Investigation of microscale particles using a microfluidic flow cytometer equipped with a sensitive photodetector

Thumbnail Image
Date
2013-01-01
Authors
Asrar, Pouya
Major Professor
Advisor
Nastaran Hashemi
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

We have developed a sensitive optofluidic cytometer to investigate microscale particles. The flow cytometer is comprised of a microchannel that has a set of chevron-shaped grooves. Conducted by the chevrons, two sheath streams focus the core stream in the center of the microchannel three-dimensionally. The optofluidic cytometer is equipped with the new generation of photodetectors, multi-pixel photon counter (MPPC). MPPCs are highly sensitive photodetectors with extremely small footprint that deliver high gain values of up to 107. We have employed a MPPC as the photodetector unit in our cytometer. Two different sizes of high intensity fluorescent microspheres are run through the cytometer. The signal outputs from both particles are collected using a data acquisition unit for further statistical analysis. The emission light produced by samples is received by a multimode fiber that is located in 135-degree with respect to the excitation fiber. The effect of particle size on the range of collected signal output is investigated by observing the forward scattering emission from samples. Statistical analysis of collected signal proved that for 10.2 µm particles, the peak height, width, and consequently area are larger than 3.2 µm particles. Finally using a 35 mW diode laser three types of algae are characterized in the flow cytometer based on their sizes. COMSOL software was employed to simulate the concentration distribution along the microchannel.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2013