns for y

# summary is a function used to print one line in summary.rpart

# yval is the matrix "yval2" in tree$frame

# each row contains predicted value, deviance, n, prob.occ, prob.det

# text is a function used to put text on the plot in text.rpart

# *NOTE: The split information printed is NOT controlled by the text

# function in init()

# Only the terminal node information comes from this text function
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# In general, this function would also check for bad data, see

# rpart.poisson for example

###############

############### begin Mark’s init() code

temp3 <- function(y, offset, parms, wt) {

print("***** START: Init *****")

if (!is.null(offset)) y <- y-offset

# IF method is orig.parent and prob.det is not specified:

if(parms$mygoodness==1 & is.null(parms$prob.det)==TRUE) {

# Calculate orig.prob.det from the very first parent node

# (i.e. all of the data)

Ns <- timesseen(y)

param.parent <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns = Ns)$par

param.parent <- backt(param.parent)

#orig.prob.occ <- param.parent[1]

orig.prob.det <- param.parent[2]

parms$prob.det <- orig.prob.det

} # end ’if’ statement

ret <- list(y=y, parms=parms, numresp=5, numy=parms$occasions,

summary= function(yval, dev, wt, ylevel, digits ) {

paste("predicted value=", yval[,1], "deviance=", dev, "prob.occ=",

round(yval[,4],digits), "prob.det=", round(yval[,5],digits) )

}, #end summary

text= function(yval, dev, wt, ylevel, digits, n, use.n ) {

nclass <- (ncol(yval) - 1)/2

group <- yval[, 1]

counts <- yval[, 1 + (1:nclass)]

if (!is.null(ylevel)) {group <- ylevel[group] }

temp1 <- format(counts, digits)

if (nclass > 1) { temp1 <- apply(matrix(temp1,

ncol = nclass), 1, paste, collapse = "/") }

if (use.n) { out <- paste(format(group,

justify = "left"), "\n", temp1, sep = "") }

else {out <- format(group, justify = "left") }

return(out)

}, #end text

print= function(yval, ylevel, digits){

if (is.null(ylevel)) {temp <- as.character(yval[, 1]) }

else {temp <- ylevel[yval[, 1]] }

nclass <- (ncol(yval) - 1)/2
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if (nclass < 5) {yprob <- format(yval[, 1 + nclass + 1:nclass],

digits = digits, nsmall = digits)}

else {yprob <- formatg(yval[, 1 + nclass + 1:nclass], digits = 2)}

if (is.null(dim(yprob))) {yprob <- matrix(yprob, ncol = length(yprob)) }

temp <- paste(temp, " (", yprob[, 1], sep = "")

for (i in 2:ncol(yprob)) temp <- paste(temp, yprob[, i], sep = " ")

temp <- paste(temp, ")", sep = "")

temp

} #end print

) # end ret

print("***** END: Init *****")

ret

}

2.7.2 Companion functions

# Calculates the total number of times the species was detected at each site

timesseen <- function(y){

timesseen <- 0

Ns <- rep(0, (ncol(y)+1) )

for (i in 1:nrow(y)){

timesseen[i] <- sum(y[i, ]) }

for (j in 1:length(Ns)){

Ns[j] <- sum(timesseen==(j-1)) }

# NOTE: Ns[1] = n0 = never seen, Ns[2] = n1 = seen once,

# Ns[3] = n2 = seen twice

return(Ns) } #end timesseen

# backtransforming parameters when using logistic representation

backt <- function(ln.param) {

1/(1+exp(-ln.param))

} #end backt

###########

# lnl using logistic parameterization

# Used for any node when estimating both prob.occ and prob.det

lnl.t <- function(param, Ns){

ln.Likelihood(backt(param), Ns)

} #end lnl.t

ln.Likelihood <- function(x, Ns){

prob.occ <- x[1]

prob.det <- x[2]

k <- length(Ns)-1 # k = number of sampling occasions

ln.like <- Ns[1]*log((1-prob.occ) + prob.occ*(1-prob.det)^k)

# not occupied or occupied and seen 0 times
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for(i in 1:k){ # occupied, seen ’i’ times out of ’k’ possible

ln.like <- ln.like + Ns[i+1]*log( choose(k,i) * prob.occ * (prob.det^i) *

((1-prob.det)^(k-i)) )

} # end ’i’ loop

return(ln.like) } #end ln.Likelihood

###########

# Need for nodes when I’m fixing prob.det while optimizing pi.occ

# this occurs in orig.parent and each.parent

lnl.t.fixed <- function(param, prob.det, Ns){

ln.Likelihood.fixed(backt(param), prob.det, Ns)

} #end lnl.t.fixed

ln.Likelihood.fixed <- function(x, prob.det, Ns){

prob.occ <- x[1]

k <- length(Ns)-1 # k = number of sampling occasions

ln.like <- Ns[1]*log((1-prob.occ) + prob.occ*(1-prob.det)^k)

# not occupied or occupied and seen 0 times

for(i in 1:k){ # occupied, seen ’i’ times out of ’k’ possible

ln.like <- ln.like + Ns[i+1]*log( choose(k,i) * prob.occ * (prob.det^i) *

((1-prob.det)^(k-i)) )

} # end ’i’ loop

return(ln.like) } #end ln.Likelihood

###########

# lnl for parent.v.2daughters

lnl.star.t <- function(param, Ns.left, Ns.right){

ln.Likelihood.STAR2(backt(param), Ns.left, Ns.right)

} #end lnl.star.t

# lnl for parent.v.2daughters

ln.Likelihood.STAR2 <- function(x, Ns.left, Ns.right){

prob.occ.L <- (x[1]); prob.occ.R <- (x[2]); prob.det.star <- (x[3]);

k <- length(Ns.left)-1 # k = number of sampling occasions

ln.like <- Ns.left[1]*log((1-prob.occ.L) +

prob.occ.L*(1-prob.det.star)^k) +

Ns.right[1]*log((1-prob.occ.R) +

prob.occ.R*(1-prob.det.star)^k )

for(i in 1:k){ # occupied, seen ’i’ times out of ’k’ possible

ln.like <- ln.like + Ns.left[i+1]*log( choose(k,i) * prob.occ.L *

(prob.det.star^i) * ((1-prob.det.star)^(k-i)) ) +

Ns.right[i+1]*log( choose(k,i) * prob.occ.R *

(prob.det.star^i) * ((1-prob.det.star)^(k-i)) )

} # end ’i’ loop

return(ln.like) } #end ln.Likelihood.STAR2
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###########

##############

############## The following two functions are needed to label

# my print output properly

print.rpart <- function(x, minlength=0, spaces=2, cp,

digits=getOption("digits"), ...) {

if(!inherits(x, "rpart")) stop("Not legitimate rpart object")

if (!is.null(x$frame$splits)) x <- rpconvert(x) #help for old objects

if (!missing(cp)) x <- prune.rpart(x, cp=cp)

frame <- x$frame

ylevel <- attr(x, "ylevels")

node <- as.numeric(row.names(frame))

depth <- tree.depth(node)

indent <- paste(rep(" ", spaces * 32), collapse = "")

#32 is the maximal depth

if(length(node) > 1) {

indent <- substring(indent, 1, spaces * seq(depth))

indent <- paste(c("", indent[depth]), format(node), ")", sep = "")

}

else indent <- paste(format(node), ")", sep = "")

tfun <- (x$functions)$print

if (!is.null(tfun)) {

if (is.null(frame$yval2))

yval <- tfun(frame$yval, ylevel, digits)

else yval <- tfun(frame$yval2, ylevel, digits)

}

else yval <- format(signif(frame$yval, digits = digits))

term <- rep(" ", length(depth))

term[frame$var == "<leaf>"] <- "*"

z <- labels(x, digits=digits, minlength=minlength, ...)

n <- frame$n

z <- paste(indent, z, n, format(signif(frame$dev, digits = digits)),

yval, term)

omit <- x$na.action

if (length(omit))

cat("n=", n[1], " (", naprint(omit), ")\n\n", sep="")

else cat("n=", n[1], "\n\n")

#This is stolen, unabashedly, from print.tree

if (x$method=="class")

cat("node), split, n, loss, yval, (yprob)\n")

# NEW PART!!!
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if (x$method=="user"){ cat("node), split, n, deviance, yval,

prob.occ, prob.det\n") }

#####

else cat("node), split, n, deviance, yval\n")

cat(" * denotes terminal node\n\n")

cat(z, sep = "\n")

return(invisible(x))

#end of the theft

}

# This one is located in treemisc.R

tree.depth <- function(nodes)

{

depth <- floor(log(nodes, base = 2) + 1e-7)

as.vector(depth - min(depth))

}

2.7.3 Four Proposed Methods

LRT.orig.parent <- function(parent, left, right, orig.prob.det){

# PARENT

Ns.parent <- timesseen(parent)

# for example, n0 <- Ns[1]; n1 <- Ns[2]; n2 <- Ns[3]; ...

# LEFT

Ns.left <- timesseen(left)

# RIGHT

Ns.right <- timesseen(right)

param.parent <- optim(c(0.5), lnl.t.fixed, gr=NULL, method="BFGS",

control=list(fnscale=-1), prob.det = orig.prob.det,

Ns = Ns.parent )$par

param.parent <- backt(param.parent)

prob.occ <- param.parent[1]

param.left <- optim(c(0.5), lnl.t.fixed, gr=NULL, method="BFGS",

control=list(fnscale=-1), prob.det = orig.prob.det,

Ns=Ns.left)$par

param.left <- backt(param.left)

prob.occ.L <- param.left[1]

param.right <- optim(c(0.5), lnl.t.fixed, gr=NULL, method="BFGS",

control=list(fnscale=-1), prob.det = orig.prob.det,

Ns=Ns.right)$par

param.right <- backt(param.right)
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prob.occ.R <- param.right[1]

upper <- ln.Likelihood(c(prob.occ, orig.prob.det), Ns.left) +

ln.Likelihood(c(prob.occ, orig.prob.det), Ns.right)

lower <- ln.Likelihood(c(prob.occ.L, orig.prob.det), Ns.left) +

ln.Likelihood(c(prob.occ.R, orig.prob.det), Ns.right)

test.stat <- -2*(upper-lower)

out <- c(test.stat, prob.occ.L, prob.occ.R, orig.prob.det)

return(out) }

LRT.each.parent <- function(parent, left, right, orig.prob.det){

# LEFT

Ns.left <- timesseen(left)

# RIGHT

Ns.right <- timesseen(right)

param.parent <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1),Ns = (Ns.left+Ns.right) )$par

param.parent <- backt(param.parent)

prob.occ <- param.parent[1]

prob.det <- param.parent[2]

param.left <- optim(c(0.5), lnl.t.fixed, gr=NULL, method="BFGS",

control=list(fnscale=-1), prob.det = prob.det, Ns=Ns.left)$par

param.left <- backt(param.left)

prob.occ.L <- param.left[1]

param.right <- optim(c(0.5), lnl.t.fixed, gr=NULL, method="BFGS",

control=list(fnscale=-1), prob.det = prob.det, Ns=Ns.right)$par

param.right <- backt(param.right)

prob.occ.R <- param.right[1]

upper <- ln.Likelihood(c(prob.occ, prob.det), Ns.left) +

ln.Likelihood(c(prob.occ, prob.det), Ns.right)

lower <- ln.Likelihood(c(prob.occ.L, prob.det), Ns.left) +

ln.Likelihood(c(prob.occ.R, prob.det), Ns.right)

test.stat <- -2*(upper-lower)

out <- c(test.stat, prob.occ.L, prob.occ.R, prob.det)

return(out) }

LRT.parent.v.daughter.v.daughter <- function(parent, left, right,

orig.prob.det){

# LEFT

Ns.left <- timesseen(left)
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# RIGHT

Ns.right <- timesseen(right)

param.parent <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns= (Ns.left + Ns.right) )$par

param.parent <- backt(param.parent)

prob.occP <- param.parent[1]

prob.detP <- param.parent[2]

param.left <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns=Ns.left )$par

param.left <- backt(param.left)

prob.occ.L <- param.left[1]

prob.det.L <- param.left[2]

param.right <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns=Ns.right )$par

param.right <- backt(param.right)

prob.occ.R <- param.right[1]

prob.det.R <- param.right[2]

upper <- ln.Likelihood(c(prob.occP, prob.det.L), Ns.left) +

ln.Likelihood(c(prob.occP, prob.det.R), Ns.right)

lower <- ln.Likelihood(c(prob.occ.L, prob.det.L), Ns.left) +

ln.Likelihood(c(prob.occ.R, prob.det.R), Ns.right)

test.stat <- -2*(upper-lower)

out <- c(test.stat, prob.occ.L, prob.occ.R, prob.det.L, prob.det.R)

return(out) }

LRT.parent.v.2daughters<-function(parent, left, right, orig.prob.det){

# LEFT

Ns.left <- timesseen(left)

#RIGHT

Ns.right <- timesseen(right)

param.parent <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns = (Ns.left + Ns.right) )$par

param.parent <- backt(param.parent)

prob.occ.P <- param.parent[1]

prob.det.P <- param.parent[2]

param.star <- optim(c(0.5, 0.5, 0.5), lnl.star.t, gr=NULL,

method="BFGS", control=list(fnscale=-1), Ns.left=Ns.left,

Ns.right=Ns.right)$par

param.star <- backt(param.star)
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pi.L <- param.star[1];

pi.R <- param.star[2];

prob.det.star <- param.star[3]

param.upper <- c(prob.occ.P, prob.occ.P, prob.det.star)

param.lower <- c(pi.L, pi.R, prob.det.star)

upper <- ln.Likelihood.STAR2(param.upper, Ns.left, Ns.right)

lower <- ln.Likelihood.STAR2(param.lower, Ns.left, Ns.right)

test.stat <- -2*(upper-lower)

out <- c(test.stat, param.lower)

return(out) }

2.7.4 Run code

#Mark McKelvey

plovers <- read.csv("C://Documents and Settings/Owner/My Documents/

Research Part I/McKelvey data.csv", header=T)

attach(plovers)

library(rpart);

###########################

###########################

X2002 <- 0

for (i in 1:81) { X2002[i] <- sum(X2002.1[i] + X2002.2[i])

ifelse(X2002[i]>=1, X2002[i] <- 1, X2002[i] <- 0) }

data.2002 <- data.frame(X2002, A02, X02PARA, X02PSI)

#for matching with rpart

colnames(data.2002) <- c("X2002", "AREA", "PARA", "PSI")

doubledown <- cbind(X2002, X2002, A02, X02PARA, X02PSI)

#### REMINDER: FOR my personal (self-written) optim 4 code,

completedata.2002 NEEDS TO BE A MATRIX

#### THE DATA FRAME IS NEEDED FOR USER.SPLITS

completedata.mat.2002 <- cbind(X2002.1, X2002.2, A02, X02PARA, X02PSI)

#for incorporating detection

colnames(completedata.mat.2002) <- c("X2002.1", "X2002.2",

"AREA", "PARA", "PSI")

completedata.df.2002 <- as.data.frame(completedata.mat.2002)

detach(plovers)

########################################

########################################

#Source code progression:

#source("C://Documents and Settings/Owner/My Documents/Research Part I/

MY rpart functions with Optim 4.R")
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#This includes myrpartLRT with optim() rather than direct MLE’s

# *Note: myrpartLRT is the one where I wrote my own massive rpart

# function, which matches rpart() for continuous covariates

#source("C://Documents and Settings/Owner/My Documents/Research Part I/

MY attempt at user splits.R")

#This one has the actual user splits code.

# NOTE: It is NOT used in the paper (except for graphing)

# --while estimates will match, the extra internal pruning used

# within rpart() causes the tree structure to not be as

# "complete" as the other** results

# 3/3/13 ** "Other" refers to fit.02

# (rpart(), 1 occasion, Gini, perfect detection)

# and to alt.02orig

# Strangely enough, the naive method specifying Gini as the

# splitting method does NOT exhibit the same problem...

################################

################################

# The user splits results:

source("E:/Research/MY attempt at user splits.R")

source("C://Documents and Settings/Owner/My Documents/Research Part I/

MY attempt at user splits.R")

alist <- list(eval=temp1, split=temp2, init=temp3)

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=1)

# mygoodness: 1=orig.parent, 2=each.parent, 3=p.v.2d, 4=p.v.d.v.d.

fit.user02 <- rpart( cbind(X2002.1, X2002.2) ~ AREA + PARA + PSI,

data=completedata.df.2002, method=alist, parms=parms, cp=0.005 )

# Note the use of the data frame here (completedata.df.2002)...

# problems exist if using a matrix (column references in code somehow)

#################################

# The "myrpartLRT" code (personally-written to emulate rpart while

# incorporating detection)

# results:

source("C://Documents and Settings/Owner/My Documents/

Research Part I/MY rpart functions with Optim 4.R")

# Well, technically this one (fit.02) doesn’t use my own code

# (it is for perfect detection):

fit.02 <- rpart(as.factor(X2002) ~ AREA + PARA + PSI,

parms=list(split="gini"), data=data.2002, cp=0.005)

# Now Y is categorical, 1 occasion

# Could also say "method=class" in the call to rpart.

# Should do the same as if y is a factor.

fit.02

par(mfrow=c(1,2), xpd=NA)
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plot(fit.02, main="Rpart")

text(fit.02, use.n=TRUE)

# Note the use of completedata.mat.2002

# (must be in a matrix form for my pers. code for column references)

#alt.02 <- myrpart1(data.2002, deviance=Gini.det, prob.det=1, cp=.005)

alt.02pv2d <- myrpartLRT(completedata.mat.2002,

deviance=LRT.parent.v.2daughters, occasions=2, cp=.005)

alt.02pvdvd <- myrpartLRT(completedata.mat.2002,

deviance=LRT.parent.v.daughter.v.daughter, occasions=2, cp=.005)

alt.02each <- myrpartLRT(completedata.mat.2002, deviance=LRT.each.parent,

occasions=2, cp=.005)

alt.02orig <- myrpartLRT(completedata.mat.2002, deviance=LRT.orig.parent,

occasions=2, cp=.005)

fit.02naive <- myrpartLRT(doubledown,

deviance=LRT.orig.parent, occasions=2, cp=.005)

# Note: doubledown is a matrix. Even though this still allows

# detection to be chosen, it is estimated as .999999,

# so it should be fine

#class(alt.02) <- "rpart"

details(alt.02orig) # My personal plotting and text function

alt.02orig$mysplits

alt.02each$mysplits

alt.02pv2d$mysplits

alt.02pvdvd$mysplits # different from other 3

fit.02naive$mysplits

myaic(alt.02orig, naive=FALSE)

myaic(alt.02each, naive=FALSE)

myaic(alt.02pv2d, naive=FALSE)

myaic(alt.02pvdvd, naive=FALSE)

myaic(fit.02naive, naive=TRUE)

myaic.naivetree(fit.02) # For use with an rpart()-created tree object

# This corresponds to using fit.02naive.

####################################################

####################################################

## test1 from 3/3/13

test1 <- read.csv("C://Documents and Settings/Owner/My Documents/

Research Part I/Dixon test1 data 3_3_13.csv", header=T)

Y1or2 <- ifelse(test1$y1==1 | test1$y2==1, 1, 0)

test1.naive <- data.frame(test1, Y1or2)

test1.df <- test1;

test1.mat <- as.matrix(test1);

#1) Set up for naive (perfect detection) and my original code
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# (imperfect detection)

# Well, technically this one doesn’t use my own code

# (it is for perfect detection):

fit.test1 <- rpart(as.factor(Y1or2) ~ x1 + x2 + x3,

parms=list(split="gini"), data=test1.naive, cp=0.005)

# Now Y is categorical, 1 occasion

# Could also say "method=class" in the call to rpart.

# Should do the same as if y is a factor.

fit.test1

par(mfrow=c(1,2), xpd=NA)

plot(fit.test1, main="Rpart, piDet=1")

text(fit.test1, use.n=TRUE)

#2) Using user splits (first to check results with nominal categorical),

# but also to get a tree object that will work well with graphing,

# trimming, etc.

source("C://Documents and Settings/Owner/My Documents/Research Part I/

MY attempt at user splits.R")

alist <- list(eval=temp1, split=temp2, init=temp3) #

# mygoodness: 1=orig.parent, 2=each.parent, 3=p.v.2d, 4=p.v.d.v.d.

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=1)

fit.user.test1.orig <- rpart( cbind(y1, y2) ~ x1 + x2 + x3,

data=test1.df, method=alist, parms=parms, cp=0.005 )

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=2)

fit.user.test1.each <- rpart( cbind(y1, y2) ~ x1 + x2 + x3,

data=test1.df, method=alist, parms=parms, cp=0.005 )

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=3)

fit.user.test1.pv2d <- rpart( cbind(y1, y2) ~ x1 + x2 + x3,

data=test1.df, method=alist, parms=parms, cp=0.005 )

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=4)

fit.user.test1.pvdvd <- rpart( cbind(y1, y2) ~ x1 + x2 + x3,

data=test1.df, method=alist, parms=parms, cp=0.005 )

options(digits=7) # the user splits file changes it to 4,

# but this screws up the naive picture

par(mfrow=c(1,5), xpd=NA)

plot(fit.test1, main="Naive");

text(fit.test1, use.n=T)

plot(fit.user.test1.orig, main="Orig");

text(fit.user.test1.orig, use.n=T)

plot(fit.user.test1.each, main="Each");

text(fit.user.test1.each, use.n=T)

plot(fit.user.test1.pv2d, main="pv2d");

text(fit.user.test1.pv2d, use.n=T)
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plot(fit.user.test1.pvdvd, main="pvdvd");

text(fit.user.test1.pvdvd, use.n=T)

# To prune trees via display (must use a version of R later than 3.1??

# Maybe not...)

library(rpart.plot)

test1.naive.trimmed <- prp(fit.test1, snip=TRUE)$obj

test1.pv2d.trimmed <- prp(fit.user.test1.pv2d, snip=TRUE)$obj

par(mfrow=c(2,2), xpd=NA)

par(mar=c(0.2, 0.2, 4, 0.2))

plot(test1.naive.trimmed, main=" Test1 Naive")

text(test1.naive.trimmed, use.n=T)

plot(test1.pv2d.trimmed, main="Test1 pv2d")

text(test1.pv2d.trimmed, use.n=T)

#3) Set up my four methods with my original code.

# Also provides AIC values

source("C://Documents and Settings/Owner/My Documents/Research Part I/

MY rpart functions with Optim 4.R") #

# Note the use of test1.mat (must be a matrix for my personal code)

fit.test1.pv2d <- myrpartLRT(test1.mat,

deviance=LRT.parent.v.2daughters, occasions=2, cp=.005)

fit.test1.pvdvd <- myrpartLRT(test1.mat,

deviance=LRT.parent.v.daughter.v.daughter, occasions=2, cp=.005)

fit.test1.each <- myrpartLRT(test1.mat, deviance=LRT.each.parent,

occasions=2, cp=.005)

fit.test1.orig <- myrpartLRT(test1.mat, deviance=LRT.orig.parent,

occasions=2, cp=.005)

#class(test1.orig) <- "rpart" # if I were going to use plot() directly

par(mfrow=c(1,5), xpd=NA)

plot(fit.test1, main="Rpart, pi.det=1")

text(fit.test1, use.n=T)

options(digits=7)

details(fit.test1.orig) # My personal plotting and text function

details(fit.test1.each)

details(fit.test1.pv2d)

details(fit.test1.pvdvd)

myaic(fit.test1.orig, naive=FALSE)

myaic(fit.test1.each, naive=FALSE)

myaic(fit.test1.pv2d, naive=FALSE)

myaic(fit.test1.pvdvd, naive=FALSE)

## test2 from 3/3/13
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test2 <- read.csv("C://Documents and Settings/Owner/My Documents/

Research Part I/Dixon test2 data 3_3_13.csv", header=T)

Y1or2.test2 <- ifelse(test2$y1==1 | test2$y2==1, 1, 0)

test2.naive <- data.frame(test2, Y1or2.test2)

test2.df <- test2;

test2.mat <- as.matrix(test2);

# test2$x4b <- as.factor(test2$x4b); test2$x5b <- as.factor(test2$x5b);

# test2$x6b <- as.factor(test2$x6b);

#1) Set up for naive (perfect detection)

# Well, technically this one doesn’t use my own code

# (it is for perfect detection):

fit.test2 <- rpart(as.factor(Y1or2.test2) ~ x1 + x2 + x3 + x4b + x5b + x6b,

parms=list(split="gini"), data=test2.naive, cp=0.005)

# Now Y is categorical, 1 occasion

# Could also say "method=class" in the call to rpart.

# Should do the same as if y is a factor.

fit.test2

par(mfrow=c(1,2), xpd=NA)

plot(fit.test2, main="Rpart, piDet=1")

text(fit.test2, use.n=TRUE)

#2)Using user splits (first to check results with nominal categorical),

# but also to get a tree object that will work well with graphing,

# trimming, etc.

source("C://Documents and Settings/Owner/My Documents/Research Part I/

MY attempt at user splits.R")

alist <- list(eval=temp1, split=temp2, init=temp3) #

# mygoodness: 1=orig.parent, 2=each.parent, 3=p.v.2d, 4=p.v.d.v.d.

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=1)

fit.user.test2.orig <- rpart(cbind(y1, y2) ~ x1 + x2 + x3 + x4b + x5b + x6b,

data=test2.df, method=alist, parms=parms, cp=0.005 )

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=2)

fit.user.test2.each <- rpart(cbind(y1, y2) ~ x1 + x2 + x3 + x4b + x5b + x6b,

data=test2.df, method=alist, parms=parms, cp=0.005 )

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=3)

fit.user.test2.pv2d <- rpart(cbind(y1, y2) ~ x1 + x2 + x3 + x4b + x5b + x6b,

data=test2.df, method=alist, parms=parms, cp=0.005 )

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=4)

fit.user.test2.pvdvd <- rpart(cbind(y1, y2) ~ x1 + x2 + x3 + x4b + x5b + x6b,

data=test2.df, method=alist, parms=parms, cp=0.005 )

options(digits=7) # the user splits file changes it to 4,

# but this screws up the naive picture

par(mfrow=c(1,2), xpd=NA)
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plot(fit.test2, main="Naive");

text(fit.test2, use.n=T)

plot(fit.user.test2.orig, main="Orig");

text(fit.user.test2.orig, use.n=T)

plot(fit.user.test2.each, main="Each");

text(fit.user.test2.each, use.n=T)

plot(fit.user.test2.pv2d, main="pv2d");

text(fit.user.test2.pv2d, use.n=T)

plot(fit.user.test2.pvdvd, main="pvdvd");

text(fit.user.test2.pvdvd, use.n=T)

# To prune trees via display (must use a version of R later than 3.1??

# Or not...)

library(rpart.plot)

test2.naive.trimmed <- prp(fit.test2, snip=TRUE)$obj

test2.orig.trimmed <- prp(fit.user.test2.orig, snip=TRUE)$obj

par(mfrow=c(1,2), xpd=NA)

plot(test2.naive.trimmed, main="Test2 Naive")

text(test2.naive.trimmed, use.n=T)

plot(test2.orig.trimmed, main="Test2 orig.parent")

text(test2.orig.trimmed, use.n=T)

#3) Set up for alt. methods with my original code.

# Also to get AIC values.

source("C://Documents and Settings/Owner/My Documents/Research Part I/

MY rpart functions with Optim 4.R") #

# Note the use of test2.mat (must be a matrix for for my personal code

fit.test2.pv2d <- myrpartLRT(test2.mat, deviance=LRT.parent.v.2daughters,

occasions=2, cp=.005)

fit.test2.pvdvd <- myrpartLRT(test2.mat,

deviance=LRT.parent.v.daughter.v.daughter, occasions=2, cp=.005)

fit.test2.each <- myrpartLRT(test2.mat, deviance=LRT.each.parent,

occasions=2, cp=.005)

fit.test2.orig <- myrpartLRT(test2.mat, deviance=LRT.orig.parent,

occasions=2, cp=.005)

#class(test2.orig) <- "rpart" # if I were going to use plot() directly

par(mfrow=c(1,5), xpd=NA)

plot(fit.test2, main="Naive, pi.det=1")

text(fit.test2, use.n=T)

details(fit.test2.orig) # My personal plotting and text function

details(fit.test2.each)

details(fit.test2.pv2d)

details(fit.test2.pvdvd)
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myaic(fit.test2.orig, naive=FALSE)

myaic(fit.test2.each, naive=FALSE)

myaic(fit.test2.pv2d, naive=FALSE)

myaic(fit.test2.pvdvd, naive=FALSE)

# To graph the test1 and test2 trees for the Part I paper

par(mfrow=c(2,2), xpd=NA)

par(mar=c(0.2, 0.3, 5, 0.3)) # Bottom, L, Top, R

#pdf("C://Documents and Settings/Owner/My Documents/Research Part I/

# typed summary/test1and2_trimmed_file.pdf", width=0.01, height=0.01)

#par(mfrow=c(2,2), xpd=NA)

plot(test1.naive.trimmed, main=" Test1 Naive")

text(test1.naive.trimmed, use.n=T)

plot(test1.pv2d.trimmed, main="Test1 pv2d")

text(test1.pv2d.trimmed, use.n=T)

plot(test2.naive.trimmed, main="Test2 Naive")

text(test2.naive.trimmed, use.n=T)

plot(test2.orig.trimmed, main="Test2 orig.parent")

text(test2.orig.trimmed, use.n=T)

#dev.off()

#dev.list()
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CHAPTER 3. Incorporating Dependence into Classification and

Regression Trees for Occupancy Modeling

Classification and regression trees (CART) are a flexible, frequently-used method for mod-

eling probabilities of events. Many studies include a cluster-type sampling design where there

is a clear spatial correlation between sampling locations. This correlation causes the variance

of the node occupancy estimates in CART to be biased. We suggest a generalized estimat-

ing equation (GEE)-based approach in which the näıve variance estimates (calculated as if all

locations were independent) are “corrected” based on the data available in each parent node

of the tree. The corrected variance estimates are then used to revise the binary-split decision

criterion of the tree. We demonstrate this method using data from a study on rats and also

from a study on bird occurrences in Oregon.

3.1 Introduction

A classification and regression tree (CART) is a flexible alternative to linear models for

regression and logistic models for classification. In CART, individuals (which could be spatial

locations or sites) are separated into groups using covariate information (Breiman et al 1984,

De’ath and Fabricius 2000). Each group is then identified by a predicted value of the response

variable. CART, like logistic regression, is flexible in that it does not require any distributional

assumptions and it allows the use of both categorical and quantitative variables. Unlike logistic

regression, it can model interactions and higher-order terms with relative ease–there are no

restrictions of additivity or linearity. Another advantage of CART is its ability to handle

missing values. Whereas logistic regression would discard any individual with data missing

from one of its covariates, CART can still use that individual’s data to help formulate the
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model (Clark and Pregibon 1992, De’ath and Fabricius 2000, Breiman et al. 1984). These

properties, along with its relative ease of construction and interpretation, have lead many

researchers to use CART as their tool of choice for modeling. De’ath and Fabricius (2000) used

CART to analyze survey data on abundances of soft coral in the Great Barrier Reef. Bourg

et al. (2005) used a combination of methods, including CART, to predict habitat for the rare

forest herb turkeybeard. Molinaro et al (2004) adapt CART to censored data, touching on

both univariate and multivariate responses. Segal (1992) discusses tree-based regression with

longitudinal data, and even talks briefly about alternative tree-splitting algorithms.

During the creation of a binary tree, CART attempts to partition the data into homoge-

neous groups. To do this, CART uses a calculated measure based on impurity (or a statistical

deviance) in order to rank each of the possible splits at a node. Some common measures of

impurity for a classification tree (Brieman et al. 1984) are Sum of Squares, Entropy, Misclas-

sification, Twoing, and the Gini index, which is often the default measure for splitting in a

classification setting. In a study where the data consists of Seen(Yes)/Not Seen(No) responses,

the Gini Index defines impurity at a node with n observations as

(2× #Y es

n
) ∗ (1− #Y es

n
) (3.1)

The collective deviance at the two daughter nodes is the sum of (3.1) calculated at each

node. Then the drop in deviance of the proposed split is the difference between the deviance

of the parent node and the combined deviance of the two daughter nodes. In general, the

proposed split with the largest drop in deviance is chosen.

Models often assume that the observations in the study are independent. However, some

studies involve observations that are clustered (either spatially or otherwise related). The

characteristics of clustered individuals are likely to be correlated in some way. Therefore,

any model examining data where independence is in doubt should account for that [possible]

correlation.

Generalized linear models and generalized linear mixed-models are often used to model

clustered data. Both of these model types are able to account for correlation between individ-

ual data, either explicitly (GLMM’s) or through model extensions (e.g. generalized-estimating
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equations (GEE’s) for GLM’s). In a general review of methods for modeling spatially auto-

correlated data, Dormann et al (2007) indicate that GLMM’s and GEE’s are a good, flexible

choice for modeling binary response data such as presence/absence data.

Clustered data affects the variance of parameter estimates. If clustering has a constant effect

on the variance, then a test statistic approach to splitting would just be a re-scaled version of

a deviance method, and would have no effect on the ranking of potential splits. We will show

through examples that clustering does not have a constant effect. Depending on the situation

(where clustered patches are in relation to each other within the CART tree ), clustering may

either increase or decrease the variance (relative to the näıve case assuming independence), and

it may do so with varying orders of magnitude.

CART has been used in analysis of occupancy studies, which can be useful for describ-

ing species-habitat relationships, helping with monitoring programs, or as an alternative to

abundance sampling. Given covariate information, CART could be used to either predict occu-

pancy status or the occupancy probability of a location. In spite of the potential for correlation,

CART has been used to analyze data that may be clustered. Some examples include Castellón

and Sieving (2006), who used classification tree analysis to develop predictive patch occupancy

models for an avian species with limited dispersal ability; Murray et al (2008), who relate oc-

cupancy to ecological scale in a case study of rock wallabies; and Bel et al (2009), who use a

CART algorithm for spatial data with data from a study on presence/absence of tree species.

Previous methods have been developed which attempt to adjust the CART process for cor-

related data, including one proposal by Li and Claramunt (2006) which replaces the traditional

entropy in a tree with a spatial entropy measure, and another by Bel at al (2009) which ex-

amines spatial estimates of the quantities involved in the construction of the discriminant rule.

Both of these take a different, less general approach than we do. In a more closely related pa-

per, Sela and Simonoff (2012) have proposed an estimation method which blends mixed-effects

models for longitudinal and clustered data into CART.

We propose a method to incorporate dependence into the decision-making process of CART

in which random effects are used to help model the correlation among related observations. To

more accurately assess the variance of the point estimates when there is correlation involved, we
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take a generalized estimating equation (GEE) approach. First, we calculate the point estimates

and their corresponding variances under the assumption of independence, and then we “correct”

the näıve variance estimates by using the correlation found in the sample data set. We base

our correction (“patch-up”) factor on an analogy with the Huber-White consistent variance

estimator.

The suggested method is applied to two data sets: an experimental study on cavities in rats’

teeth and an observational study on breeding birds. In both cases the results are compared to

those of a näıve approach assuming independence between all patches.

3.1.1 Examples

3.1.1.1 Motivating Example 1: The Rat Data

The first example is taken from Andrews and Herzberg (1985, Table 43.1). One hundred

and twenty rats (of which 117 survived) were randomly assigned to one of eight diets. After

completing the feeding period, the rats were sacrificed and their teeth were removed and stained.

Twenty-eight occlusal surfaces in each rat were examined for cavities and scored according to

severity of decay. The response values were either 0,1,2, or 3, where 0 represents no decay, and

1, 2, and 3 represent increasing levels of decay. We reduce the response data to 0 (for decay

values of 0 and 1) and 1 (for decay values of 2 and 3).

3.1.1.2 Motivating Example 2: The Bird Data.

Our example is taken from a study done on breeding birds in Oregon (McGarigal and

McComb 1995). The study design is a cluster-type survey where patches are sampled within

sites. Specifically, there are 3 geographic basins which contain 10 sites apiece; each site consists

of a cluster of 30+ patches. At each patch, an observer was sent out four times during a period

from May to mid-July. During each survey, the observer recorded a count of each bird species

detected. Also recorded were many covariate values corresponding to the different spatial scales;

the majority of these described each patch.

Of primary interest to us is the occupancy of each patch, taking note of how the occupancy
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of one patch is likely correlated to the occupancy of other patches located in the same site.

Each basin was sampled in a different year, leading us to only use the data from a single basin,

Drift Creek, so that we could ignore changes in detection (and occupancy) from year to year

and from basin to basin. We chose the Golden-crowned kinglet for our analysis. We preferred

a species common enough to occupy a decent number of patches, yet not so common that

detection is a non-issue. Overall, the Golden-crowned kinglet was seen at 57% of all patches.

3.2 Methods

3.2.1 Methods for Rats Example–dependence only

Each response value corresponds to an occlusal surface within a rat, so each rat is thought

of as a subject that consists of a cluster of 28 related observations.

Assuming that correlation exists between responses of observations on the same subject means

that the variance of an estimate of decay (in the CART tree) is likely to be different than the

variance of an estimate obtained under the assumption of independence. Exactly how different

that variance is depends on the choice of correlation structure and the specific observations

involved in the proposed split being examined in CART.

Our quantity of interest is V ar(πL−πR), the variance of the difference in decay probabilities

between the left (L) or right (R) daughter nodes. The estimate of this variance will be used to

compute a Wald test statistic to help determine the best possible split from each parent node.

H0 : πL = πR

test stat =
π̂L − π̂R√

V ar(π̂L − π̂R)
(3.2)

Under the null hypothesis, the variance of each observation from the same subject is the

same (i.e. the observation-level variance of each observation will be the same regardless of which

daughter node (Left or Right) the observation is sent to next, because πL = πR = πP under

H0).
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Letting V0 represent V ar(π̂P ), we estimated the näıve (under independence) variance V ar(πL−

πR) by adjusting V0 for the size of each daughter node as follows:

V ar(πL − πR) = V ar(πL) + V ar(πR) ≈ V0(nL + nR)(
1

nL
+

1

nR
) (3.3)

In a Bernoulli setting where an observation is either damaged or not, the variance of the

observation is simply π(1 − π). When yij is the observed response of observation j in subject

i, then Ȳ = π̂ and the node estimate has a Binomial variance. V0 = π̂P (1−π̂P )
nL+nR

in the above

equation. Using V ar(π̂P ) as the basis of an estimate of V ar(π̂L) and V ar(π̂R), as in Equation

3.3, is done in the interest of increasing speed. Without using V ar(π̂P ), we would need to

compute V ar(π̂L) and V ar(π̂R) for every potential split from a parent node. When the number

of covariates or individuals is large, these multiple calculations can have a noticeable adverse

effect on computation time.

3.2.1.1 Patchup Factor

To estimate the correct variance of V ar(πL−πR) (i.e. a variance which accounts for spatial

dependence), we take a generalized estimating equation (GEE)-based approach: First estimate

the näıve variance under the assumption of independence, and then “correct” that näıve es-

timate based on the sample observations in the data. While there is an explicit sandwich

variance estimator used with GEE’s, the amount of computing time required to run those

calculations can be very lengthy (CART calculates a test for every possible split from each

parent node, which would necessitate the use of a sandwich estimator many times (as many

as #covariates * #individuals in the node)). The näıve (assuming independence) variance is

simply V ar(πL − πR) = V ar(πL) + V ar(πR), which we estimated as shown above.

3.2.1.2 Equal-variances patchup factor

The corrected variance is calculated by k ∗ V ar(πL − πR). The patchup factor, k, needs to

not only be a good estimate, but it needs to be calculated quickly, as it will be calculated for

every proposed split, not just for every parent node.

There are already many methods for adjusting variance when correlated binary data is present.
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For example, Bahjat and Liang (1992), Le Cessie and Van Houwelingen (1994), Liang et al

(1992), Neuhaus et al (1991), and Prentice (1988) all discuss various methods, but many of

these methods would be fairly intensive computational processes when applied to CART.

We started with a simple linear model Y = Xβ, where X is an n x 2 matrix of 0’s and 1’s that

identifies which daughter node each observation goes to in a proposed split, and β represents

the parameters in question (for the two daughter nodes), πL and πR. Using ordinary least

squares (OLS) to solve the linear model, we find that β̂ = (X ′X)−1(X ′Y ) and V ar(β̂) =

(X ′X)−1(X ′ΣX)(X ′X)−1. Without correlated data, Σ is a diagonal matrix of observation

variances.

Conceptually, we fit a linear model to πij , the probability of damage for observation j on

subject i:

πij = Xβ + subjecti + εij (3.4)

where subjecti ∼ N(0, σ2
subject),

εij ∼ N(0, σ2
obs),

and β′ = [πL πR]

Applying the OLS thinking to our problem, we can calculate a relatively fast approximation

of the correct (non-independence) V ar(π̂L)− π̂R) by using the patchup factor k, where

k =
C(X ′X)−1(X ′V X)(X ′X)−1C ′

C(X ′X)−1C ′
(3.5)

is the ratio of the OLS variance with correlated observations to the variance without corre-

lation.

—- C is [1 -1] to represent πL − πR

—- X records the destination (left daughter node or right daughter node) of each observation

in the proposed split

—- V is the block-diagonal correlation matrix (each block represents a subject), and is formed

using the estimated within-subject correlation, ρ̂, along with knowing the total number of sub-

jects and observations per subject that exist in the parent node.
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For this analysis, we assumed equal (i.e. exchangeable) correlation between all observations on

the same subject. Thus, the correlation between two observations on the same subject (under

H0) can be written as:

Cor(πij , πik) =
σ2

subject

σ2
subject + σ2

obs
= p

—- the within-subject correlation of observation decay probabilities (used to construct V ) is

estimated from the data in the parent node (this is explained in Implementation)

The patchup factor technically includes the covariance matrix in the numerator and the

variance of an observation (σ2
subject+σ

2
obs) in the denominator. Because of the equal-variances

assumption, all of the off-diagonal entries in the covariance matrix are exactly the same, which

allowed us to pull out and then cancel the common factor (σ2
subject + σ2

obs) from the top and

bottom. This left us with the correlation matrix in the numerator (ones on the diagonal and

ρ on the non-zero off-diagonals), while the covariance matrix on the bottom (which assumed

independence) became the identity matrix, thus reducing the denominator to what is shown

above in equation (3.5).

We illustrate the patchup factor for three examples. Each example shows calculations of

V ar(π̂L − π̂R) under H0/EQUAL variances, built from π̂P = 0.7 and p̂ = 0.35. As a whole,

these examples demonstrate the idea that the patchup factor depends on how the observations

within a subject are split between the two daughter nodes. Using 2 subjects with 4 observations

per subject, the covariance matrix for each example (under H0) is identical:

Σ = 0.21 ∗



1 .35 .35 .35 0 0 0 0

.35 1 .35 .35 0 0 0 0

.35 .35 1 .35 0 0 0 0

.35 .35 .35 1 0 0 0 0

0 0 0 0 1 .35 .35 .35

0 0 0 0 .35 1 .35 .35

0 0 0 0 .35 .35 1 .35

0 0 0 0 .35 .35 .35 1


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1. Pure “subject-splitting”(all observations from a subject stay together). When the ob-

servations go L,L,L,L,R,R,R,R, this leads to a patchup factor of k = 2.05. The näıve

variance is

V ar(π̂L) + V ar(π̂R) ≈ V0(nL + nR)(
1

nL
+

1

nR
) = 0.7(4 + 4)(1/4 + 1/4) = 2.8,

which means that the corrected variance is 2.05 ∗ (2.8) = 5.74

2. A“mixed-split” where exactly half the observations from a subject go left and half go

right. When the observations go L,L,R,R,L,L,R,R, this leads to a patchup factor of k =

0.65. The näıve variance is

V ar(π̂L) + V ar(π̂R) ≈ V0(nL + nR)(
1

nL
+

1

nR
) = 0.7(4 + 4)(1/4 + 1/4) = 2.8,

which means that the corrected variance is 0.65 ∗ (2.8) = 1.82

3. A “mixed-split” where some observations from a subject go left and others go right.

When the observations go L, L, L, R, L, L, R, R, this leads to a patchup factor of k =

0.743. The näıve variance is

V ar(π̂L) + V ar(π̂R) ≈ V0(nL + nR)(
1

nL
+

1

nR
) = 0.7(5 + 3)(1/5 + 1/3) = 2.986̄,

which means that the corrected variance is 0.743 ∗ (2.987) = 2.219

3.2.1.3 Unequal-variances patchup factor

If we neither assume equal variances for the two daughter nodes nor specify that we are

under H0, then we must account for the changes in the patchup factor due to having unequal

variances for the two daughter nodes.

Still using a GEE-related approach, we now take the ratio of the weighted least-squares

(WLS) variance with correlated observations to the variance without correlation.

The corrected variance is again computed by multiplying the näıve variance of V ar(π̂L − π̂R)

by k, where

k =
C(X ′WX)−1(X ′WΣWX)(X ′WX)−1C ′

C(X ′WX)−1C ′
(3.6)
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—- Σ is a block diagonal Variance-Covariance matrix (each block represents a subject, each

row represents a observation)

—- W is the diagonal matrix of weights such that wij = 1
V ar(obsij)

With unequal variances, the variance of an observation would depend on whether that

observation was sent to the left or right daughter node, and would be estimated as π̂L(1− π̂L)

or π̂R(1 − π̂R), respectively. After estimating the within-subject correlation, we are then able

to construct the covariance matrix from the observation variances and the correlation matrix.

We again illustrate the patchup factor for three examples, this time allowing for UNEQUAL

variances. Each example shows calculations of V ar(π̂L − π̂R) , built from π̂L = 0.8, π̂R = 0.4,

and p̂ = 0.35. While we still display 2 subjects with 4 observations per subject, in this situation

the covariance matrices will not be identical, and as such are displayed separately.

1. Pure “subject-splitting”(all observations from a subject stay together). When the ob-

servations go L,L,L,L,R,R,R,R (notation: R2 implies that an observation from subject 2

went to the Right daughter node)

Σ =



L1 L1 L1 L1 R2 R2 R2 R2

.16 .056 .056 .056 0 0 0 0

.056 .16 .056 .056 0 0 0 0

.056 .056 .16 .056 0 0 0 0

.056 .056 .056 .16 0 0 0 0

0 0 0 0 .24 .084 .084 .084

0 0 0 0 .084 .24 .084 .084

0 0 0 0 .084 .084 .24 .084

0 0 0 0 .084 .084 .084 .24


This leads to a patchup factor of k = 2.05 The näıve variance is

V ar(π̂L) + V ar(π̂R) ≈ V0(nL + nR)(
1

nL
+

1

nR
) = 0.7(4 + 4)(1/4 + 1/4) = 2.8,

which means that the corrected variance is 2.05 ∗ (2.8) = 5.74
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2. A “mixed-split” where half the observations from a subject go left and half go right.

When the observations go L, L, R, R, L, L, R, R

Σ =



L1 L1 R1 R1 L2 L2 R2 R2

.16 .056 .0686 .0686 0 0 0 0

.056 .16 .0686 .0686 0 0 0 0

.0686 .0686 .24 .084 0 0 0 0

.0686 .0686 .084 .24 0 0 0 0

0 0 0 0 .16 .056 .0686 .0686

0 0 0 0 .056 .16 .0686 .0686

0 0 0 0 .0686 .0686 .24 .084

0 0 0 0 .0686 .0686 .084 .24


This leads to a patchup factor of k = 0.664. The näıve variance is

V ar(π̂L) + V ar(π̂R) ≈ V0(nL + nR)(
1

nL
+

1

nR
) = 0.7(4 + 4)(1/4 + 1/4) = 2.8,

which means that the corrected variance is 0.664 ∗ (2.8) = 1.86

3. A “mixed-split” where some observations from a subject go left and others go right.

When the observations go L, L, L, R, L, L, R, R

Σ =



L1 L1 L1 R1 L2 L2 R2 R2

.16 .056 .056 .0686 0 0 0 0

.056 .16 .056 .0686 0 0 0 0

.056 .056 .16 .0686 0 0 0 0

.0686 .0686 .0686 0.24 0 0 0 0

0 0 0 0 .16 .056 .0686 .0686

0 0 0 0 .056 .16 .0686 .0686

0 0 0 0 .0686 .0686 .24 .084

0 0 0 0 .0686 .0686 .084 .24


This leads to a patchup factor of k = 0.755 The näıve variance is

V ar(π̂L) + V ar(π̂R) ≈ V0(nL + nR)(
1

nL
+

1

nR
) = 0.7(5 + 3)(1/5 + 1/3) = 2.986̄,
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which means that the corrected variance is 0.755 ∗ (2.987) = 2.255

3.2.1.4 Rats Implementation

Calculating within-subject correlation:

At a node: All observations within a certain parent node are potentially involved in the cor-

relation calculation. To form the (X,Y) pairs for a specific subject: If there exists more than

one observation from the same subject in the parent node, then an (X,Y) pair is created. Also,

because there is not any specific “X” or “Y” designation, any pair (X1, Y1) also creates another

pair (Y1, X1). For example: There are 3 observations (call them A, B, and C) from subject

8 in the parent node. Thus we create 6 data points to be used in the correlation calculation:

(A,B), (B,A), (A,C), (C,A), (B,C), and (C,B).

The values themselves: For each observation we calculated an “h” value, which is found by

taking the difference of each observation’s response value and the average response value of the

daughter node in which it is located. For example, an observation with a response value of 1

is in the left daughter node, which has an average response of 0.56. Then h = 1− .56 = 0.44

To calculate the correlation: Pairs are formed from every possible subject in the parent node

(subjects with less than two observations do not get included), and then the correlation is

calculated by using the pairs from all of these subjects together.

A negative correlation estimate was occasionally obtained, which we classified as “no corre-

lation”, since our conceptual idea is to only examine within-subject correlation. Negative

correlation may mean that there is correlation from some other source involved.

Obtaining the classification tree

For each approach (independent and dependent), we performed a CART analysis with the

rpart() function in program R (Therneau and Atkinson 2010). In both approaches, our depen-

dent variables were tooth and diet (factors with 28 and 8 levels respectively). We utilized the

“user splits” option, which allows the creation and use of non-standard splitting functions and

criteria. The proposed split with the largest (magnitude) test statistic was chosen to be used

in the tree.
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3.2.2 Methods for Birds Example–dependence PLUS detection/occupancy

3.2.2.1 Detection and Occupancy

In presence/absence studies, a common problem is the [potential] issue of false-negative

data (recording the site as “unoccupied” when in fact it is occupied). This issue, also referred

to as imperfect detection, can result in biased estimates of occupancy probability.

Within the modeling framework, some examples of how detection could be estimated from

those multiple observations are by using maximum likelihood, a variety of adjusted binomial

models, logistic regression, hierarchical modeling, etc. There may even be many different

detection parameters depending on how the model is specified (for example, a multiple-species

model, as in Bailey et al 2009).

For this example with CART, we incorporate imperfect detection into the split from a

parent node to two daughter nodes using a method based on assigning a multinomial likelihood

to the patches, with categories for ’m’ detections out of ’k’ survey occasions. At each node,

πocc and πd represent the occupancy and detection probabilities. Where clarification is needed,

we will use πP , πL, and πR to denote occupancy probabilities for the parent, left daughter,

and right daughter nodes respectively, rather than a general πocc. This method is explained in

more detail in Chapter 3. For this example, the likelihood for a node in the situation with 2

survey occasions per patch is

L(πd, πocc|n0, n1, n2) ∝ [(1− πocc) + πocc(1− πd)2]n0 ∗ [2πoccπd(1− πd)]n1 ∗ [πoccπd
2]n2 (3.7)

3.2.2.2 Dependence

Conceptually, under the null hypothesis, the linear model (3.4) now applies to (πij), the

probability of occupancy for patch j on site i, except that it is computed on the logistic scale

in our optimization methods to ensure that estimates will fall in the parameter space. For this

analysis, we again assume equal (i.e. exchangeable) correlation between all patches on the same

site.

Equal-variances patchup factor This is the same as the equal-variance patchup factor

in the Rats example.
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Unequal-variances patchup factor This is the same patchup factor as in the unequal

variances section of the Rats example, BUT

We need something quick for estimating the variance of the occupancy probability of each

patch when constructing the covariance matrix. With unequal variances, the variance of a patch

would depend on whether that patch was sent to the left or right daughter node. Following

on the heels of the Rats example, we adopt the Bernoulli variance as an approximation, using

the estimated node occupancies as parameters. Therefore, the patch variances are estimated

as π̂L(1 − π̂L) or π̂R(1 − π̂R). Note that in this example we use the node estimates π̂L and

π̂R found from maximum likelihood optimization rather than a sample mean. After estimating

the within-site correlation, we are then able to construct the covariance matrix from the patch

variances and the correlation matrix.

3.2.2.3 Birds Implementation

The original CART model was based on the use of five covariates: elevation (in meters),

slope (percent slope), aspect(degrees,0-360), stand edge (indicator for whether the plot center

is within 50 m from the nearest seral stage edge), and patch edge (indicator for whether the plot

center is within 50 m from the nearest patch edge). We estimated occupancy and detection

parameters using maximum likelihood on (3.7) with the optim() function in R. In the case

of the two daughter nodes, the search for π̂occ was restricted based on the parent node’s π̂d.

We modeled the parameters using a logistic transformation. We estimated the näıve variance

V ar(πL − πR) as previously shown in equation (3.3), except that V0 (i.e. Var(π̂occ) for the

parent node) was found via maximum likelihood estimation, using the negative inverse Hessian

matrix followed by a Delta method transformation. We reduced computation time by limiting

how often we computed variance estimates (and Hessian matrices) of any π̂occ values to once

per parent node, rather than twice for every potential split!

Correlation estimation: The correlation estimate is similar to that described in the Rats

example implementation, except that we have to deal with imperfect detection. We are speci-

fying the correlation to be through the occupancy of the sites, so we need to use a measure of

occupancy. We cannot use the estimated π̂occ for the parent node, or all patches will have the
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same value. Similarly, we cannot use the estimated π̂L and π̂R (only two different values would

result in a correlation of 1). Thus, we used a conditional estimate of occupancy, based on the

data observed at each patch. Calculating P(occ | not seen) results in two different values (one

for patches in the left daughter node, and one for patches in the right daughter node), and

P(occ | seen) is taken to be equal to 1 (assuming a “closed” patch, i.e. not movement through,

into, or out of each patch). Each of these patch values is then centered on the average daughter

node value to form an “h” value, as described in the Rats example implementation section, and

the “h” values are then used in the correlation calculation.

3.3 Results

3.3.1 Results for Rats Example

The Clustered Approach vs. the Independence Approach

If we account for the dependence in the data, there is a potential to cause changes in the tree

structure, and therefore to also cause changes in estimates or predictions for individuals in the

tree. Figure 3.1 shows the usual CART tree produced assuming independence and the CART

tree that accounts for the clustering of observations within subject. We display only a portion

of each tree below (Figure 3.1, Table 3.1, and Table 3.2). We see that the clustered approach

has not changed the first split in the tree, but it does change the second. For the clustered

approach, the second split is based on “teeth” 2 and 3 (i.e. the 2nd and 3rd occlusal surfaces

in each rat), while the independent approach splits on Diet 8. Furthermore, all of the splits

in the tree accounting for dependence of observations within rat (even those not shown) are

based on the “tooth” factor, while the tree assuming independence contains splits based on

both “tooth” and diet.

We do not display the trees resulting from the unequal variances method, as they are

identical to the trees displayed for equal variances. In the independence case, this is by design;

when there is no correlation, the patchup factor is equal to 1. Since there are no other differences

between the two methods, the results are identical. In the clustered examples, the equality

between the equal and unequal variance methods is situational only, and does not hold in other
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examples. We previously showed some small examples which demonstrate that the patchup

factors can be different depending on the assumption of equal or unequal variances, which in

turn allows for the possibility of different splitting choices.

Clustered

|
tooth=abcdefghijklmnopqrstuvwx

tooth=bc

tooth=c tooth=defghijklmnopq

1
25/92

0
98/19

0
827/811

1
382/554

0
405/63

Independent

|
tooth=abcdefghijklmnopqrstuvwx

diet=h

tooth=ab diet=b

0
24/4

1
111/197

1
131/229

0
1066/1046

0
405/63

Figure 3.1 The tree structures produced by rpart() for the clustered and independent ap-
proaches of the Rats example, using cp=0.01. Some of the leaves in the diagram
have been trimmed for ease of viewing. The 0 or 1 label on each terminal node is
a damage prediction based on a π̂ = 0.5 cutoff for estimated damage probability.
The X/Y ratio describes observations where the species was “(0 or 1) not dam-
aged / (2 or 3) damaged”. The differences in tree structure begin at Node 2 (1st
left-daughter node).



56

Table 3.1 The node estimates of damage resulting from the equal variances method allowing
for clustered data, using 2 covariates (tooth and diet) with cp=0.01. A (*) represents
a terminal node of the tree. Nodes 10 and 11 have been trimmed for ease of viewing,
and now appear as terminal nodes.

tree node Split damaged/n ˆ0 damage ˆ1 damage

1) root 1539/3276 .5302 .4698

2) tooth.f=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 1476/2808 .4744 .5256

4) tooth.f=2,3 111/234 .5256 .4744

8)* tooth.f=3 92/117 .2137 .7863

9)* tooth.f=2 19/117 .8376 .1624

5) tooth.f=1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 1365/2574 .4697 .5303

10)* tooth.f=4,5,6,7,8,9,10,11,12,13,14,15,16,17 811/1638 .5049 .4951

11)* tooth.f=1,18,19,20,21,22,23,24 554/936 .4081 .5919

3)* tooth.f=25,26,27,28 63/468 .8654 .1346

Table 3.2 The node estimates damage resulting from the EQUAL variances method under
independence, using 2 covariates (tooth and diet) with cp=0.01. A (*) represents
a terminal node of the tree. Nodes 9, 10, and 11 have been trimmed for ease of
viewing, and now appear as terminal nodes.

tree node Split seen/n ˆ0 damage ˆ1 damage

1) root 1539/3276 .5302 .4698

2) tooth.f=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 1476/2808 .4744 .5256

4) diet.f=8 101/336 .4018 .5982

8)* tooth.f=1,2 4/28 .8571 .1429

9)* tooth.f=3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 197/308 .3604 .6396

5) diet.f=1,2,3,4,5,6,7 1275/2472 .4842 .5158

10)* diet.f=2 229/360 .3639 .6361

11)* diet.f=1,3,4,5,6,7 1046/2112 .5047 .4953

3)* tooth.f=25,26,27,28 63/468 .8654 .1346
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3.3.2 Results for Birds Example

The Clustered Approach vs. the Independence Approach Under the assumption of

equal variances, the trees and estimates for both approaches were identical to the independence

approach with unequal variances (see Figure 3.2 and Table 3.4). As previously explained

above Figure 3.1, we expect the two independence situations to be identical. The clustered

approach for equal variances also results in the same tree and estimates, although this outcome

is situational and is similar in nature to the outcome of the Rats example.

Unequal variances

Once again, when we account for the dependence in the data, the result is a tree with

different splitting choices (Figure 3.2, Table 3.3). This can be seen starting with the first left

daughter node: the clustered approach splits the group using an aspect value of 332.5, while the

independent tree uses an aspect value of 17.5. At that point, the classification tree differs from

the tree assuming independence. Note that while final classification (yes/no for occupancy in

this example) could still be the same, estimates are likely distinct between nodes and individual

patches therein, and tree size is clearly different. When allowing for a clustering effect between

patches on the same site, the tree (based on the same data!) was much larger (more splits and

more nodes, which have been trimmed from the diagram and estimates for ease of viewing).
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Clustered

|elev< 381.5

aspect< 332.5

aspect>=92.5

slope>=56

1
86/22

0
37/16

1
10/8

0
52/18

1
25/68

Independent

|elev< 381.5

aspect>=17.5 slope>=56

0
127/40

1
6/6

0
52/18

1
25/68

Figure 3.2 The tree structures produced by rpart() for the clustered and independent ap-
proaches of the Birds example, assuming unequal variances, using cp=0.01. The
left-most leaf in the Clustered diagram has been trimmed for ease of viewing. The
0 or 1 label at each terminal node is an occupancy prediction based on a 0.5 cutoff
for estimated occupancy probability. The X/Y ratio gives the number of patches
where the species was “not seen/seen”. Changes in tree structure begin at Node 2
(1st left-daughter node).
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Table 3.3 The node estimates of occupancy and detection resulting from the unequal vari-
ances, clustered method, using 5 covariates (slope, elev, aspect, s.edge, p.edge)
with cp=0.01. A (*) represents a terminal node of the tree. Node (8) was trimmed
for ease of viewing, and now appears as a terminal node. The estimates shown here
are computed as if each node were a parent node.

tree node Split seen/n π̂occ π̂det

1) root 132/342 .5731 .4286

2) elev < 381.5 46/179 .5091 .2963

4) aspect < 332.5 38/161 .5742 .2326

8)* aspect >= 92.5 22/108 .9962 .1070

9)* aspect < 92.5 16/53 .4717 .3999

5)* aspect >= 332.5 8/18 .5602 .5454

3) elev >= 381.5 86/163 .7118 .4910

6)* slope >= 56 18/70 .3429 .5000

7)* slope < 56 68/93 .9895 .4890

Table 3.4 The node estimates of occupancy and detection resulting from the unequal vari-
ances, independent method, using 5 covariates (slope, elev, aspect, s.edge, p.edge)
with cp=0.01. A (*) represents a terminal node of the tree. The estimates shown
here are computed as if each node were a parent node.

tree node Split seen/n π̂occ π̂det

1) root 132/342 0.5731 0.4286

2) elev < 381.5 46/179 0.5091 0.2963

4)* aspect >= 17.5 40/167 0.4724 0.2979

5)* aspect < 17.5 6/12 0.9934 0.2936

3) elev >= 381.5 86/163 0.7118 0.4910

6)* slope >= 56 18/70 0.3429 0.5000

7)* slope < 56 68/93 0.9895 0.4890
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3.3.3 Simulation Evaluation of the Patchup Factor

Using either patchup factor method (equal or unequal variances) seems to provide a boost

to the accuracy of Type I error rates. We ran several simulations to explore the error rates

at the 5% level. Each simulation included 1000 realizations of the test statistic, which were

compared to the tails of a Normal distribution. The general steps of the simulation are as

follows:

Correlation was induced on site ‘i’ through a simulated epsilon value as

εi = rnorm(0, sigma)

Patches were sent to each daughter node, using either a Mixed allotment (approximately half of

all patches on a site were sent to the Left daughter node, while the other half went to the Right

daughter node) or a Pure allotment (for a given site, ALL patches on the site stayed together

and were sent to the same daughter node). In the Pure case, we sent half of the sites to the Left

daughter node and the other half to the Right daughter node. The probabilities of occupancy

in each daughter node were set equal to each other, referred to below as “side.effect”. That

node probability was then applied to all patches within that node. We then computed patch

occupancy probabilities for every patch j on site i as

πij < −1/(1 + exp(−(side.effect+ εi)))

Next we simulated patch occupancy status (0 or 1) as

occ.trueij < −rbinom(1, 1, πij)

followed by simulating observations (either 1 or 2 occasions) for each patch as

obs.dataij < −rbinom(#occasions, 1, occ.trueij ∗ πdet)

where πdet is the assigned probability of detection (if #occasions is one, the πdet = 1).

Using estimation methods described in Examples 1 (Rats) or 2 (Birds), we estimated πocc

for each daughter node, as well as estimating the näıve variance of V ar(πL − πR). We then

applied three different patchup approaches (independence (Indpt), equal variances (EV), and
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unequal variances (UV)) to come up with test statistics and the corresponding Type 1 error

rates for each simulation.

These error rates are shown in Table 3.5 below. We used πocc = 0.5 for all scenarios unless

otherwise noted. In addition to type of splitting (Mixed vs. Pure) and πocc, we varied πdet, the

number of sites, and the number of patches per site (pps).

While there is occasionally an “over-correction” (e.g. see the second scenario in the ta-

ble), the clustered approaches generally produce a more accurate Type I error rate than the

independence approach. The exception to this comes when using smaller sample sizes (in both

number of sites and number of patches per site) where it is more difficult to get an accurate

estimate of the within-site correlation. We also note the often-identical EV and UV error rates.

This is not unusual for two reasons: 1) Even during other simulations, there was shown to be

no difference in patchup factor between EV and UV in pure site-splitting situations, and more

importantly 2) When we are under the null hypothesis and πL = πR (the simulations are a

close approximation to this), then the UV method becomes the EV method (or a very close

approximation). We also note that at smaller sample sizes, we see the first deviations betwe
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Table 3.5 Type I error rates for the Independent (Indpt), equal variances (EV), and unequal
variances (UV) methods, under various simulated scenarios. Each scenario uses
1000 trials, 100 sites and πocc = 0.5 unless otherwise noted. The notation ‘pps’
stands for ‘patches per site’.

Description Indpt EV UV

Mixed, πdet = 0.4, 3 pps .025 .043 .043

Mixed, πdet = 0.8, 3 pps .018 .055 .055

Mixed, πdet = 0.4, 15 pps .027 .044 .044

Mixed, πdet = 0.8, 15 pps .007 .036 .036

Mixed, πdet = 0.8, 3 pps, 4 sites .038 .064 .100

Mixed, πdet = 0.8, 3 pps, 10 sites .024 .052 .048

Mixed, πdet = 0.8, 30 pps, 4 sites .025 .075 .059

Mixed, πdet = 0.8, 30 pps, 10 sites .009 .056 .055

Mixed, πdet = 1, πocc = 0.3, 3 pps .022 .044 .044

Mixed, πdet = 1, 3 pps .019 .059 .059

Mixed, πdet = 1, πocc = 0.9, 3 pps .014 .052 .052

Pure, πdet = 0.4, 3 pps .103 .038 .038

Pure, πdet = 0.8, 3 pps .173 .049 .049

Pure, πdet = 0.4, 15 pps .328 .038 .038

Pure, πdet = 0.8, 15 pps .471 .045 .045

Pure, πdet = 0.8, 3 pps, 4 sites .194 .141 .203

Pure, πdet = 0.8, 3 pps, 10 sites .186 .102 .104

Pure, πdet = 0.8, 30 pps, 4 sites .675 .259 .266

Pure, πdet = 0.8, 30 pps, 10 sites .642 .091 .091

Pure, πdet = 1, πocc = 0.3, 3 pps .180 .052 .052

Pure, πdet = 1, 3 pps .175 .046 .046

Pure, πdet = 1, πocc = 0.9, 3 pps .176 .053 .053
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3.4 Discussion

This is a general method that applies to CART for binary data. For those attempting to

change or extend the current examples, there are a several options. Of course the results may

differ if the covariates are different. Related to the Birds example, we could easily extend this

work to more than two occasions. The likelihood in equation 3.7 would simply be extended

to account for each data scenario. We could extend this method to more than two levels.

Currently we are only accounting for within-subject dependence, but there could be another

level of dependence (e.g. site-within-region). The complexity factor (cp) is currently set at .01

and could be adjusted (cp plays a role in the formation and pruning of the tree). The working

correlation matrix could be adjusted. We decided to use an exchangeable correlation structure

(the same correlation between any two patches on the same site, but no correlation between

patches on different sites). There are several other options, but the choice of structure does

not prevent consistent estimators–it only changes efficiency. Due to a small number of patches-

per-site in test data sets, we did not attempt to estimate separate correlations for each site.

In our work, the exchangeable correlation is estimated as a pooled (common) correlation using

all pairs of patches in site 1, all pairs of patches in site 2, etc. (based on whichever patches

are available in the current parent node). However, this correlation only gets applied to those

pairs of patches in the same site. For example, Cor(Xsite1i, Xsite1j) = Cor(Xsite2i, Xsite2j) = p̂,

but Cor(Xsite1i, Xsite2j) = 0. This method, like the imperfect detection method described in

Chapter 2, could be easily extended to random forests (Breiman 2001).

The extensions and modifications to CART are already numerous. It is the hope of the

authors that our proposed methods will lend CART to areas of study that have perhaps not

thought about using such a method in their analysis.



64

3.5 Literature Cited

Andrews, D.F., and Herzberg, A.M. 1985. Data: A Collection of Problems from Many Fields
for the Student and Research Worker. Springer-Verlag, New York.

Bahjat, Q. and Liang, K.Y. 1992. Marginal Models for Correlated Binary Responses with
Multiple Classes and Multiple Levels of Nesting. Biometrics. Vol. 48, No. 3, pp. 939-950.

Bailey, Larissa L., Janice A. Reid, Eric D. Forsman, James D. Nichols. 2009. Modeling
co-occurrence of northern spotted and barred owls: Accounting for detection probability
differences. Biological Conservation. Vol. 142, Issue 12, p. 2983-2989.

Bel, L., D. Allard, J.M. Laurent, R. Cheddadi, A. Bar-Hen. 2009. CART algorithm for spatial
data: Application to environmental and ecological data. Computational Statistics and Data
Analysis. Vol. 53, p. 3082-3093

Bourg, Norman A., William J. McShea, Douglas E. Gill. 2005. Putting a CART Before the
Search: Successful Habitat Prediction for a Rare Forest Herb. Ecology. Vol. 86, No. 10, p.
2793-2804.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. 1984. Classification and Regression
Trees. Wadsworth International Group, Belmont, CA.

Castellón, Traci D., and Sieving, Kathryn E. 2006. Landscape History, Fragmentation, and
Patch Occupancy: Models for a Forest Bird with Limited Dispersal. Ecological Applications.
Vol. 16, No. 6, pp. 2223-2234.

Clark, L.A. and D. Pregibon. 1992. Tree-based Models. Chapter 9. In: J.M. Chambers and
T.J. Hastie (eds.). Statistical Models in S. Wadsworth and Brooks, Pacific Grove, CA.

De’ath, Glenn, and Fabricius, Katharina E. 2000. Classification and Regression Trees: A
Powerful Yet Simple Technique for Ecological Data Analysis. Ecology. Vol. 81, No. 11, pp.
3178-3192.

Dormann, C.F., McPherson, J.M., Arau jo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies,
R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kuhn, I., Ohlemuller, R., Peres-Neto, P.R.,
Reineking, B., Schroder, B., Schurr, F.M. and Wilson, R. 2007. Methods to account for
spatial autocorrelation in the analysis of species distributional data: a review. Ecography
Vol. 30, p. 609628.

Le Cessie, S. and Van Houwelingen, J.C. 1994. Logistic Regression for Correlated Binary Data.
Applied Statistics. Vol. 43, No. 1, pp. 95-108.

Li, Xiang, and Claramunt, Christophe. 2006. A Spatial Entropy-Based Decision Tree for
Classification of Geographical Information. Transactions in GIS Vol. 10, No. 3, p. 451-
467.

Liang, K.Y., Zeger, S.L. and Qaqish, B. 1992. Multivariate regression analyses for categorical
data (with discussion). Journal of the Royal Statistical Society B. Vol. 54, pp. 3-40.



65

McGarigal, Kevin and McComb, William C. 1995. Relationships Between Landscape Structure
and Breeding Birds in the Oregon Coast Range. Ecological Monographs. Vol. 65, No. 3,
pp. 235-260.

Molinaro, Annette M., Sandrine Dudoit, Mark J. van der Laan. 2004. Tree-based multivari-
ate regression and density estimation with right-censored data. Journal of Multivariate
Analysis. Vol. 90, p. 154177.

Murray, J.V., S. Low Choy, C.A. McAlpine, H.P. Possingham, A.W. Goldizen. 2008. The
importance of ecological scale for wildlife conservation in naturally fragmented environ-
ments: A case study of the brush-tailed rock-wallaby (Petrogale penicillata). Biological
Conservation. Vol 141, p. 7-22.

Neuhaus, J. M., Kalbfleisch, J. D. and Hauck, W. W. 1991. A comparison of cluster-specific
and population-averaged approaches for analyzing correlated binary data. International
Statistical Review. Vol. 59,, No. 1, pp. 25-35.

Prentice, R.L. 1988. Correlated binary regression with covariates specific to each binary
observation. Biometrics. Vol. 44 No. 4, 1033-1048.

Segal, Mark R. 1992. Tree-Structured Methods for Longitudinal Data. Journal of the American
Statistical Association. Vol. 87, No. 418 (June), p. 407-418.

Sela, Rebecca J. and Simonoff, Jeffrey S. 2012. RE-EM trees: A data mining approach for
longitudinal and clustered data. Machine Learning. Vol. 86, p. 169-207.

Therneau, Terry and Atkinson, Elizabeth. R port by Brian Ripley. 2010.
rpart: Recursive Partitioning. R package version 3.1.-46.
http://CRAN.R-project.org/package=rpart



66

3.6 Extra material: R code for Unequal Variances method

3.6.1 User splits

# Attempting to use the "user splits" option in R

# Requires 3 pieces: Init, Eval, and Splits

# Optional 4th part called ’parms’ to pass in other information

# *NOTE: parms MUST be part of the call to rpart().

# It will not work from the global environment.

options(warn = 1) #prints warnings as they occur,

#rather than waiting until the end

options(digits=7) # controls number of digits/decimals (default is 7)

# if digits is set too low, numbers may go to scientific notation

library(rpart)

set.seed(7)

################################################################

# The ’evaluation’ function. Called once per node.

# Produce a label (1 or more elements long) for labeling each node,

# and a deviance. The latter is

# - of length 1

# - equal to 0 if the node is "pure" in some sense (unsplittable)

# - does not need to be a deviance: any measure that gets larger

# as the node is less acceptable is fine.

# - the measure underlies cost-complexity pruning, however

###############

############### Mark’s eval() code

temp1 <- function(y, wt, parms) {

# print("***** START: Evaluating *****")

Ns <- timesseen(y, parms);

# *NOTE: Ns[1] = n0 = never seen, Ns[2] = n1 = seen once,

# Ns[3] = n2 = seen twice

# If using orig.parent, I’d like to report the same prob.det being used

# in the split function, as well as the corresponding prob.occ

if(parms$mygoodness==1){ param.parent <- optim(c(1), lnl.t.fixed,

gr=NULL, method="BFGS", control=list(fnscale=-1),

prob.det = parms$prob.det, Ns = Ns )$par

param.parent <- backt(param.parent)

prob.occ <- param.parent[1]

prob.det <- parms$prob.det

}

# Anything else, I will report the node-specific prob.det and prob.occ

# Note that for each.parent and p.v.2d methods, this does not reflect
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# the values being used in the split() function

else{

param.parent <- optim(c(-1, -1), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns=Ns )$par

param.parent <- backt(param.parent)

prob.occ <- param.parent[1]

prob.det <- param.parent[2]

}

labels <- matrix(nrow=1, ncol=5)

# labels[1] is the fitted y category (i.e. the prediction of occ status)

# labels[2] is sum(y == 0) i.e. the "unseen" locations

# labels[3] is sum(y >= 1) i.e. the "seen" locations

# labels[4] is prob.occ

# labels[5] is prob.det

labels[1] <- ifelse(prob.occ >= parms$cutoff, 1, 0)

labels[2] <- Ns[1]

labels[3] <- sum(Ns[-1])

labels[4] <- prob.occ

labels[5] <- prob.det

# print(labels)

dev <- ifelse(prob.occ >= parms$cutoff, Ns[1], sum(Ns[-1]))

ret <- list(label=labels, deviance=dev)

# print("***** END: Evaluating *****")

ret

}

############### end Mark’s eval() code

###############

# The split function, where most of the work occurs.

# Called once per split variable per node.

# If continuous=T

# The actual x variable is ordered

# y is supplied in the sort order of x, with no missings,

# return two vectors of length (n-1):

# goodness = goodness of the split, larger numbers are better.

# 0 = couldn’t find any worthwhile split

# the ith value of goodness evaluates splitting obs 1:i vs (i+1):n

# direction= -1 = send "y< cutpoint" to the left side of the tree

# 1 = send "y< cutpoint" to the right

# this is not a big deal, but making larger "mean y’s" move towards

# the right of the tree, as we do here, seems to make it easier to

# read

# If continuos=F, x is a set of values defining the groups for an

# unordered predictor. In this case:
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# direction = a vector of length m= "# groups".

# direction actually displays the names/labels for each group.

# It asserts that the best split can be found by

# lining the groups up in this order and going from left to right,

# so that only m-1 splits need to be evaluated rather than 2^(m-1)

# goodness = m-1 values here.

#

# The reason for returning a vector of goodness is that the C routine

# enforces the "minbucket" constraint. It selects the best return value

# that is not too close to an edge.

###############

############### Mark’s split() code

temp2 <- function(y, wt, x, parms, continuous) {

#################################################################

#################################################################

#################################################################

#print("***** START: Splitting *****")

if(parms$mygoodness==1){mygoodness=LRT.orig.parent}

if(parms$mygoodness==2){mygoodness=LRT.each.parent}

if(parms$mygoodness==3){mygoodness=LRT.parent.v.2daughters}

if(parms$mygoodness==4){mygoodness=LRT.parent.v.daughter.v.daughter}

idx <- order(x); x <- x[idx]; y <- y[idx,];

#Just in case ordering is not already done elsewhere

y <- cbind(y) # If y is a vector, this allows me to only calculate n

# using one method (cbind instead of length)

n <- nrow(y)

parent <- y # often refer to the node being split as the parent

################

################

# Run optim on the parent node, get the hessian,

# pass the variances into "goodness".

# I will be able to get Ns.Left and Ns.Right from inside the "goodness",

# e.g. each.parent

Ns.parent <- timesseen(parent, parms)

outcome.parent <- optim(c(-1, -1), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), hessian=TRUE, Ns = Ns.parent )

param.parent <- backt(outcome.parent$par)

prob.occ.P <- param.parent[1]

prob.det.P <- param.parent[2]
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hessian.occ <- outcome.parent$hessian[1,1]

varcov.matrix <- solve(-hessian.occ)

# Observed Info. matrix IS the negative Hessian #

# Using only the .occ piece so it is conditional on pi.det,

# just like the daughter nodes would be

# (except the parent is funnily conditional on its

# own estimate of pi.det)

# (do this through [1,1] just below

#print("Using Delta Method to change var-cov OUT of logistic scale")

pi.occ.log.P <- outcome.parent$par[1]

actual.var.occ.P <- varcov.matrix[1,1]*((exp(-pi.occ.log.P)/

( (1+exp(-pi.occ.log.P))^2 ) )^2 )

################

################

if (continuous) { # continuous x variable

# Get the goodness

## MAKE SURE IT IS A VECTOR!!

## Because rpart does the minimum node size elsewhere,

## I just have to compute n-1 deviances here.

possibles <- rep(0,n-1)

direction <- rep(-1, n-1)

prob.occ.L = prob.occ.R <- rep(0, n-1)

for (i in 1:(n-1)) {

left <- matrix(parent[1:i,], ncol=ncol(parent))

right <- matrix(parent[(i+1):n,], ncol=ncol(parent))

if(x[i]==x[i+1]) {next}

### NOT allowed to split up observations with the same x value

info <- mygoodness(parent, left, right,

orig.prob.det=parms$prob.det,

actual.var.occ.P, prob.occ.P, prob.det.P)

possibles[i] <- info[1] # the test statistic

prob.occ.L[i] <- info[2]

prob.occ.R[i] <- info[3]

# Get the direction ALSO A VECTOR!!

if(prob.occ.L[i] > prob.occ.R[i]){ direction[i] <- 1}

# Compares occupancy probabilities, sends the higher one to the right

} # end ’for’ loop

goodness <- possibles
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ret <- list(goodness=goodness, direction=direction)

#print("***** END: Splitting *****")

ret

}

else {

# Categorical X variable

# we can order the categories by their means

# (i.e. estimated prob.occ values)

# then use the same code as for a non-categorical

ux <- sort(unique(x))

# Sort does smallest to larget (either numerical or alphabetical)

m <- length(ux)

occs <- 0

for(i in 1:m){

group <- matrix(y[x==ux[i], ], ncol=ncol(y))

# Needed in the extreme case that either ’right’ or ’left’ is only 1 row

# For some reason it loses its matrix designation,

# and nrow() won’t work otherwise

Ns <- timesseen(group, parms);

param <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns=Ns )$par

param <- backt(param)

prob.occ <- param[1]

occs[i] <- prob.occ

} # end ’i’ loop

ord <- order(occs) #tells where each number belongs in order

# e.g. 2 1 4 3 means: first number is the second-lowest,

# 2nd number is the smallest

# Get the goodness

## MAKE SURE IT IS A VECTOR!!

## Because rpart does the minimum node size elsewhere,

## I just have to compute m-1 deviances here.

possibles <- rep(0,m-1)

prob.occ.L = prob.occ.R <- rep(0, m-1)

for (i in 1:(m-1)) {

left <- matrix(parent[ x<=ux[i], ], ncol=ncol(y))

# Needed in the extreme case that either ’right’ or ’left’ is only 1 row

right <- matrix(parent[ x>ux[i], ], ncol=ncol(y))

# For some reason it loses its matrix designation,

# and nrow() won’t work otherwise
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info <- mygoodness(parent, left, right,

orig.prob.det=parms$prob.det,

actual.var.occ.P, prob.occ.P, prob.det.P)

possibles[i] <- info[1]

prob.occ.L[i] <- info[2]

prob.occ.R[i] <- info[3] }

# Get the direction ALSO A VECTOR!!

direction <- ux[ord]

goodness <- possibles

ret <- list(goodness=goodness, direction=direction)

#print("***** END: Splitting *****")

ret

}

}

############### end Mark’s split() code

###############

# The init function:

# fix up y to deal with offsets

# return a parms list--this can be passed in from the call to rpart(),

# but it MUST be reproduced (or changed) in init()

# parms includes cutoff (for predictions/labeling),

# occasions (# sampling times/observations per member),

# prob.det (if specified by the user), and

# goodness (which imperfect detection method should be used)

# numresp is the number of values produced by the eval routine’s "label"

# numy is the number of columns for y

# summary is a function used to print one line in summary.rpart

# yval is the matrix "yval2" in tree$frame

# each row contains predicted value, deviance, n, prob.occ, prob.det

# text is a function used to put text on the plot in text.rpart

# *NOTE: The split information printed is NOT controlled by the text

# function in init()

# Only the terminal node information comes from this text function

# In general, this function would also check for bad data,

# see rpart.poisson as example

###############

############### begin Mark’s init() code

temp3 <- function(y, offset, parms, wt) {

# print("***** START: Init *****")

if (!is.null(offset)) y <- y-offset

# IF method is orig.parent and prob.det is not specified:



72

# which.goodness <- (deparse(substitute(mygoodness)))

# print(which.goodness); print(which.goodness=="LRT.orig.parent")

if(parms$mygoodness==1 & is.null(parms$prob.det)==TRUE) {

# Calculate orig.prob.det from the very first parent node

# (i.e. all of the data)

Ns <- timesseen(y, parms)

param.parent <- optim(c(0.5, 0.5), lnl.t, gr=NULL, method="BFGS",

control=list(fnscale=-1), Ns = Ns)$par

param.parent <- backt(param.parent)

#orig.prob.occ <- param.parent[1]

orig.prob.det <- param.parent[2]

parms$prob.det <- orig.prob.det

} # end ’if’ statement

ret <- list(y=y, parms=parms, numresp=5, numy=parms$occasions+2,

#the "+2" is so that I can pass in SITE and PATCH labels

summary= function(yval, dev, wt, ylevel, digits ) {

paste("predicted value=", yval[,1], "deviance=", dev, "prob.occ=",

round(yval[,4],digits), "prob.det=",

round(yval[,5],digits) )

}, #end summary

text= function(yval, dev, wt, ylevel, digits, n, use.n ) {

nclass <- (ncol(yval) - 1)/2

group <- yval[, 1]

counts <- yval[, 1 + (1:nclass)]

if (!is.null(ylevel)) {group <- ylevel[group] }

temp1 <- format(counts, digits)

if (nclass > 1) { temp1 <- apply(matrix(temp1,

ncol = nclass), 1,paste, collapse = "/") }

if (use.n) { out <- paste(format(group, justify = "left"),

"\n", temp1, sep = "") }

else {out <- format(group, justify = "left") }

return(out)

}, #end text

print= function(yval, ylevel, digits){

if (is.null(ylevel)) {temp <- as.character(yval[, 1]) }

else {temp <- ylevel[yval[, 1]] }

nclass <- (ncol(yval) - 1)/2

if (nclass < 5) {yprob <- format(yval[, 1 + nclass + 1:nclass],

digits = digits, nsmall = digits)}

else {yprob <- formatg(yval[, 1 + nclass + 1:nclass], digits = 2)}

if (is.null(dim(yprob))) {yprob <- matrix(yprob, ncol = length(yprob)) }

temp <- paste(temp, " (", yprob[, 1], sep = "")

for (i in 2:ncol(yprob)) temp <- paste(temp, yprob[, i], sep = " ")

temp <- paste(temp, ")", sep = "")
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temp

} #end print

) # end ret

# print("***** END: Init *****")

ret

}

3.6.2 Companion functions

# Calculates the total number of times the species was detected at each site

timesseen <- function(y, parms){

timesseen <- 0

Ns <- rep(0, (parms$occasions+1) )

for (i in 1:nrow(y)){

timesseen[i] <- sum(y[i,1:parms$occasions ]) }

for (j in 1:length(Ns)){

Ns[j] <- sum(timesseen==(j-1)) }

# NOTE: Ns[1] = n0 = never seen, Ns[2] = n1 = seen once,

# Ns[3] = n2 = seen twice

return(Ns)

} #end timesseen

# backtransforming parameters when using logistic representation

backt <- function(ln.param) {

1/(1+exp(-ln.param))

} #end backt

###########

# lnl using logistic parameterization

# Used for any node when estimating both prob.occ and prob.det

lnl.t <- function(param, Ns){

ln.Likelihood(backt(param), Ns)

} #end lnl.t

ln.Likelihood <- function(x, Ns){

prob.occ <- x[1]

prob.det <- x[2]

#print(c(prob.occ, prob.det))

k <- length(Ns)-1 # k = number of sampling occasions

ln.like <- Ns[1]*log((1-prob.occ) + prob.occ*(1-prob.det)^k)

# not occupied or occupied and seen 0 times

for(i in 1:k){ # occupied, seen ’i’ times out of ’k’ possible

ln.like <- ln.like + Ns[i+1]*log( choose(k,i) * prob.occ * (prob.det^i) *

((1-prob.det)^(k-i)) )

} # end ’i’ loop

return(ln.like) } #end ln.Likelihood
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###########

# Need for nodes when I’m fixing prob.det while optimizing pi.occ

# this occurs in orig.parent and each.parent

lnl.t.fixed <- function(param, prob.det, Ns){

ln.Likelihood.fixed(backt(param), prob.det, Ns)

} #end lnl.t.fixed

ln.Likelihood.fixed <- function(x, prob.det, Ns){

prob.occ <- x[1]

k <- length(Ns)-1 # k = number of sampling occasions

ln.like <- Ns[1]*log((1-prob.occ) + prob.occ*(1-prob.det)^k)

# not occupied or occupied and seen 0 times

for(i in 1:k){ # occupied, seen ’i’ times out of ’k’ possible

ln.like <- ln.like + Ns[i+1]*log( choose(k,i) * prob.occ * (prob.det^i) *

((1-prob.det)^(k-i)) )

} # end ’i’ loop

return(ln.like) } #end ln.Likelihood

###########

### New GEE function--estimating correlation within a site.

rho <- function(left, right){

left <- as.data.frame(left); right <- as.data.frame(right);

left$patch.occ <- left$patch.occ - mean(left$patch.occ)

right$patch.occ <- right$patch.occ - mean(right$patch.occ)

c.left <- left; c.right <- right

data <- rbind(c.left, c.right);

w <- ncol(data)-3 #the 3 is to exclude SITE, PATCH, and patch.occ

data2 <- data[,1:w];

# Allows me to calculate parms$occasions without having to

# pass in another parameter

SITE <- data[,w+1]; PATCH <- data[,w+2]; patch.occ <- data[,w+3]

data <- data.frame(data2, SITE, PATCH, patch.occ);

# Uses all possible pairs (of patches) at each site involved in the node

# (done one site at a time)

p.trueBi <- 0

X <- NA; Y <- NA;

for(j in unique(data$SITE)){

temp.X <- NA; temp.Y <- NA;

count <- 1

values <- data$patch.occ[which(data$SITE==j)];

if( length(values) < 2 ){next}

for(r in 1:(length(values)-1)){

for(s in (r+1):length(values)){

temp.X[count] <- values[r] ;
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temp.Y[count] <- values[s]

count <- count+1 }} #end r, s loops

X <- c(X, temp.X)

Y <- c(Y, temp.Y)

} #end ’j’ loop

save <- X

X <- c(X,Y); X <- X[!is.na(X)]

Y <- c(Y, save); Y <- Y[!is.na(Y)]

p.trueBi <- ifelse( length(X)> 1 & (sum(X==X[1]) < length(X)), cor(X,Y), 0)

# divide by anything?

return(p.trueBi) } # end ’rho’ function

###########

############## The following two functions are needed to label

# my print output properly

print.rpart <- function(x, minlength=0, spaces=2, cp,

digits=getOption("digits"), ...) {

if(!inherits(x, "rpart")) stop("Not legitimate rpart object")

if (!is.null(x$frame$splits)) x <- rpconvert(x) #help for old objects

if (!missing(cp)) x <- prune.rpart(x, cp=cp)

frame <- x$frame

ylevel <- attr(x, "ylevels")

node <- as.numeric(row.names(frame))

depth <- tree.depth(node)

indent <- paste(rep(" ", spaces * 32), collapse = "")

#32 is the maximal depth

if(length(node) > 1) {

indent <- substring(indent, 1, spaces * seq(depth))

indent <- paste(c("", indent[depth]), format(node), ")", sep = "")

}

else indent <- paste(format(node), ")", sep = "")

tfun <- (x$functions)$print

if (!is.null(tfun)) {

if (is.null(frame$yval2))

yval <- tfun(frame$yval, ylevel, digits)

else yval <- tfun(frame$yval2, ylevel, digits)

}

else yval <- format(signif(frame$yval, digits = digits))

term <- rep(" ", length(depth))

term[frame$var == "<leaf>"] <- "*"

z <- labels(x, digits=digits, minlength=minlength, ...)

n <- frame$n

z <- paste(indent, z, n, format(signif(frame$dev, digits = digits)),
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yval, term)

omit <- x$na.action

if (length(omit))

cat("n=", n[1], " (", naprint(omit), ")\n\n", sep="")

else cat("n=", n[1], "\n\n")

#This is stolen, unabashedly, from print.tree

if (x$method=="class")

cat("node), split, n, loss, yval, (yprob)\n")

# NEW PART!!!

if (x$method=="user"){ cat("node), split, n, deviance, yval, prob.occ,

prob.det\n") }

#####

else cat("node), split, n, deviance, yval\n")

cat(" * denotes terminal node\n\n")

cat(z, sep = "\n")

return(invisible(x))

#end of the theft

}

# This one is located in treemisc.R

tree.depth <- function(nodes)

{

depth <- floor(log(nodes, base = 2) + 1e-7)

as.vector(depth - min(depth))

}

3.6.3 Proposed method each.parent

# Even though it is not actually a LRT this time, the names never got changed

LRT.each.parent <- function(parent, left, right, orig.prob.det,

actual.var.occ.P, prob.occ.P, prob.det.P){

prob.det <- prob.det.P

# LEFT

Ns.left <- timesseen(left, parms)

# RIGHT

Ns.right <- timesseen(right, parms)

outcome.left <- optim(c(1), lnl.t.fixed, gr=NULL, method="BFGS",

control=list(fnscale=-1), hessian=FALSE,

prob.det = prob.det.P, Ns=Ns.left)

param.left <- backt(outcome.left$par)

prob.occ.L <- param.left[1]
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outcome.right <- optim(c(1), lnl.t.fixed, gr=NULL, method="BFGS",

control=list(fnscale=-1), hessian=FALSE,

prob.det = prob.det.P, Ns=Ns.right)

param.right <- backt(outcome.right$par)

prob.occ.R <- param.right[1]

## DONE: Generalize to ’k’ occasions instead of just k=2

#Estimate Occupancy prob/status for each patch

k <- parms$occasions

Eocc.given.seen <- 1

Eocc.given.notseen.L <- (prob.occ.L*(1-prob.det)^k)/

( (prob.occ.L*(1-prob.det)^k) + (1-prob.occ.L) )

Eocc.given.notseen.R <- (prob.occ.R*(1-prob.det)^k)/

( (prob.occ.R*(1-prob.det)^k) + (1-prob.occ.R) )

patch.occ <- 0;

for(i in 1:nrow(left)){

patch.occ[i] <- ifelse( sum(left[i,1:parms$occasions])==0 ,

Eocc.given.notseen.L, Eocc.given.seen) }

left <- cbind(left, patch.occ)

#colnames(left) <- c("X2002.1", "X2002.2", "SITE", "PATCH", "patch.occ")

patch.occ <- 0;

for(j in 1:nrow(right)){

patch.occ[j] <- ifelse( sum(right[j,1:parms$occasions])==0 ,

Eocc.given.notseen.R, Eocc.given.seen) }

right <- cbind(right, patch.occ)

#colnames(right) <- c("X2002.1", "X2002.2", "SITE", "PATCH", "patch.occ")

#Estimate correlation between patches (rho or p)

dummy <- rho((left), (right))

#At one point I had problems unless left and right were in matrix format,

# so I used as.matrix(left)

p.hat <- max(0, dummy[1]);

# some of the correlations could be negative.

# This is fine mathematically, but not in our conceptual framework,

# where we think of positive correlation within site.

#Calculate the "patch-up" ratio

SITE <- parms$occasions+1;

PATCH <- parms$occasions+2;

patch.occ <- parms$occasions+3

C <- matrix(c(1,-1), nrow=1)

# For testing the hypothesis that pi.occ.L = pi.occ.R

V.left <- prob.occ.L*(1-prob.occ.L); V.right <- prob.occ.R*(1-prob.occ.R)

V.each.side <- matrix(c(V.left, V.right), nrow=2)

max.patches.per.site <- max(parent[,PATCH])
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X <- matrix(0, nrow=(max.patches.per.site*max(parent[,SITE])), ncol=2)

# 2 columns b/c X-matrix tells if the site goes L or R in the split

i = 1

for(j in unique(parent[,SITE])){

temp.left <- sum(left[,SITE]==j)

temp.right <- sum(right[,SITE]==j)

if(temp.left==0 & temp.right==0){i = i+max.patches.per.site; next }

if(temp.left == 0){ X[(i:(i+temp.right-1)), 2] <- 1 ;

i=i+max.patches.per.site; next}

if(temp.right == 0){ X[(i:(i+temp.left-1)), 1] <- 1 ;

i=i+max.patches.per.site; next}

X[(i:(i+temp.left-1)), 1] <- 1 ;

X[(i+temp.left):(i+temp.left+temp.right-1),2] <- 1 ;

i = i+max.patches.per.site

} # end ’j’ loop

V.each.patch <- X%*%V.each.side

W = c(1/V.each.patch)

W[which(W == Inf)] <- 0

W <- diag(W)

D = diag(c(V.each.patch))

SD.matrix <- diag(c(sqrt(V.each.patch)))

start.matrix <- diag(rep(1, nrow(X)/max.patches.per.site))

Corr.block <- matrix(p.hat, nrow=max.patches.per.site,

ncol=max.patches.per.site)

diag(Corr.block) <- 1

Corr.matrix <- kronecker(start.matrix, Corr.block)

# VC.matrix <- SD.matrix%*%Corr.matrix%*%SD.matrix

SD.vector <- c(sqrt(V.each.patch)) # No. 2. (also needed for No.3)

matrix1 <- SD.vector * Corr.matrix # No. 2

VC.matrix <- SD.vector * t(matrix1) # No. 2

# VC.matrix <- Corr.matrix * tcrossprod(SD.vector) # No. 3

# Using WLS estimates at the moment

Var.correct <- try(C %*% solve(t(X)%*%W%*%X) %*%

(t(X) %*% W %*% VC.matrix %*% W %*% X)

%*% solve(t(X)%*%W%*%X) %*% t(C) ,

silent=TRUE) #this turns off the errors printing

if(class(Var.correct)=="try-error"){Var.correct <- 0; }

Var.naive <- try(C %*% solve(t(X)%*%W%*%X) %*% t(C) , silent=TRUE)

if(class(Var.naive)=="try-error"){Var.naive <- 1; }
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patchup <- as.numeric(Var.correct/Var.naive)

#"Correct" var over "Naive" var

#Wald Statistic

if(prob.occ.L == prob.occ.R){ test.stat <- 0}

# prevents 0/0, especially if both estimates are on the boundary

naive.var.of.diff <- actual.var.occ.P*(nrow(parent))*(1/nrow(left) +

1/nrow(right))

actual.var.of.diff <- naive.var.of.diff*patchup

ifelse(actual.var.of.diff > 0,

test.stat <- abs(prob.occ.L - prob.occ.R) / sqrt(actual.var.of.diff),

test.stat <- 0)

out <- c(test.stat, prob.occ.L, prob.occ.R, prob.det.P, prob.occ.P)

return(out) }

3.6.4 Run code

############################

# To get observed GEE testing data FROM MCGARIGAL & MCCOMB

library(rpart);

birds27 <- read.csv("C://Documents and Settings/Owner/My Documents/

Research Part II/GEE approach/bird.visit.csv", header=T)

# Columns 1-11 are identifiers (basin, site, patch, occasion)

# and survey-day variables

# Columns 12-89 are bird species and counts of how many seen

hab.data <- read.csv("C://Documents and Settings/Owner/

My Documents/Research Part II/GEE approach/hab.sta.csv", header=T)

# Columns 1-3 are identifiers (basin, site, patch)

# Columns 4-24 are station (patch)-level covariates.

# ***Columns 9,10,11 are all factors/categorical,

# even though only 10 and 11 are listed as factors.

# may need to change 9 (s.id) to as.factor(col9).

# **BUT, don’t use s.id in CART...

# To get data in the right format for user splits:

# Arbitrarily choose a basin

step1 <- birds27[birds27$basin=="D",-c(1,5,6,7,8,9,10,11)]

# To get sites (sub-basins) as numbers from 1 to Max.number.of.sites

step2 <- step1

step2$sub <- as.numeric(step2$sub)

count <- 1;

for(i in unique(step2$sub)){

step2$sub[which(step2$sub==i)] <- count;

count <- count+1 ;

}
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# To get the four observations into one row

# e.g. NOT ARBITRARILY I shall choose the species GCKI,

# the Golden-crowned Kinglet

column <- step2$GCKI

column[which(column>=2)] <- 1

# THIS CHANGES ANY 2+ "number seen" count into a "1" for just ’seen’

ydata <- matrix(NA, nrow=(nrow(step2)/4), ncol=4)

for(i in 1:(nrow(step2)/4)){

ydata[i, ] <- column[(4*i-3) : (4*i)] }

# To get sites and sub-basins from 4 repeats to only one

site <- step2$sub[seq(1, nrow(step2), 4)]

patch <- step2$sta[seq(1, nrow(step2), 4)]

# Final (response) data frame for entry into CART

# bird.data <- data.frame(ydata, site, patch)

# Final (covariate) data for entry into CART

print("NOTE THE CHOICE OF BASIN AGAIN")

covariates <- hab.data[hab.data$basin=="D", 4:ncol(hab.data)]

# BUT DON’T FORGET TO NOT USE s.id (as a covariate)

covariates <- covariates[,-which(colnames(covariates)=="s.id")]

total.data <- data.frame(ydata, site, patch, covariates)

# Try using GEE.4c for EV (OLS)

# source("C:/Documents and Settings/Owner/My Documents/Research Part II/

GEE approach/MY attempt at user splits GEE 4c.R")

# Currently using GEE.5 for UV (WLS) !!!

#Clustered:

#source("C:/Documents and Settings/Owner/My Documents/Research Part II/

GEE approach/MY attempt at user splits GEE 5.R")

#Indpt: (makes p.hat = 0 in all cases)

#source("C:/Documents and Settings/Owner/My Documents/Research Part II/

GEE approach/MY attempt at user splits GEE indpt.R")

#source("E:/Research Part II/GEE approach/

# MY attempt at user splits GEE 5.R")

alist <- list(eval=temp1, split=temp2, init=temp3)

parms <- list(cutoff=0.5, occasions=2, prob.det=NULL, mygoodness=2)

# mygoodness: 1=orig.parent, 2=each.parent, 3=p.v.2d, 4=p.v.d.v.d.

date()

fit.user <- rpart( cbind(X1, X2, site, patch) ~ elev + slope + aspect +

s.edge + p.edge, data=total.data, method=alist, parms=parms, cp=0.01 )

date()
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# THERE ARE 2 COLUMNS NAMED p.edge!! (in hab.data)

# My code is getting the categorical one (1st one to appear).

# The quantitative one is renamed "p.edge.1" #

fit.user

#fit.user2 <- prp(fit.user, snip=TRUE)$obj

#fit.user.indpt2 <- prp(fit.user.indpt, snip=TRUE)$obj

par(mfrow=c(1,2), xpd=NA)

plot(fit.user, main="Clustered")

text(fit.user, use.n=TRUE)

plot(fit.user.indpt, main="Independent")

text(fit.user.indpt, use.n=TRUE)
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CHAPTER 4. Pruning Classification and Regression Trees with

Modifications for Occupancy Modeling

Modifications to methods of growing trees (i.e. in how nodes are split) in Classification

and Regression Trees (CART) lead to potentially different trees. Similarly, those modifications

mean that the methods of pruning the trees may need their own changes. We previously

proposed methodology to incorporate imperfect detection and correlated data into the splitting

mechanisms of CART, which led to our re-evaluation of pruning criteria. Here we discuss 5

pruning criteria that could be used with our CART methodology. Simulated examples for each

criteria [run separately] result in error rates that are used to assess the performance of the

pruning criteria.

4.1 Introduction

In Chapter 2, we introduced methods for including detection probability in the process

of growing the tree. Each method estimates detection and occupancy probability slightly

differently, but all of the methods involve the use of a Likelihood function to estimate the

parameters at each node in the tree. The methods address fundamental idea that you cannot

ignore imperfect detection while modeling without suffering a loss of accuracy in the resulting

estimates. Estimates of occupancy probability are consistently lower when using the näıve

tree than those computed using detection-adjusted trees. Accounting for imperfect detection

is especially crucial when occupancy is modeled using a CART tree, due to the potential for

compounding mistakes made early on in the tree process.

In Chapter 3, we turn to another common issue that can affect CART: observations that are

clustered (either spatially or otherwise related). The characteristics of clustered individuals are
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likely to be correlated in some way. Therefore, any model (e.g. CART) examining data where

independence is in doubt should account for that [possible] correlation. The traditional CART

model assumes independence, so once again there arises the potential for error in the CART

process, this time in the presence of data that is not known to be independent. Clustered data

affects the variance of parameter estimates in a non-constant manner based on the splitting

situation and the relationship of clustered patches within the tree. We proposed an approach

based on generalized estimating equations (GEEs) that involved “patching up” the näıvely-

calculated variance estimates prior to their use in a statistical test.

When growing a CART tree using the methodology presented in the previous chapters,

there are many potential rules for stopping and/or pruning the tree. Atkinson and Therneau

(2011) implement some of these into rpart(). One of the most basic statistical constraints is

that of node size. This constraint specifies the minimum parent node size required to even

consider splitting, as well as setting the minimum daughter node size required to accept a

proposed split.

Another pruning mechanism involves a choice of a value for the complexity parameter (cp).

The cp value can be used both during (as a stopping rule) and after (as a pruning criteria)

the formation of the tree. During the creation of the tree, an estimated complexity value (cp*)

is calculated for each potential split. While the specific details of this calculation are hidden

within the software, if the estimated complexity cp* is not as large as the specified level (cp),

then the split being considered is not made (during the tree creation) or else the branch in

question is pruned off (after the tree creation).

A more-advanced option requires the user to implement the “user splits” option of rpart().

User splits is a set of three functions which allow for the use of non-traditional node evaluation

and splitting methods. In the eval function, there is a calculation for node deviance. When

using the “user splits” option for a classification tree, the default measure of deviance at a

node in rpart() is a simple misclassification count. Deviance (D), along with the complexity

parameter, are then used together in a cost-complexity pruning algorithm. Cross-validation is

also affected by the choice of a node impurity measure and the complexity parameter (Therneau

and Atkinson 2011).
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In situations with imperfect survey detection or correlated observations, such as were dis-

cussed in the previous chapters, some of the methods for stopping and/or pruning the tree

have a potential for error. The misclassification measure used to measure node deviance is

clearly suspect when the correct status of an individual is unknown. The estimated complexity

value of cp* may also be influenced by the presence of imperfect detection, in addition to being

affected by spatial dependence among the individuals. Therefore, using these two measures as

a decision tool for when to stop growing the tree, or for how far to prune the tree back after it

has been already grown, is not a wise idea.

Instead, we present a different method for pruning that is based on the same method used

to grow the tree. This method utilizes some of the existing features of prune.rpart(), but with

the twist that pruning is no longer based on a chosen cp value. Rather, a set of pruning criteria

are proposed to be used with a fully-grown tree (no internal pruning during the growth of the

tree). Internal pruning can be turned off completely by specifying cp=0 (in the call to rpart())

and node deviance (impurity) as (nodesize)2 (in the eval() function of user splits). We apply

our methodology to two simulated data sets, which will demonstrate the potential ability of

the pruning algorithm to discover and choose the sub-tree with the least predictive error.

4.2 Methods

We assume a scenario such as that described in the “Birds” example of Chapter 3, wherein

we are potentially dealing with imperfect detection and correlated observations in the same

data set. The confluence of these two problems allows us a wide range of potential statistics to

use in a pruning algorithm. This paper addresses a few of the more accessible and easier-to-

understand statistics.

Recall from Chapter 3 that a proposed solution for dealing with a situation involving both

imperfect detection and correlated observations was based upon the ideas of generalized esti-

mating equations, likelihood functions, and a Wald test. Under the assumption of indepen-

dence, a likelihood function estimates the occupancy and detection parameters, as well as their

variances, at the three nodes of the tree involved in a given split. We then “correct” the näıve

variance estimates by using the correlation found in the sample data set. The result is a mod-
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ified Wald test statistic (Equation 3.2) that indicates the relative strength of a proposed split

from a parent node (when compared with all other proposed splits). For more details on the

splitting methodology, please refer back to Chapter 3.

The set of potential pruning criteria chosen were:

Node Size: Using the minimum daughter-node size as it is used in rpart(). Somehow, setting

cp = 0 and the node deviance = (nodesize)2 causes the minimum daughter-node size constraint

to no longer be referenced during tree creation (it is an override of sorts). Thus, we cause the

original node size pruning criterion to be applied during our prune function.

Criterion A: Prune back leaves based on the test statistic that was used in the split creation.

Similar to the idea of comparing cp* to a specified value of cp, we compare the estimated test

statistic with a specified level, and prune those leaves if the estimated value fails to exceed

the specified level. However, the calculation of the estimated test statistic is a known quantity

(see Chapter 3 and 3.2), while the estimated cp* depends on a variety of factors which are not

easily identifiable.

Criterion B : Prune based on the measure of impurity at each node. The default node

impurity in rpart() is a misclassification measure. In trees, the desire is to decrease the overall

impurity at each step in the trees’ growth. Thus, we set a “cutoff point” which specifies how

much the impurity must decrease from the parent node to the two daughter nodes. Unfortu-

nately, we note that in an imperfect detection setting, it is possible to have a calculation result

in increased impurity, so the “base” level of misclassification (B=0) can now result in pruning

when applied to a fully grown tree.

Criteria C and D : The methodology from Chapter 3 was developed with an occupancy/detection

framework in mind, so those concepts have also been applied to the pruning process. Once

again, there are specified “cutoff” points for the estimated occupancy and detection probabili-

ties, beyond which the leaves are pruned. It is important to note that C and D work together

and not separately. For example, there may be nothing wrong with a node that specifies oc-

cupancy probability as 0.99, but there is likely an issue if that some node also estimates the

detection probability as 0.01.
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4.2.1 Implementation

The pruning function assumes that one has first used the user splits() option of rpart() to

create a fully-grown tree. The pruning function requires as inputs the tree object and a set of

original data (contains the data you passed into user splits in the “Y” part of the model (e.g.

Y ∼ X1 +X2). For most data sets, this original data will contain the multiple-occasion survey

results (one occasion per column), site number and patch number (if clustering is applicable)).

Three companion functions are also required:

Goodness: A measure of the strength of a proposed split. You must use the same function that

was used in the creation of the tree (which may be referred to as a “drop in deviance”). It is

necessary to call this function again, because the information created during the tree growth

is not easily accessible.

Node deviance: A measure of node impurity. The growth of the original tree [using this method]

requires specification of node deviance = (nodesize)2. However, for pruning, this measure can

be defined by the user, and has a default of näıve misclassification.

Decision: Using criteria A, B, C, D as described above, this function returns a simple Yes/No

on whether the current leaves in question should be pruned. The user can easily add their own

criterion or modify the current ones.

Through a “rollup” process, our algorithm isolates node “triads” (a parent and two terminal

daughter nodes), re-computes the original splitting information, and then applies the Decision

function to that triad. If the decision is to prune, then the snip.rpart() function is used to

update the tree, resulting in the parent node now becoming a terminal node. If the decision is

not to prune, then the nodes of that triad, as well as all ancestor nodes of that triad, are kept

in the final tree. This rollup continues until all potential triads have been checked for pruning,

and then returns the newly pruned tree.

4.2.2 Simulated Scenarios

We performed simulations to test the usefulness of our pruning algorithm in situations with

designed clustered observations with imperfect detections. Forty iterations of each scenario
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are averaged to produce final statistics. Each of the simulations involves the use of 10 sites

and a total of 342 patches distributed fairly evenly [30 to 37 patches per site] across the sites.

This corresponds to the original situation in the Birds example from Chapter 3 (taken from

McGarigal and McComb (1995)).

The original CART model from Chapter 3 used five of the covariates described by McGarigal

and McComb (1995): elevation (in meters), slope (percent slope), aspect(degrees,0-360), stand

edge (indicator for whether the plot center is within 50 m from the nearest seral stage edge),

and patch edge (indicator for whether the plot center is within 50 m from the nearest patch

edge). To keep as close as possible to the previous model, each of our simulations will involve

the same five covariates (in name), although their values will change for each of the 40 iterations

of the simulation.

We introduce dependence into the simulation by clustering patches within each site. Occu-

pancy probabilities are assigned to each patch, and imperfect detection is included through a

fixed probability of detection for all patches (πdet = 0.8). Then the observed values (detected or

undetected) for two occasions are generated for each of the 342 patches. These observed values

are then used to create a classification and regression tree using rpart() and the methodology

introduced in Chapter 3. Validation data sets are created to test the pruning algorithm on each

tree.

First, dependence is induced through the clustering of patches on each of the 10 sites. We

simulated coordinates for the “center” of each of the 10 sites using two uniform distributions

(one each for X and Y, for a total of 10 pairs of simulated coordinates). To represent the patch

(within-site) variation, we used normal distributions nested with each site. In other words, for

site i and patch j,

Yi ∼ Uniform(0,10)

Xi ∼ Uniform(0,5)

Yij ∼ Yi+ N(0, 0.3)

Xij ∼ Xi+ N(0, 0.15)
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The final coordinates for each of the 342 patches are used to assign a probability of occu-

pancy (based on their location in Designs A or B (Figure 4.1). Simulated X and Y values that

fall below zero are treated as zeros and values above 10 (for Y) or 5 (for X) are treated as 10

or 5 respectively.

The patch occupancy probabilities are then used to simulate two observed values (detected

or undetected) under a probability of detection (πdet) of 0.8.

To create a classification and regression tree using rpart(), the two simulated observed values

at each patch were treated as the response variable, and were modeled using five covariates:

three “original” variables from the Birds model (elevation, stand edge, and patch edge) plus

the simulated X and Y values that were used to assign occupancy probabilities.

Validation sets were created by bootstrapping the 5 covariates (X, Y, elevation, stand edge,

and patch edge) to create values for a new set of 342 patches. The new covariate information

for X and Y is then used to re-simulate the patch occupancies and observed values (still using

Figure 4.1, the dependence structure, and πdet = 0.8). We then applied the proposed pruning

algorithm to the validation data and the tree created from the “original” data. The pruning

algorithm is applied to both designs in each of the following situations: Criterion A only, Cri-

terion B only, Criterion A with Criterion B set equal to zero, and several simulations involving

various levels of Criteria C and D. Every simulation included the node size pruning constraints,

which were kept constant (minimum parent node size was 21, minimum daughter node size was

7). For each criterion, we tested a variety of specified “cutoff” levels, which can be seen in the

tables shown in the Results section below.

The recorded response for each iteration of the simulation is the mean absolute error (MAE)

between the predicted occupancy probabilities (from CART) and the “true” occupancy proba-

bilities (from Figure 4.1). Results were then averaged over the 40 simulations for each “cutoff”

level being examined.
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Figure 4.1 Visualization of the two designs which assign occupancy probabilities to each patch
during the two simulations. The X and Y axes correspond to the “slope” and
“aspect” variables, respectively. Design 1 is used in the first simulation for each
criterion and Design 2 is used in the second simulation.

4.3 Results

In each set of results, there is a “base” level of pruning which should not result in any

pruning other than what is caused by the node size constraint. The node size constraint is

applied in every simulation. We note that in general, the trees produced contain between 25

and 30 potential pruning points (e.g. starting from the full tree and working back to a tree with

a single node, we could remove pairs of terminal nodes approximately 25 to 30 times before

arriving back at the original starting node).

For the simulations involving levels of Criterion A only (Figure 4.2), the simulation based

on Design 1 results in a “base” (i.e. A=0) mean absolute error of 16%, then exhibits a slight

upward tick before gradually improves until we hit a low of 9.5% when the test statistic cutoff

is set to 4, and then we begin to steadily lose accuracy due to over-pruning. Design 2 yields

similar results, except that we see nearly identical values for the “base” error rate as for the
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best error rate (9.6% at A=4.5) than occurred with Design 1. We also see a steep increase in

error rates as the cutoff value increases. The slightly curved patterns seen in the mean absolute

errors are consistent with patterns of error estimates mentioned by Breiman et al (1984). The

following is direct from Segal (1995): “Finally, in CART (i.e. Breiman et al 1984) Section

3.4.3, the authors report their experience that ’honest’ error estimates exhibit a characteristic

pattern as a function of tree size. The estimates have a rapid initial decrease followed by a

long flat valley and then a gradual increase as tree size increases. The minimum error or cost

occurs in the valley region, but its position within this region is unstable. So, an heuristic for

choosing tree size is to look at plots of error versus tree size and identify the tree size where

there is a change in slope after the initial decrease.”
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Figure 4.2 The averaged results from simulations using Design 1 and Design 2 (Figure 4.1)
with multiple levels of criterion A. “A” is the specified level of the test statistic,
which is compared to the calculated test statistic (Equation 3.2). If the calculated
test statistic for a given split (from a parent to two terminal nodes) fails to exceed
the specified level, then that split in the tree is pruned back. Error estimates for
each of the specified levels of the test statistic are shown, revealing a slightly curved
pattern, which indicates that the “best” tree can be found in the middle ranges of
the specified levels that were tested.

For the simulations involving levels of Criterion A with Criterion B set equal to zero, the

pruning rates have increased, but only at the lowest levels of Criterion A (Figure 4.3). As the

levels of Criterion A increase, pruning is dominated by criterion A rather than the single level
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of criterion B. Unfortunately, incorporating B=0 as an additional cutoff point for pruning has

actually made the error rates higher overall when compared to the Criterion A-only, Design 1

situation (Figure 4.4)! It seems to have a very slight (yet inconsistent) under Design 2.
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Figure 4.3 Comparison of the average number of pruning decisions resulting from using only
Criterion A versus using Criterion A with Criterion B equal to zero. A “pruning
decision” reduces two “sister” terminal nodes to their parent node. The top panel
shows the results from Design 1, while the bottom panel contains results from
Design 2.
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Figure 4.4 Comparison of the mean absolute errors resulting from pruning using only Criterion
A versus pruning using Criterion A with Criterion B equal to zero. The top panel
shows the results from Design 1, while the bottom panel contains results from
Design 2.

For the simulations involving levels of Criterion B (Figure 4.5), the “curvature” that was

on display in the previous results has noticeably diminished. In both Design 1 and 2, the

difference between the error rates at the lowest (“base”) levels of B and those at the middle

levels of Criterion B (with the lowest absolute errors) is around 3%, whereas the simulations

which varied the level of Criterion A generally displayed larger ranges (Figure 4.2). For Criterion

B on its own (Figure 4.5), the minimum error rates for both Design 1 and Design 2 are 11.5%

and 6.6% respectively. After the large jump in number of times a pair of terminal nodes were

pruned (from B=0 to B=1), both Designs 1 and 2 exhibit a long, relatively flat period in mean

absolute error rates that very gradually increases with the larger values of Criterion B. Pruning

with Criterion B displays a much smaller error rate when used with Design 2 that when used
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with Design 1. Note that the “base” level of Criterion B (B=0) still actually allows pruning to

occur above and beyond that caused by the node size criterion.
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Figure 4.5 The averaged results from simulations using Design 1 and Design 2 (Figure 4.1)
with multiple levels of criterion B. “B” is the specified level of the deviance for
the proposed split using the “misclassification” criterion, which is compared to the
calculated deviance of the split. If the deviance for a given split (from a parent
to two terminal nodes) fails to exceed the specified level, then that split in the
tree is pruned back. Error estimates for each of the specified levels of deviance are
shown, revealing a slightly curved pattern, which indicates that the “best” tree
can be found in the middle ranges of the specified levels that were tested.

For the simulations involving levels of Criteria C and D, results based on Design 1 (Table

4.1) and those based on Design 2 (Table 4.2) were inconclusive. The changing levels did not

result in much pruning, and therefore also did not result in much difference among the resulting

error rates for the trials. We speculate first that the combined nature of the pruning criteria

will in general lead to less pruning. In addition (and perhaps more relevant to this specific

issue), consider that the occupancy probability simulations tend to result in fewer extreme

values (in general), when using either Design 1 or Design 2. This outcome, combined with the

assignation of a detection probability of 0.8 to all patches during the simulations, leads to very

few nodes in the trees that have high occupancy and low detection estimates.
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Table 4.1 Averaged results from a simulation using Design 1 (left-most picture in Figure 4.1)
with multiple levels of criteria C and D. “C” is the specified level of the proba-
bility of occupancy criterion and “D” is the specified level of the probability of
detection criterion, which are compared to the calculated measures. If a calculated
probability of occupancy for a terminal node exceeds the specified level AND the
calculated detection probability falls below the specified level, then that split in
the tree is pruned back. Error estimates for each pair of the specified levels of
occupancy/detection are shown.

C D Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

1.00 0.00 0.8 1.114 0.164 0.035 0.006

0.95 0.01 0.8 1.114 0.164 0.035 0.006

0.95 0.05 1.4 1.614 0.186 0.063 0.010

0.95 0.10 1.4 1.599 0.186 0.063 0.010

0.95 0.50 1.5 1.601 0.186 0.063 0.010

0.70 0.01 3.4 2.967 0.164 0.035 0.006

0.70 0.05 4.2 3.256 0.206 0.087 0.014

0.70 0.10 4.3 3.234 0.206 0.087 0.014

0.70 0.50 4.3 3.215 0.205 0.087 0.014
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Table 4.2 Averaged results from a simulation using Design 2 (right-most picture in Figure
4.1) with multiple levels of criteria C and D. “C” is the specified level of the prob-
ability of occupancy criterion and “D” is the specified level of the probability of
detection criterion, which are compared to the calculated measures. If a calculated
probability of occupancy for a terminal node exceeds the specified level AND the
calculated detection probability falls below the specified level, then that split in
the tree is pruned back. Error estimates for each pair of the specified levels of
occupancy/detection are shown.

C D Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

1.00 0.00 0.8 0.974 0.116 0.034 0.005

0.95 0.01 0.8 0.974 0.116 0.034 0.005

0.95 0.05 1.1 1.231 0.132 0.059 0.009

0.95 0.10 1.2 1.238 0.133 0.060 0.009

0.95 0.50 1.2 1.238 0.133 0.060 0.009

0.70 0.01 4.9 3.467 0.116 0.034 0.005

0.70 0.05 5.6 3.642 0.149 0.094 0.015

0.70 0.10 5.7 3.648 0.149 0.094 0.015

0.70 0.50 5.7 3.661 0.147 0.094 0.015

4.4 Discussion

Examining the Results collectively, we note that the simulations which use Design 2 to

generate probabilities of occupancy generally result in lower mean absolute errors estimates

than the corresponding simulations using Design 1. This may be due to the more distinct

groups of occupancy probabilities (either very low or very high) used in Design 2, as opposed

to the probabilities in Design 1 which are more varied across the parameter space. In general,

this also leads to a smaller potential improvement in error rates when applying pruning, so we

see more shallow “curvature” in the resulting error rates.

Recall the lack of interesting results based on pruning with Criteria C and D (Tables 4.1 and

4.2. It was previously mentioned that the occupancy probability simulations tend to result in

fewer extreme values (in general) for both Design 1 or Design 2. This outcome, combined with
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the assignation of a detection probability of 0.8 to all patches during the simulations, leads to

very few nodes in the trees that have high occupancy and low detection estimates. This explains

why the numbers of pruned terminal node pairs were so low; despite running the cutoff out

to 0.5 for each Criterion, the detection probability criterion (D) likely needed to be increased

even more to allow for the higher estimates of that parameter. In future simulations, we would

treat the probability of detection similar to the probability of occupancy–as a simulated value

for each patch rather than a constant. This would allow for detection probability to approach

the edge of the parameter space, particularly near zero where we would be tempted to prune

leaves from the tree.

I do note the relatively small number of trials (40) for each simulation. The computation

time involved in running the simulation was quite long due to the number of times it was

necessary to compute a CART tree, which is already one of the drawbacks of computing a

single CART tree, let alone multiple trees. The number of trials could be easily increased with

more computing power.

4.4.1 Recommendations

Node size: This is directly tied to the normal workings of rpart(), where the default min-

imum daughter-node size is 7 individuals. Do not change this unless you have an extremely

small sample, or if your current tree is not separating known classified objects well enough.

Criterion A: It is possible that the use of the A pruning criterion could result in making the

B and C/D rules obsolete (they may all indicate pruning, but only one is needed). Most trees

will have a sort of “sweet spot” in the number of terminal nodes where prediction accuracy

is the best. Because the behavior of A on the efficacy of all trees is unknown, we recommend

choosing a cutoff value of 3.5 to begin with. This can be adjusted if you have a desired tree

size in mind.

Criterion B : This is a näıve test based on having perfect detection. In an imperfect detection

situation, its usefulness is limited because there is no “base” level of pruning (even negative

cutoff values could still cause pruning!), and we recommend avoiding the use of this criterion.

Related to this paper, it seems to have an adverse affect in situations such as Design 1, where
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the actual probabilities of occupancy are quite varied. If there is reason to use this Criterion

(i.e. known perfect detection or close to it), then we recommend pruning at a level of B=1

(i.e. any split that does not decrease misclassification by at least 1 should be discarded. Splits

where this does not happen are likely not very good) and increasing that level if needed.

Criteria C and D : Despite the poor indications from the simulated results, the use of these

two criteria can still be very important (albeit of more limited use). The optimization method

for maximizing the node likelihood has a tendency to favor nodes with a high probability of

occupancy and a low probability of detection when there are a lot of individuals with a “not

seen” designation in their observed values. In many cases, this is unsettling if not completely

unbelievable. Our recommendation is to set these levels at probability of occupancy > 0.90

and probability of detection < 0.10, although to be conservative, blind application of this rule

might function better with 0.95 and 0.05 as the chosen cutoff values. We previously mentioned

the reduction in pruning when two criteria are used at the same time. One way around this

would be to use each criteria separately, although that is not recommended in this situation,

as occupancy and detection probabilities are tied together in any imperfect detection scenario.

4.5 Conclusion

Of our proposed modifications to the pruning process, it appears that the use of the test

statistic for pruning has the most potential. The test statistic incorporates all aspects of the

statistical model (imperfect detection, correlated observations, etc.), and therefore is a good

overall choice for a pruning criterion that also reflects the growth process. The user may need

to adjust the level of pruning based on their specific situation, much as is currently done now in

other CART programs and algorithms (e.g. rpart() and the complexity parameter). However,

in using these specific methods of pruning, it is also essential to include the node size criterion,

lest the user end up with terminal nodes of extremely small size. The occupancy and detection

pruning criteria may be less useful in the case of correlated data than they are in a case

involving imperfect detection, but they can add value to the pruning by focusing on the small

but important details within the test statistic. Regardless of whether a researcher follows the

methodologies laid out in this paper in Chapters 2 and 3, we strongly encourage anyone using
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modified CART methodologies to also consider the ramifications of using the default pruning

algorithms involved with CART and decide if they should also modify the pruning process to

match the growth process.
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4.7 Extra material: Detailed simulation results for Criterion A, Criterion

B, and Criterion A with Criterion B set equal to zero

For the simulations involving levels of Criterion A only, the simulation based on Design 1

(Table 4.3) results in what seems to be a more symmetrical “curvature” of the mean absolute

error values. A “base” (i.e. A=0) mean absolute error of 16% moves irregularly at first, then

gradually improves until we hit a low of 9.5% when the test statistic cutoff is set to 4, and then

we begin to lose accuracy due to over-pruning up to an error of about 20%. Design 2 (Table

4.4) yields similar results, except that we see a much shallower decrease from the “base” error

rate to the best error rate (9.6% at A=4.5) than occurred in Design 1. We also see a steep

increase in error rates as the cutoff value increases. Interestingly, the “base” error rates in the

Design 2 simulation are quite close to the best error rate.
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Table 4.3 The averaged results from a simulation using Design 1 (left-most picture in Figure
4.1) with multiple levels of criterion A. “A” is the specified level of the test statistic,
which is compared to the calculated test statistic (Equation 3.2). If the calculated
test statistic for a given split (from a parent to two terminal nodes) fails to exceed
the specified level, then that split in the tree is pruned back. Error estimates for
each of the specified levels of the test statistic are shown, revealing a slightly curved
pattern, which indicates that the “best” tree can be found in the middle ranges of
the specified levels that were tested.

A Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

0.000 0.6 0.675 0.160 0.044 0.007

0.530 6.3 3.510 0.160 0.047 0.008

0.840 6.7 3.517 0.177 0.080 0.013

1.040 6.8 3.463 0.177 0.080 0.013

1.280 7.3 3.300 0.176 0.079 0.013

1.650 9.7 3.611 0.168 0.074 0.012

1.960 12.4 3.471 0.158 0.076 0.012

2.576 18.4 4.413 0.122 0.073 0.012

3.000 20.3 4.059 0.101 0.069 0.011

3.500 20.9 4.060 0.095 0.062 0.010

4.000 21.2 4.242 0.095 0.057 0.009

4.500 21.7 3.996 0.101 0.057 0.009

5.000 22.0 4.240 0.114 0.056 0.009

6.000 22.3 4.304 0.131 0.066 0.010

7.000 22.7 4.339 0.146 0.072 0.011

8.000 22.8 4.335 0.152 0.072 0.011

9.000 22.9 4.460 0.158 0.073 0.012

10.000 23.1 4.407 0.162 0.076 0.012

11.000 23.4 4.407 0.165 0.077 0.012

12.000 23.7 4.433 0.172 0.078 0.012

13.000 23.7 4.433 0.172 0.078 0.012

14.000 23.8 4.508 0.176 0.080 0.013

15.000 24.0 4.452 0.181 0.084 0.013

16.000 24.0 4.368 0.181 0.084 0.013

17.000 24.2 4.344 0.183 0.085 0.013

18.000 24.2 4.334 0.183 0.085 0.013

19.000 24.3 4.033 0.185 0.083 0.013

20.000 24.8 3.935 0.198 0.084 0.013
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Table 4.4 The averaged results from a simulation using Design 2 (right-most picture in Figure
4.1) with multiple levels of criterion A. “A” is the specified level of the test statistic,
which is compared to the calculated test statistic (Equation 3.2). If the calculated
test statistic for a given split (from a parent to two terminal nodes) fails to exceed
the specified level, then that split in the tree is pruned back. Error estimates for
each of the specified levels of the test statistic are shown, revealing a slightly curved
pattern, which indicates that the “best” tree can be found in the middle ranges of
the specified levels that were tested.

A Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

0.000 0.9 0.982 0.105 0.033 0.005

0.530 8.0 3.783 0.108 0.039 0.006

0.840 8.8 3.527 0.142 0.088 0.014

1.040 9.2 3.468 0.144 0.093 0.015

1.280 9.8 3.484 0.144 0.093 0.015

1.650 11.4 3.349 0.163 0.125 0.020

1.960 13.1 3.460 0.149 0.121 0.019

2.576 15.8 3.650 0.130 0.117 0.018

3.000 17.4 4.024 0.111 0.115 0.018

3.500 18.1 4.422 0.105 0.116 0.018

4.000 18.5 4.535 0.104 0.115 0.018

4.500 18.6 4.527 0.096 0.110 0.017

5.000 18.6 4.527 0.096 0.110 0.017

6.000 18.7 4.519 0.096 0.110 0.017

7.000 19.0 4.796 0.106 0.119 0.019

8.000 19.3 4.921 0.110 0.120 0.019

9.000 19.4 4.872 0.118 0.124 0.020

10.000 19.6 4.956 0.138 0.138 0.022

11.000 20.1 5.055 0.137 0.139 0.022

12.000 20.3 5.116 0.152 0.150 0.024

13.000 20.3 5.116 0.152 0.150 0.024

14.000 20.8 5.281 0.202 0.168 0.027

15.000 21.5 5.368 0.248 0.166 0.026

16.000 21.6 5.314 0.258 0.165 0.026

17.000 21.8 5.412 0.276 0.163 0.026

18.000 22.0 5.623 0.282 0.163 0.026

19.000 22.2 5.481 0.291 0.160 0.025

20.000 22.4 5.586 0.299 0.158 0.025
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For the simulations involving levels of Criterion A with Criterion B set equal to zero, both

the simulation based on Design 1 (Table 4.5) and the one based on Design 2 (Table 4.6) again

display a noticeable “curvature” in the mean absolute error values for each trial. Also similar to

the simulations involving Criterion A alone (Tables 4.3 and 4.4), the “curvature” from Design

2 is much shallower at the beginning, but with a steep increase in error rate at the end. In

contrast, when comparing the best mean absolute error rates, Design 2 results in a better error

rate than Design 1 (6.4% to 13.2%), and those rates appear in slightly different places (but

not significantly so–the Design 2 best error rate occurs when A=5, but that error rate is only

a shade better than the 7.2% seen when A=4. The base error rates were 16.9% for Design

1 and 10.8% for Design 2. For Design 2, we see a similar effect as we did for the simulation

without criterion B (Table 4.4), where the base error rate is surprisingly good compared to the

first few levels of Criterion A. Recall that even though B=0 is referred to as the “base” level

of Criterion B (meaning it is supposed to cause no pruning), using B=0 can potentially cause

extra pruning due to its potential inaccuracies when measuring node impurity in an imperfect

detection setting.
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Table 4.5 The averaged results from a simulation using Design 1 (left-most picture in Figure
4.1) with multiple levels of criterion A and a constant level (zero) of criterion B. “A”
is the specified level of the test statistic, which is compared to the calculated test
statistic (Equation 3.2). “B” is the specified level of the deviance for the proposed
split using the “misclassification” criterion, which is compared to the calculated
deviance of the split. If the calculated test statistic for a given split (from a parent
to two terminal nodes) fails to exceed the specified level or if the calculated deviance
for the split fails to exceed zero, then that split in the tree is pruned back. Error
estimates for each of the specified levels of the test statistic are shown, revealing
a slightly curved pattern, which indicates that the “best” tree can be found in the
middle ranges of the specified levels that were tested.

A Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

0.000 3.2 2.866 0.169 0.044 0.007

0.530 5.7 3.389 0.170 0.045 0.007

0.840 6.7 3.562 0.211 0.097 0.015

1.040 6.8 3.563 0.211 0.096 0.015

1.280 7.2 3.765 0.211 0.096 0.015

1.650 9.3 3.863 0.205 0.094 0.015

1.960 11.5 3.616 0.195 0.093 0.015

2.576 16.5 4.574 0.156 0.089 0.014

3.000 18.4 5.119 0.143 0.078 0.012

3.500 19.4 5.038 0.132 0.082 0.013

4.000 19.9 5.138 0.133 0.077 0.012

4.500 20.1 5.241 0.135 0.074 0.012

5.000 20.4 5.108 0.136 0.073 0.011

6.000 21.6 4.872 0.145 0.073 0.012

7.000 22.1 4.966 0.156 0.069 0.011

8.000 22.1 5.016 0.164 0.078 0.012

9.000 22.2 4.879 0.172 0.082 0.013

10.000 22.5 4.915 0.174 0.083 0.013

11.000 22.9 5.011 0.190 0.087 0.014

12.000 23.0 4.854 0.195 0.086 0.014

13.000 23.1 4.843 0.194 0.086 0.014

14.000 23.2 4.870 0.198 0.086 0.014

15.000 23.4 4.950 0.203 0.088 0.014

16.000 23.4 4.950 0.203 0.088 0.014

17.000 23.7 5.229 0.208 0.089 0.014

18.000 24.1 5.328 0.215 0.089 0.014

19.000 24.5 5.449 0.222 0.088 0.014

20.000 24.8 5.477 0.230 0.085 0.014
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Table 4.6 The averaged results from a simulation using Design 2 (right-most picture in Figure
4.1) with multiple levels of criterion A and a constant level (zero) of criterion B. “A”
is the specified level of the test statistic, which is compared to the calculated test
statistic (Equation 3.2). “B” is the specified level of the deviance for the proposed
split using the “misclassification” criterion, which is compared to the calculated
deviance of the split. If the calculated test statistic for a given split (from a parent
to two terminal nodes) fails to exceed the specified level or if the calculated deviance
for the split fails to exceed zero, then that split in the tree is pruned back. Error
estimates for each of the specified levels of the test statistic are shown, revealing
a slightly curved pattern, which indicates that the “best” tree can be found in the
middle ranges of the specified levels that were tested.

A Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

0.000 4.5 3.071 0.108 0.028 0.004

0.530 7.8 3.851 0.108 0.028 0.004

0.840 8.5 3.850 0.139 0.074 0.012

1.040 8.8 3.827 0.145 0.086 0.014

1.280 9.4 3.947 0.145 0.086 0.014

1.650 10.9 4.104 0.138 0.085 0.013

1.960 12.5 4.495 0.130 0.087 0.014

2.576 15.3 5.205 0.110 0.081 0.013

3.000 17.1 5.528 0.079 0.054 0.009

3.500 17.8 5.565 0.072 0.037 0.006

4.000 18.1 5.463 0.070 0.038 0.006

4.500 18.4 5.443 0.070 0.038 0.006

5.000 18.6 5.610 0.064 0.017 0.003

6.000 18.9 5.550 0.064 0.018 0.003

7.000 19.1 5.745 0.075 0.056 0.009

8.000 19.3 5.811 0.083 0.074 0.012

9.000 19.4 5.853 0.100 0.101 0.016

10.000 19.9 5.688 0.123 0.128 0.020

11.000 20.1 5.618 0.146 0.144 0.023

12.000 20.6 5.995 0.172 0.159 0.025

13.000 20.9 6.312 0.197 0.164 0.026

14.000 20.9 6.269 0.205 0.165 0.026

15.000 21.6 6.156 0.227 0.168 0.027

16.000 21.6 6.156 0.227 0.168 0.027

17.000 21.6 6.156 0.227 0.168 0.027

18.000 21.8 6.324 0.236 0.169 0.027

19.000 21.8 6.324 0.236 0.169 0.027

20.000 22.0 6.383 0.250 0.169 0.027
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For the simulations involving levels of Criterion B, the “curvature” that was on display in

the previous results has noticeably diminished, although it is still present. In both Design 1

and 2 (Tables 4.7 and 4.8, respectively), the difference between the error rates at the lowest

levels of B and those at the middle levels of Criterion B (with the lowest absolute errors) is

around 3%, whereas the simulations which varied the level of Criterion A generally displayed

larger ranges. The minimum error rates for both Design 1 and Design 2 are 11.5% and 6.6%

respectively. After the large jump in number of times a pair of terminal nodes were pruned

(from B=0 to B=1), both Designs 1 and 2 exhibit a long, relatively flat period in mean absolute

error rates that very gradually increases with the larger values of Criterion B. Note that the

“base” level of Criterion B (B=0) still actually allows pruning to occur above and beyond that

caused by the node size criterion.
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Table 4.7 The averaged results from a simulation using Design 1 (left-most picture in Figure
4.1) with multiple levels of criterion B. “B” is the specified level of the deviance
for the proposed split using the “misclassification” criterion, which is compared to
the calculated deviance of the split. If the deviance for a given split (from a parent
to two terminal nodes) fails to exceed the specified level, then that split in the
tree is pruned back. Error estimates for each of the specified levels of deviance are
shown, revealing a slightly curved pattern, which indicates that the “best” tree can
be found in the middle ranges of the specified levels that were tested.

B Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

0 4.5 3.464 0.157 0.043 0.007

1 14.9 5.435 0.149 0.038 0.006

2 16.3 5.652 0.145 0.036 0.006

3 17.1 5.709 0.140 0.036 0.006

4 19.2 6.017 0.132 0.034 0.005

5 20.8 5.854 0.124 0.027 0.004

6 21.5 5.675 0.121 0.025 0.004

7 22.8 5.736 0.115 0.028 0.004

8 23.2 5.709 0.119 0.029 0.005

9 23.6 5.601 0.118 0.030 0.005

10 23.7 5.742 0.118 0.030 0.005

11 23.8 5.528 0.118 0.030 0.005

12 23.9 5.492 0.118 0.030 0.005

13 24.3 5.233 0.121 0.030 0.005

14 24.3 5.209 0.121 0.030 0.005

15 24.4 5.172 0.123 0.029 0.005

16 24.4 5.152 0.123 0.028 0.004

17 24.4 5.128 0.125 0.028 0.004

18 24.4 5.128 0.125 0.028 0.004

19 24.5 5.094 0.132 0.038 0.006

20 24.6 4.912 0.132 0.037 0.006

25 24.8 4.883 0.139 0.044 0.007

30 25.0 4.804 0.149 0.046 0.007

35 25.0 4.822 0.153 0.049 0.008

40 25.2 4.849 0.160 0.053 0.008
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Table 4.8 The averaged results from a simulation using Design 2 (right-most picture in Figure
4.1) with multiple levels of criterion B. “B” is the specified level of the deviance
for the proposed split using the “misclassification” criterion, which is compared to
the calculated deviance of the split. If the deviance for a given split (from a parent
to two terminal nodes) fails to exceed the specified level, then that split in the
tree is pruned back. Error estimates for each of the specified levels of deviance are
shown, revealing a slightly curved pattern, which indicates that the “best” tree can
be found in the middle ranges of the specified levels that were tested.

B Avg. Std. deviation Mean Std. deviation Std. Error

number of 40 “number pruned” absolute error of 40 “absolute error” of MAE

pruned values values

0 5.2 3.608 0.106 0.030 0.005

1 18.5 7.394 0.077 0.027 0.004

2 19.4 7.445 0.073 0.027 0.004

3 20.0 7.512 0.069 0.027 0.004

4 20.9 7.842 0.066 0.025 0.004

5 20.9 7.842 0.066 0.025 0.004

6 21.1 7.826 0.066 0.025 0.004

7 21.2 7.883 0.066 0.025 0.004

8 21.2 7.915 0.066 0.025 0.004

9 21.3 7.865 0.067 0.025 0.004

10 21.4 7.830 0.068 0.026 0.004

11 21.4 7.782 0.069 0.026 0.004

12 21.4 7.736 0.071 0.026 0.004

13 21.4 7.703 0.071 0.026 0.004

14 21.5 7.653 0.072 0.029 0.005

15 21.6 7.608 0.074 0.031 0.005

16 21.8 7.530 0.075 0.034 0.005

17 22.0 7.651 0.073 0.034 0.005

18 22.0 7.636 0.074 0.035 0.006

19 22.0 7.636 0.074 0.035 0.006

20 22.1 7.459 0.072 0.032 0.005

25 22.2 7.445 0.072 0.031 0.005

30 22.4 7.396 0.078 0.051 0.008

35 22.4 7.383 0.080 0.055 0.009

40 22.4 7.404 0.084 0.059 0.009
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CHAPTER 5. SUMMARY

Classification and regression trees have proven their worth as an effective statistical model-

ing tool for many situations. While in some cases, CART may be lacking the ability to create

accurate models, an advantage of CART is that it is flexible enough to adapt to new situations

(with some help from the statistician, of course). We have examined two such situations: (1)

Multiple surveys with imperfect detection and (2) Correlated binary data.

In the former situation, we considered studies in which the researcher is interested in deter-

mining the presence of an individual (or characteristic). To do so, the researcher takes multiple

observations of whether that individual/characteristic is seen or not seen. The underlying issue

of the observations is whether or not non-detection implies non-presence. Being able to account

for detection probability in the pursuit of predicting presence/absence of a desired individual

(or characteristic, etc.) allows CART to be more accurate in its predictions. We proposed four

methods designed to improve model performance by incorporating imperfect detection into the

model. The p.v.d.v.d. method called for separate detection and occupancy parameters (πd and

πocc) at each node involved in a split. The orig.parent, each.parent, and parent.v.2daughters

methods each worked on the assumption of a single detection probability during the split, and

with separate occupancy probabilities at each node. The difference between the latter three

methods is how the detection parameter is estimated in the model. The orig.parent method

specifies that detection is constant throughout the entire tree (detection probability is then

estimated from the root node of the tree). The each.parent and p.v.2d methods keep the de-

tection probability constant only within each split, but each.parent specifies that the detection

parameter value is estimated from the parent node, while it is jointly estimated from the two

daughter nodes in p.v.2d. Results for the plover data strongly indicate that the orig.parent

model performed the best for this example (but may not always be the best). From our dis-
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cussions in Chapter 2, we expect that most methods incorporating imperfect detection will

outperform a näıve model assuming perfect detection. Of the four alternative methods pro-

posed here, p.v.d.v.d. has noted shortcomings; of the remaining three, the best-performing

method may vary depending on the data being used. The methods that we presented enable

CART to be extended to statistical analyses which would otherwise use a different modeling

tool.

In the latter situation, knowledge of underlying correlation structure between data points,

when used in conjunction with CART methodology, serves to enhance the splitting algorithms.

For example, if CART has information suggesting that two (or more) data points are strongly

correlated, then a split of the current parent node node under consideration may place a greater

emphasis on what happens to those two (or more) points (i.e. if they stay together or become

separated between the parent node and the daughter nodes). The näıve approach to clustered

data would be to treat the observations as if they were independent. Accounting for clustering

is shown to [potentially] cause changes to the splitting decisions, and even to the variable and

split point used in each branch of the tree. These changes in turn could lead to changes in

prediction or classification of the individuals in the model, which makes clustering an important,

yet often overlooked, contributor to the CART model. More specifically, clustered data can

affect the variance of parameter estimates, but unfortunately this effect (with respect to the

näıve case assuming independence) is neither constant nor has a consistent direction (increase

or decrease). This requires methodology that is adaptable to any possible situation involving

correlated data in a CART tree. The drop in deviance of the potential splits of nodes in CART

was based on the use of a Wald test statistic. Since clustering can affect the variance of the

parameters, the test statistic was calculated using a generalized estimating equations-based

approach, which attempts to “correct” the näıve test statistic. We modified the variance of

the point estimate (πL − πR) based on the amount of correlation present in the data set, the

relationship of correlated data points to each other in the tree, and whether the variances of

observations in the two daughter nodes were considered to be equal or allowed to be unequal.

The improvement of the clustering technique over the näıve application of CART to a set of

“independent” data was demonstrated through a simulation, the results of which were displayed
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in Table 3.5. In most situations, accounting for clustering led to empirical Type I error rates

for tests closer to nominal rates.

After creating a CART tree, a well-known practice is for the researcher to further prune

the tree. This pruning uses the same methodology and calculations that were used to grow

the tree. Since we have introduced new methodology for the growth process, we have also

examined the need for corresponding changes when pruning. Current methods of pruning in

rpart() include (but are not limited to) a node size criterion, a misclassification measure, and

a complexity measure. We desired to implement a new pruning algorithm based on the new

methodologies introduced in Chapters 2 and 3.

We considered five potential measures to decide whether to prune a particular branch:

1. The parameter of interest, occupancy probability

2. The intertwined parameter, detection probability

3. The test statistic (Equation 3.2)

4. The misclassification measure of node impurity

5. The node size criterion

Simulations were run to assess the performance of each pruning criterion separately. The

exception to this was the node size criterion, which was applied in all simulations (the node

size criterion was inadvertently ignored when the growth process was forced to completion

without internal pruning). The results indicated that pruning based on the test statistic did a

good job at reducing the error rate. Pruning based on misclassification is slightly erratic and

untrustworthy (this statistic may be biased when used under conditions of imperfect detection).

The simulations involving occupancy and detection probabilities were inconclusive. Please refer

to Chapter 4 for more details on the simulations.

In conclusion, the methodologies presented in this paper have direct application to many

studies in which researchers would otherwise be likely to choose an analysis tool other than

CART, but where they might now reconsider the application of CART. Given CART’s various

strong features (e.g. Deal with missing values, allows for interaction, excellent visual display

results), in addition to the extra methodologies we have presented, could provide the added
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incentive to use CART. Although there are many other current and future extensions to CART,

incorporating imperfect detection and correlated data into the CART process provides useful

extensions to the library of possibilities for classification and regression trees, by providing

opportunities in studies involving imperfect detection or correlated data..
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