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ABSTRACT 

Solution of the inversion problem in quantitative eddy current NDE requires an adequate mathematical 
model to describe the complicated interactions of currents, fields and flaws in materials. Existing 
analytical techniques are not capable of accommodating materials with nonlinear magnetic characteristics 
or awkward flaw shapes. 

This paper describes a finite element computation of the complex impedance of an eddy current sensor 
in axisymmetric testing configurations, some with defects and gives the corresponding magnetic flux distri­
butions. The authors suggest that, because finite element analysis techniques are not limited by material 
nonlinearities and complex defect geometries, they can be applied to the development of computer based 
defect characterization schemes for realistic eddy current NDE applications. 

INTRODUCTION 

Nondestructive testing and evaluation play an 
important role in the design, fabrication and day­
to-day maintenance of military, aerospace, electric 
power and transportation industry equipment. The 
economic impact of component ra~lure in these 
industries is well documented - and, together with 
the obvious human and environmental implications, 
provides a major impetus to improve all aspects of 
the nondestructive testing art. Progress has been 
made toward this end through such efforts as the 
DARPA/AFML program5. Although the work has con­
centrated primarily on ultrasonic techniques, much 
of the research philosophy developed for the pro6 gram with regard to t9e study of basic phenomena , 
development of models , signature identification 
by signal processing8 and the subsequent accept/ 
reject decision founded on a knowledge of fracture 
mechanics and related failure probabilities could 
and should be applied to other nondestructive 
testing techniques. The cornerstone of such an 
approach is the development of an adequate mathe­
matical model for the study of basic field/defect 
interactions. Such a model is needed in order to 
develop a defect characterization scheme and to 
identify suitable parameters for signal processing. 

In eddy current methods of nondestructive 
testing, alternating current excitation is used to 
induce secondary currents and fields in the speci­
men undergoing inspection. Defects in the specimen 
cause changes in both induced current and fields, 
resulting in measurable impedance variations in a 
nearby search coil. Despite recent developments 
in automatic defect characterization associated 
with eddy current and 1eakage flux methods of non­
destructive testing9-l , the subject of electro­
magnetic methods of nondestructively testing ferro­
magnetic materials is characterized largely by 
empirical knowledge. Where closed form mathematical 
solutions do exist, describing electromagnetic 
field/defect interactions, the underlying assump­
tions of the theories tend to invalidate any 
realistic application of the results to the problem 
of defect characterization. 
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The problem of modeling electromagnetic field/ 
defect interactions in materials is complicated by 
any nonlinear magnetization characteristic of the 
material and awkward defect boundaries. For this 
reason, much of the existing literature associated 
with eddy current phenomena is concerned with making 
simplifying assumptions so that, for a given eddy 
current situation, closed-form expressions can be 
obtained for the normal.ized impedance of the search 
coil. Scottl2 gives an overview of the numerous 
mathematical approaches which lead to closed-form 
solutions of eddy current problems and references 
13 through 26 describe these various classical 
approaches in more detail. Despite the apparent 
plethora of analysis techni~ues including wave 
theory, integral, network and finite difference 
formulations, the basic problem of developing a 
defect characterization scheme for realistic defects 
in nonlinear ferromagnetic materials still remains. 

An approach which does show promise of provid­
ing the basis of defect characterization schemes 
for all electromagnetic NOT methods (active, resid­
ual and eddy current forms) 21 is the finite element 
analysis technique which was originally developed 
for the stud~ of magnetic fields in electrical 
machinery28- o. Lord aod Hwang have subsequently 
applied this technique31-33 to the development of 
a defect characterization scheme for active leakage 
field methods of nondestructive testing. More 
recently, and again, buil~~na2on work relating to 
electromagnetic machinery - , it has been shown 
that eddy current NDT probl~~s4gre tractable using 
the finite element approach -

The major purposes of this paper are to give a 
tutorial overview of the method and to extend the 
initial studies to an important class of eddy cur­
rent NOT situations, namely those having axial 
symmetry. 

THEORETICAL CONSIDERATIONS 

The Diffusion ·Eguation and Energy Functional - Con­
sider a simply connected region R, the cross-section 
of an axisymmetric geometry, bounded by the curve C 



in the r,z plane as shown in Fig. l. 

z 

Fig. 1. Axisymmetric Geometry Showing the Direc-
tion of Js and A. 

The sinusoidal source current density Js(amps/m2) 
and hence the complex magnetic vector potential A 
{Webers/m) have components only along the positive 
9 direction. That is, both Js and A are a function 
of rand z only. This· situat10n can be modeled

7
by 

a Poisson type of nonlinear diffusion equation3 

(l) 

where~ nonlinear magnetic permeability (Henry/m) 

w angular frequency (rad/sec) 

a = electrical conductivity (mhos/m) 

j = ;:f , complex operator. 

The eddy current density Je(amps/m2) is given by 

(2) 

From the principles of variational calculus, 
it can be shown that a correct solution of Eq. l 
can be obtained by minimizing the nonlinear energy 
functional 

F = Jjj[j l BdB + l jwaiAI
2 

- J ·A]dv (3) 
v ~ 2 s 

where B = flux density (Webers/m24 over the entire 
region of interest. 

Finite Element Formulation - The very basis of 
finite element analysis is to search for a function 
A such that the energy functional F of Eq. 3 is 
minimized, instead of solving Eq. l directly. 

The region R of Fig. l which contains the area 
of interest (including current sources, ferromag­
netic material, etc.) must be of finite size if 
Eq. 3 is to be solved numerically. The boundary of 
the region is chosen such that the magnetic vector 
potential A is either zero along the boundary or 
the gradient of A is negligibly small along the 
boundary compared to the value elsewhere in the 
region. Discretization

3
2f this region is achieved 

as follows (see Fig. 2) : 

The chosen solution region (finite element 
region) is subdivided into triangles. The 
number, shape and size of these triangles 
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are not restricted in any way. 

Interfaces between different materials must 
be formed by the sides of the triangles. 

In order to ensure a reasonable accuracy of 
the numerical solution, the triangles must 
be smaller in a region where the gradient 
of the magnetic flux density is larger. 

All the elements have the same unit depth 
of one radian in the 9 direction. 

The current density, permeability and flux 
density are assumed to be constant within 
each triangular element. 

Along the boundary C, the magnetic vector 
potential is zero. 

Fig. 2. Discretization of the Finite Element 
Region R, and a Typical Axisymmetric 
Finite Element tmn. 

In order to set up the local element matrix equa­
tion the variation of function A within each element 
is assumed to be linear and dependent only on the 
values of A at the vertices. For example, the 
value of A

0
(r,z) at the point P(r,z) within the 

element tmn in Fig. 3 is given by 

AP{r,z) = -2 2: (a
1
.+bir+ciz)Ai (4) 

to i=t,m,n 

where 

(5) 

(6) 

ct rm-rn (7) 

to is the area of the element tmn, and At, Am and Am 
are the values of A at the vertices t, m ana n. 
Extending this approximation to all the elements 
in the region R, we obtain an approximate represen­
tation for A throughout the region. All the vertex 
(nodal) values of A in the region are varied simul­
taneously until the energy functional F given in 
Eq. 3 reaches a minimum, resulting in the final 
solution for A at all the nodes in the region. 



A( r, z) 

P(r ,z) 

Fig. 3. Linear Approximation of Function A within 
a Triangular Finite Element, tmn. 

Minimization of the energy functional F is 
achieved by setting the first derivative of F with 
respect to every vertex value equal to zero. That 
is 

k=l,2, ... N (B) 

where N = total number of nodes in the region. 
Instead of performing the minimization node by node 
in sequence,for convenience, we perform it element 
by element. Substituting A (r,z) from Eq. 4 in 
Eq. 3 and performing the fo~lowing three operations 
simultaneously, i.e. 

i=t,m,n (9) 

we obtain three eguations in three unknown vector 
potential values (At' A and A ) for the element 
tmn. m n 

After some algebra these equations are 

represented in the final matrix form as37 

( l 0) 

where [S]e is a 3 x 3 'element matrix' formed from 
the r and z values of the three vertices t, m and 
n and the area fi in an element tmn, ~ value asso­
ciated with the element tmn, and the centroid of 
the element rc from the z axis, 

r ~b~b' t+ ctct) (b~b~ + ctcm) 
= _c_ (b' b' + c c ) (b' b' + c c ) 

4fi~ m t m t m m m m 
(b'b' + c c ) (b'b' + c c ) n t n t n m n m 

(b~b~ + ctcn] 
(b'b' + c c ) m n m n 

(b'b' + c c ) n n n n 

b' b + ]A_ 
k k 3r c k = t,m,n 

[R] is a 3 x 3 'element matrix' formed from the 
angDlar frequency w, electrical conductivity a 
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associated with the element tmn and t~e centroid 
rc and area fi of the element tmn, 

_ wcrfirc 
--12-

{Q} is a 3 x 1 'element_matrix' formed from the 
comSlex current density Js within an element tmn, 

ll; l - Jsfirc 
--3-

{A} is a 3 x l 'element matrix' formed from the 
unkMown complex vector potentials At' A and A of 
an element tmn, m n 

{~) 
This is the finite element representation of the 
energy functional of Eq. ·3 for a typical triangle 
tmn, in the region R. This approach now has to be 
extended to cover all the elements of region R to 
form the global matrix equation. 

Element matrix equations corresponding to 
Eq. 10 can be formed separately for all the elements 
in the finite element region. These individual 
element equations are then combined into a single 
'global matrix' equation 

[G] {A} = {Q} (ll) 

where [G] is a (NxN) banded symmetric complex 
matrix, and {Q} and {A} are (Nxl) complex column 
matrices. The expqnded form of equation ll is 

~ Semibandwidth 
14-~ 

Al Ql 

A2 Q2 

A3 Q3 

(12) 

0 
A QN 

NxN Nxl Nxl 



A_ny of the direct so4_~tion techniques (e.g. 
Gaussian elimination ) utilizing the banded sym­
metry and sparse nature of the global matrix, [G], 
can be applied to solve for the unknown vector 
potentials, A. Because of symmetry, it is suffi­
cient to store only the elements in the semiband­
width of the matrix [G], and this brings down the 
computer storage requirement considerably. 

Calculation of Flux Densita-- The relationship 
between the magnet1c flux ensity B and the magnet­
ic vector potential A is 

B = 'ilxA (13) 

Remembering that A has a component only along the 
positive e direction, we obtain 

B = _ aA 
r az 

B =~+EA z r ar 

B ,; 0 
e 

(14) 

(15) 

(16) 

~ithin eac~0finite element a linear variation of A 
1s assumed . 

A = a 1 + a 2r + a 3z 

Therefore, 

Br = -a3 

B = ~ + a z r 2 

(17) 

(18) 

(19) 

Taking A as the value of A at the centroid r 
(Fig. 4)cof a triangular element, without los~ of 
accuracy, we obtain 

z 

Ac 
-+a 
r c 2 

n 

r =-
3

1 
( r +r +r ) 

c 2 m n 

A =-
3

1 (A +A +A ) 
c 2 m n 

m 

0,0~------------------------~r~ 

Fig. 4. Approximate values of rc and Ac in an 
Element 2mn. 

(20) 

The expressions for a 2 and a can be obtained by 
simultaneously solving the tKree equations written 
for A , 2 and A using Eq. 17. A and r can be 
calcufate~ eithe~ as indicated in FTg. 4, g5 by 
using area coordinates for better accuracy . That 
is, 

(21) 
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and 

A = [j_ {A2+A2+A2+(A +A +A ) 2 }]~ (22) 
c 12 2 m n 2 ·m n 

Hence the final expression for the flux densities 
are 

Bz = Ac + ~21 A (z -z )+A (z -z )+A (z -z )] rc ~ t m n m n l n 2 m 

Resultant flux density 

B = (B2 + B2 )~ r z 

(24) 

(25) 

The simplified flow chart of Fig. 5 outlines 
the computational steps involved in the finite 
element analysis of eddy current problems. 

Fi.nitc. Element Hcsh Data 
Nate["ials: Reluctivitics -'l.nd Conductivities 

Current Density and Frequency 
Boundary Forming Not.lcs 

Transfer the elements of 'Local 
Matrices' to their corresponding 

locations in the 'Global Matrices' 

No 

Incorporate Boundary Conditions in the 
final 'Global Matrices' 

Solve directly for A values by Gaussian 
elimination and back substitution 

Fig. 5. Simplified Flow Chart for the Finite 
Element Analysis of Eddy Current Problems. 

Normalized Complex Impedance (Zn) of a Coil - The 
complex impedance of a circular coil can be calcu­
lated from the complex magnetic vector potential 
values. That is 

z = jw211N "" A (26) - _I_s_ 4.. rc c ~ 

where N is the turn density (turns/m2) in the coil, 
I is the source current (amps), r is tne centroi~ 
d~l distance os a triangular element from the z axis 
(meters), Ac is the complex magnetic vector potential 



at the centroid of an element, and the summation is 
taken over all the elements forming the coil cross­
section in the finite element region. 

The normalized impedance, Z , useful for the 
complex impedance plane plot, isnobtained by divid­
ing Z with the reactance of the coil, wl, where L 
is the self inductance of the coil in ai~. That i~, 

(27) 

RESULTS 

Initial emphasis in this work was placed on 
studying those eddy current geometries for which 
analytical solutions existed. Reference 44 
describes the application of finite element analy­
sis techniques to the problem of predicting the 
current density in a metal slab lying under a con­
ductor carrying an alternating current. As the 
results agreed well with the analytical predictions 
of Stolll~ the finite element studies were then 
extended to the axisymmetric geometries described 
in this paper. For the first three cases results 
are compared with those predicted by an ORNL pro­
gramZ6 based on integral equation concepts. Values 
of conductivity chosen for the aluminum cgpper and 
iron used in these studies were 28.6 x 10 , 
57.7 x 106 and 10 x 106 mhos/m respectively. Rela­
tive permeability values were 1.0 for aluminum and 
copper, and 100 for iron. 

Case 1: - coil in air. Figures 6a), b) and c) 
show the geometry, f1nite element mesh and pre­
dicted flux distribution. The corresponding 
inductance values obtained using finite element 
(FE) and ORNL code are given in Table 1. 

z 

a) 

z 

b) 
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Fig. 6. Circular eddy current coil: 
b) finite element mesh, c) 
flux distribution. 

Case FE Code 

l. (Fig. 6). 
3.216 X l0-4H Self Inductance 

2. (Fig. 7). 
Normalized 0.101 + j0.723 
Impedance 

3. (Fig. 8). 
Normalized 0.109 + j0.649 
Impedance 

a) geometry, 
predicted 

ORNL Code 

3.217 X l0-4H 

0.101 + j0.737 

0.108 + j0.647 

Table 1. Estimated inductance values for cases 
1,2and3. 

Case 2: - coil on a copper slab. Figure 7 shows 
the predicted flux distribution for a circular coil 
supplied at 1250Hz lying on a copper slab. The 
corresponding normalized impedance values are given 
in Table 1. 

Fig. 7. Flux distribution for a coil on a copper 
slab at 1250Hz. 

Case 3: - coil encircling a two conductor rod. 
Figure 8 shows the finite element predicted flux 
distribution for this case with the corresponding 
normalized impedance values given in Table 1 at 



1250 Hz. for an excitation frequency of 500Hz and the 

Fig. 8. Flux distribution for coil encircling a 
two-conductor rod. 

Case 4: - coil centered over a flat-bottomed hole 
in a copter slab. Figures 9a) and b) show th~ 
f1n1te e ement predictions of flux lines for exci­
tation frequencies of 500 and 5,000Hz respectively, 
the depth of penetration effects are clearly visible. 

Fig. 9. Flux distribution at a) 500Hz and b) 
5,000Hz for a coil lying on a copper slab 
with a flat bottomed hole. 

30 

"shielding" effect of the higher permeability iron 
tube is clearly visible. 

Fig. 10. Flux distribution around a coil in a) a 
copper tube and b) an iron tube at 500Hz. 

Case 6: - coil encirclin an iron rod. Figures lla) 
and b show the effect of an axisymmetric slot on 
the flux distribution in an iron rod encircled by a 
coil carrying current at 500Hz. 

~ 
i 
I 
I 

--+ ---- t--
! 
I 

~~ ~ a) 



Fig. 11. Flux distribution around a coil encirling 
a) a plane iron rod and b) an iron rod 
with an axisymmetric defect. 

DISCUSSION 

Initial finite element studies of eddy current 
geometries appear promising. Where corresponding 
analytical and/or other numerical models exist, 
good agreement has been obtained with the finite 
element predictions. This observation is not 
surprising in that such methods have previously 
been used with success in the study of eddy current 
phenomena in electrical machinery. Indeed, if 
recent progress in the general area of finite ele­
ment analysis is any yardstick, it should be 
reasonably safe to predict the solution of nonlinea~ 
3-dimensional, moving probe eddy current problems 
within the foreseeable future. 
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