Application of Geometrical Diffraction Theory to QNDE Analysis

Thumbnail Image
Date
1979
Authors
Achenbach, J
Gautesen, A
McMaken, H
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

The direct problem of the diffraction of time-harmonic·waves by cracks in elastic solids is analyzed for high-frequencies, when the wavelengths are of the same order of magnitude as a characteristic length dimension, a, of the crack. It is shown that good approximations at high frequencies can be obtained on the basis of elastodynamic ray theory. An elastodynamic version of geometrical diffraction theory is briefly reviewed. We also present a hybrid theory, wherein the crack opening displacement is computed on the basis of geometrical diffraction theory, and the scattered field is subsequently obtained by the use of a representation theorem. This hybrid approach avoids the difficulties at shadow boundaries and caustic surfaces that plague a direct application of geometrical diffraction theory. Explicit results are computed for slits and penny-shaped cracks, and these results are compared with numerical results obtained on the basis of exact integral equation formulations. The relatively simply structure of the expressions for the scattered fields displays some characteristic features, whose possible role in the inverse problem is discussed.

Comments
Description
Keywords
Citation
DOI
Source
Copyright