CRACK IDENTIFICATION AND CHARACTERIZATION IN THE RAYLEIGH LIMIT

J. E. Gubernatis
Theoretical Division, University of California, Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

and

E. Domany
Department of Physics, University of Washington
Seattle, Washington 98195

ABSTRACT

We discuss apparent characteristic features of Rayleigh scattering of elastic waves from cracks. Interpreting these features, we propose a procedure that in some experimental situations may be useful to distinguish generally-shaped cracks from volume defects. For elliptically-shaped cracks, we propose additional procedures that in principle allow the unique specification of crack size, shape and orientation; however, we suggest that in practice only the crack plane orientation and a lower bound on the crack length is measurable. We also comment upon the inversion procedure of Kahn and Rice.

INTRODUCTION

Cracks can cause significant changes in the mechanical behavior of materials, the most dramatic change being the possibility of fracture. Non-destructive detection of cracks, especially cracks critical to fracture, often utilizes ultrasonic techniques in which an elastic wave propagates through the material and is scattered by the crack. From features of the scattering, the detection and characterization of the crack is attempted. Clearly, in these important experiments the dominant physical process to be understood is the scattering of the elastic wave by a single crack. In this respect, a simple model problem is that of an elliptical or circular "soft" crack embedded in an infinite, homogeneous isotropic medium.

Recently, several investigators1-5 independently considered theoretical studies of this problem for the limiting case when the wavelength of the elastic wave is considerably larger than the crack. In this quasi-static (Rayleigh) limit, the exact form of the scattered fields can be obtained. In this paper we continue the spirit, but extend the analysis, of these investigations. Our approach is to start with a volume integral formulation of the scattering6,9 for which several useful approximations exist.9-12 The approximation used here is identical to the quasi-static result derived by Datta.3 Our purpose is to illustrate in the context of this approximation apparent characteristic features of elastic wave scattering from cracks, to interpret these results and to discuss experimental procedures that may be useful for their detection and characterization.

More explicitly, we first identify scattering signatures which distinguish cracks of general shape from volume defects (voids and inclusions). Then, we specialize our study to elliptical cracks and propose scattering signatures which allow the determination of the crack orientation, size and shape. Also the applicability of measuring these signatures in realistic non-destructive testing situations is assessed.

BASIC EQUATIONS

The basic scattering picture is depicted in Fig. 1. An arbitrarily shaped cavity with a surface S bounding a region R is embedded in an infinite, homogeneous, elastically isotropic medium. The incident power is directed along the positive z-axis and is monochromatic with an angular frequency \(\omega \). The unit vector \(\hat{r} \) determines the direction of observation of the scattered power relative to some suitably chosen Cartesian coordinate system.

Fig. 1. A typical scattering geometry. For purposes of illustration the incident power is along the positive z-axis.
The scattering effectiveness of this cavity is measured by the differential cross-section which is essentially the time average of the fraction of incident power scattered into a particular direction. For incident power associated with a displacement field \[u(x, y, z) = a_1 e^{-i\omega t} + b_1 e^{-i\omega t} \] the differential cross-section is found to be
\[\frac{dP(\omega)}{d\Omega} = \frac{\alpha(\lambda + 2\mu)}{4\pi\omega} \left(a_1^2 + b_1^2 \right)^2 \] where \(\alpha \) and \(\beta \) are the wavenumbers of the longitudinal and transverse waves made with \(a_1 \) and \(b_1 \), the corresponding vector polarization amplitudes, and \(\beta^2 = \alpha \) and \(\beta^2 = \beta \) the incident wavenumbers. The differential cross-section is found to be
\[\frac{dP(\omega)}{d\Omega} = \frac{\alpha(\lambda + 2\mu)}{4\pi\omega} \left(a_1^2 + b_1^2 \right)^2 \] with \(\lambda \) and \(\mu \) the Lamé parameters of the medium hosting the cavity. The unit vector in the scattered (observation) direction is \(\hat{r} \), and the incident wavevectors are \(\hat{a} \) and \(\hat{b} \) the corresponding vector polarization amplitudes, and \(\hat{a} = \hat{a}_1 \) and \(\hat{b} = \hat{b}_1 \) the incident wavenumbers.

A specific choice of these fields will produce the exact \(f_1(k) \). Our approximation is based on substituting known fields for \(\hat{a}_1 \) and \(\hat{b}_1 \), and as choices for these fields, we consider first a static problem of a cavity embedded in a medium that has a uniform stress \(\sigma_{ij} \) as \(R \to \infty \). The resulting strain field can be written as
\[\epsilon_{ij} = \epsilon_{ij}^0 + \int_R \psi_k \frac{\psi_j}{k} dV_k \] where \(\epsilon_{ij}^0 \) is the strain field associated with \(\sigma_{ij}^0 \) in the defect-free medium, \(\epsilon_{ij}^0 \) is the static Green's function, and \(\epsilon_{ij}^0 \) is a fictitious field defined in the cavity. For ellipsoidal cavities \(\epsilon_{ij}^0 \) was calculated by Eshelby. It is exactly this static field used in approximate solution. Returning now to the scattering problem, we note that for an incident wave of the form
\[u(x, y, z) = u(x, y, z) \] the associated strain field is
\[\epsilon_{ij}^0 = \left(u_{ij}^0 + u_{ij}^0 \right)/2 \] where
\[u_{ij}^0 = \left(u_{ij}^0 + u_{ij}^0 \right)/2 \] is a uniform (constant) strain. For an ellipsoid, Eq. (5) becomes
\[\frac{dP(\omega)}{d\Omega} = \frac{\alpha(\lambda + 2\mu)}{4\pi\omega} \left(a_1^2 + b_1^2 \right)^2 \] with \(\lambda \) and \(\mu \) the Lamé parameters of the medium. The scattered amplitudes are related to a quantity called the f-vector
\[A_1 = \hat{r} \hat{f}_j f_1(\omega) \] and
\[B_1 = (\delta_{ij} - \hat{r}_i \hat{r}_j) f_1(\omega) \] where summation over repeated indices is implied (as throughout the rest of the paper), \(\hat{r} \) is the unit vector in the scattered (observation) direction, and \(\alpha = \hat{a} \) and \(\beta = \hat{b} \). For a void the explicit form of the f-vector is
\[f_1(k) = \frac{k^2}{4\pi\omega^2} \left[\int_R dv \int_R e^{-i(k + \epsilon_1) \cdot r} \epsilon_{ij} \right] \] where \(\psi_k \) is a static, uniform strain, the tensor \(\epsilon_{ij} \) (associated with the corresponding static problem) is defined. When \(f_1^Q\) is used in Eq. (4), the approximation
\[f_1^Q = f_1 \frac{\epsilon_{ij}^Q}{\epsilon_{ij}^0} \] can be shown to produce the scattered amplitudes exactly to the leading order in \(\omega \) (which is \(\omega^2 \)). Equation (10) is called the quasi-static approximation; it gives the Rayleigh limit to the scattering.
More explicitly, if a and b are along the x- and y- directions, we find

$$y_{3311} = y_{3322} = \frac{4\pi a^3}{3} \frac{2(1-\nu)k_1}{E(\kappa)(1-2\nu)}$$ \hspace{1cm} (13a)

$$y_{3333} = \frac{1-\nu}{\nu} y_{3311}$$ \hspace{1cm} (13b)

$$y_{2323} = \frac{2\pi a^3 k_1^2}{3} \left[\frac{E(\kappa)}{1-\nu} - \frac{v_k^2[F(\kappa)-E(\kappa)]}{\kappa^2(1-\nu)} \right]^{-1}$$ \hspace{1cm} (13c)

$$y_{1313} = \frac{2\pi a^3 k_1^2}{3} \left[\frac{E(\kappa)}{1-\nu} + \frac{v_k^2[F(\kappa)-E(\kappa)]}{\kappa^2(1-\nu)} \right]^{-1}$$ \hspace{1cm} (13d)

where ν is Poisson’s ratio $[\nu=A/2(\lambda+\mu)]$ and $F(\kappa)$ and $E(\kappa)$ are complete elliptic integrals of the first and second kind with $\kappa^2 = 1 - \nu^2$ and $\kappa^2 = 1 - k^2$. The corresponding expressions for a circular crack of radius a are

$$y_{3311} = y_{3322} = \frac{16\pi a^3}{3} \frac{v(1-\nu)}{1-2\nu}$$ \hspace{1cm} (14a)

$$y_{3333} = \frac{(1-\nu)}{\nu} y_{3311}$$ \hspace{1cm} (14b)

$$y_{2323} = y_{1313} = \frac{8\pi a^3}{3} \frac{(1-\nu)}{2(1-\nu)}$$ \hspace{1cm} (14c)

For both elliptical and circular cracks

$y_{ijk} = y_{ijkl} = y_{ijkl}$. Terms that cannot be obtained from (13) by these interchanges of indices are zero. We note that y_{ijkl}, and hence the scattered fields, are proportional to $4\pi a^3/3$, the volume of the smallest sphere that can encircle the crack independent of b. We note that

$$y_{3311}/y_{1313} + y_{3311}/y_{2323} = \frac{2(2-\nu)}{(1-2\nu)}$$ \hspace{1cm} (15)

and hence that only two of the y_{ijkl} are independent.

RESULTS

In this section we address the problem of flaw characterization in two stages. First, several features are found that distinguish cracks from volume defects, including one valid for arbitrary-shaped (not necessarily planar) cracks. Second, for the special case of elliptical cracks, we discuss procedures for determining crack orientation, size and shape. The applicability of these procedures to realistic non-destructive testing situations is also assessed.

Crack Identification - In the quasi-static limit, the f-vector for scattering from a cavity has form

$$f_1 = VP_1 + Q_{ij} \hat{\phi}_j$$ \hspace{1cm} (16)

where

$$P = -k^2/4\pi$$ \hspace{1cm} (17a)

and

$$Q_{ij} = \frac{-ik^3}{4\pi \rho_u} C_{ijkl} \int \frac{d\xi}{k^2(\rho_u)}$$ \hspace{1cm} (17b)

Alternately, Q_{ij} can be obtained using the surface integral formulation of the problem. With a crack regarded as the limiting case of the volume $V \rightarrow 0$,

$$\epsilon_1 = n_{ij} \hat{\phi}_j$$

with

$$Q_{ij} = \lim_{V \rightarrow 0} Q_{ij}$$

But as seen from (17a) the tensor Q_{ij}, and hence Q_{ij}, depends only on the incident field and not on the scattered direction $\hat{\phi}$. Thus, from (4a) the magnitude of the longitudinal field is

$$A_{ij} f_{ij} = f_{ij} \Phi = Q^{*}_{ij} \hat{\phi}_j$$

which is invariant under the replacement of $\hat{\phi}$ by $-\hat{\phi}$. Physically, for any incident direction this means the scattering in all diametrically opposite directions is identical (Fig. 2). This general result is valid only for cracks since the first term in (16) is nonzero for all cavities (and more generally for all inclusions). Consequently, if the measured scattered fields are equal at all diametrically opposite points, the defect must be a crack.

A similar analysis can be made for the magnitude of the transverse scattered fields with the identical conclusion.

Fig. 2. An invariance property of Rayleigh scattering from cracks. For an incident direction $\hat{\theta}$ the scattering in the direction $-\hat{\theta}$ is equal to the scattering in the direction $\hat{\theta}$.

Considering the special case of elliptical cracks, we can find other scattering signatures of cracks. Below we give for an incident longitudinal plane wave the Rayleigh limit scattered amplitudes and explicitly illustrate these signatures. In our equations, $Y^{(2)} = y_{3311}$, $Y^{(1)} = y_{1313}$ and $\gamma^{(2)} = y_{2323}$; the incident direction $\hat{\theta}$ is characterized by the angles θ_0 and ϕ_0; and the scattered direction $\hat{\phi}$ by θ and ϕ. All angles are defined in a coordinate system fixed by the principal axes of the crack and by $\hat{\theta}$, and the semi-major axis a and semi-minor axis b are in the x- and y- directions while $\hat{\theta}$ is in the z-direction (Fig. 3).
Fig. 3. The coordinate system defining the incident angles \(\theta_0 \) and \(\phi_0 \) and the scattered angles \(\theta \) and \(\phi \) relative to the crack orientation.

For a longitudinal wave incident in an arbitrary direction,

\[
\mathbf{u}^0 = \cos \phi_0 \sin \theta_0 \mathbf{\hat{x}} + \sin \phi_0 \sin \theta_0 \mathbf{\hat{y}} + \cos \theta_0 \mathbf{\hat{z}}
\]

and

\[
\mathbf{u}^0 = \mathbf{\bar{u}}^0,
\]

the scattered longitudinal (L) and transverse (T) displacement fields are

\[
A_1 = \frac{\rho v^2}{4\pi(1-v)} \gamma(0) \left[1 + \frac{(1-2v)}{v} \cos^2 \theta \right] \times \left[1 + \frac{(1-2v)}{v} \cos^2 \phi \right] + \frac{\rho v^2}{2v} \left[\gamma(1) \cos \phi \cos \phi_0 + \gamma(2) \sin \phi \sin \phi_0 \right] + \sin 2\theta_0 \cos 2\phi_0 \left[\gamma(1) \cos \phi_0 \cos \phi + \gamma(2) \sin \phi_0 \sin \phi \right] - \frac{\rho v^2}{2v} \sin 2\theta_0 \cos 2\phi_0 \left[\gamma(1) \sin \phi_0 \cos \phi - \gamma(2) \cos \phi_0 \sin \phi \right]
\]

where \(\mathbf{\hat{x}} \) and \(\mathbf{\hat{y}} \) are unit vectors in the \(\theta \) and \(\phi \) directions.

By inspecting these equations, we found 3 additional crack identifiers: One, if both the incident and scattered directions are anywhere in the crack plane (\(\theta = \theta_0 = 90^\circ \)), then the magnitudes of the scattered fields, and hence the cross-sections, are constants:

\[
A = \frac{\rho v^2}{4\pi(1-v)} \gamma(0) / 4\pi(1-v)
\]

\[
B = 0
\]

Thus, the plane of the crack is a "plane of constant scattering". Furthermore, the existence of such a plane is a special property of elliptical cracks and is useful not only to distinguish these from volume defects, but also to determine the crack plane orientation, \(\mathbf{n} \). (See below.)

Two, for normal incidence and for incidence along the crack edge (\(\theta_0 = 0^\circ \) and \(90^\circ \)), the angular distribution of scattered L waves (and similarly for scattered T waves) is identical and also independent of \(\theta_0 \) and \(\phi_0 \), that is,

\[
A = 1 + \frac{(1-2v)}{v} \cos^2 \theta
\]

\[
B = |\sin 2\theta|
\]

Thus, as seen from (20), the scattering for normal incidence is twofold symmetric about \(\theta = 90^\circ \) (i.e. the crack plane). This feature is also absent in the scattering from volume defects. [From (4) and (12) it can be demonstrated that the \(\rho \) contribution gives rise to an additional \(\cos \theta \) dependence for L waves and a \(\sin \theta \) dependence for T waves.]

Thus, to leading order in \(\omega \), the scattered power has a higher symmetry than the scatterer; furthermore, there are simple, measurable, qualitative features of the scattering that not only distinguish an elliptical crack from volume defects, but also determine the crack plane orientation.

Crack Characterization - Maintaining our specialization to elliptical cracks, we now discuss features that characterize the crack. This characterization consists of the determination of the orientation, size and shape.

Our first task is to determine the orientation of the crack plane. For elliptical cracks this task can be accomplished concurrently with the task of differentiating cracks from ellipsoidal defects. For example, the plane of constant scattering is coincident with the crack plane.

The more difficult task is to determine the orientation within this plane of the crack major axis. Knowing the crack plane allows us to specify \(\theta_0 \) and \(\theta_0 \) in (16). To complete the specification of the crack orientation one must utilize the \(\phi \)-dependence of the scattering. By inspecting (18) one sees that the relative magnitude of the \(\phi \)-dependent terms is maximized when \(\theta = \theta_0 = 45^\circ \). In that case, for a pulse-echo experiment (\(\phi = \phi_0 \)), the scattered longitudinal amplitude is, for example,

\[
A_{1,1} = p + q \cos^2 \phi
\]

where

\[
p = \frac{\rho v^2}{16\pi(1-v)} \left[2v \gamma(0) + (1 - 2v) \gamma(2) \right]
\]

\[
q = \frac{\rho v^2}{16\pi(1-v)} \left[(1-2v) \gamma(1) - \gamma(2) \right]
\]

Since \(p, q > 0 \), the maxima of the backscattered power (at \(\phi = 0^\circ \) or \(180^\circ \)) locate the direction of the major axis. However the \(\theta \) dependence is proportional to \(\gamma(1)-\gamma(2) \), which (Fig. 4) may be too small to measure for all \(b/a \) ratios. Consequently, the orientation of the major axis may be hard to determine experimentally. Physically, in the Rayleigh limit, scattering by an elliptical crack is similar to scattering by a circular crack.
This discussion bears directly on the last task of characterizing the crack, the determination of a and b/a. In principle, knowledge of any two of \(y(0), y(1), y(2) \) is sufficient to uniquely determine \(a \) and \(b/a \). However, Figs. 4 and 5 reveal that \(y(1) - y(2) \) and \(p/(p+q) \), the ratio of the minimum to maximum value of \((2la) \), depend very weakly on \(b/a \); as such, experimental determination of \(b/a \) may be difficult. For example, from Fig. 5, the value of \(b/a \) would be determined by exact measurement \((p)/(p+q) \). Then, with Fig. 4, knowledge of \(y(0) \) determines \(a \). However, from Fig. 5 one sees that the variation from \(b/a = 0 \) (needle-shaped crack) to \(b/a = 1 \) (circular crack) results at best in a 10% change in \((p)/(p+q) \). Thus, it seems that the Rayleigh limit cannot be used effectively to determine \(b/a \) (or the orientation of the crack major axis). One can, though, estimate the crack length, \(a \), provided some assumption concerning the range of \(b/a \) values is taken. If \(x_0 < b/a < 1 \) and a specific value \(y(0) \) is obtained from measurement then

\[
\left[y(0)/y(1) \right]^{1/3} < a < \left[y(0)/y(2) (x_0) \right]^{1/3}
\]

(22)

where \(y(0)(x) = y(0)(b/a) \).

A similar analysis with the same conclusions can be made for incident shear waves. We discuss this elsewhere.13

CONCLUSIONS

In contrast to long wavelength scattering of acoustic or quantum mechanical waves, which are isotropic with little information about the scatterer, the scattering of elastic waves, in addition to an isotropic component, possesses dipolar and quadrupolar components with important information about the scatterer.1 We examined the angular content for the scattering from cracks and, after examining this content, identified features that may be useful in crack characterization experiments.

With great generality, we found that for any angle of incidence the Rayleigh scattering from any crack, in contrast to the scattering from volume defects, is identical in all diametrically opposite directions. This feature identifies the defect as a crack, but does not characterize the crack as to its size, shape and orientation. Additional identifying features, as well as a characterizing procedure, were specified for an elliptical crack. In this case, we found that it is in principle possible to characterize the crack uniquely. In practice, because of certain shape insensitive parameters, we believe the crack may appear circular and possibly the best one can do is to measure the crack plane orientation and bounds for the crack length \(a \).

Our analysis, demonstrating the complete and unique characterization of an elliptical crack, should be contrasted to the results predicted by the scattering inversion procedure suggested by Kohn and Rice.4 They claim that the eigenvectors of a matrix \(P \), which for cracks equals

\[
P_{mn} = -\frac{1}{3} \epsilon_{ijk} \gamma_{k\lambda mn},
\]

defines what may be called the principal axes of a
defect, i.e., the defect orientation. From (16),

\[D = K_0 (0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (1-v)/v \end{pmatrix} \]

with the bulk modulus \(K = \lambda + \frac{2}{3} \mu \). However, since the eigenvalues are doubly degenerate, the complete specification of the orientation, according to the claim of Kohn and Rice, would be precluded. Consequently, their inversion procedure is incomplete.

ACKNOWLEDGMENTS

This research was sponsored by the center for Advanced NDE, operated by the Science Center, Rock­well International, for the Defense Advanced Research Projects and the Air Force Materials Laboratory under Contract F33615-74-C-5180; also supported by the U.S. Department of Energy.

REFERENCES