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ABSTRACT

RNA-protein interactions play important roles imflamental cellular processes
involved in human diseases, viral replication aatedse against pathogens in plants,
animals and microbes. However, the detailed ret¢imgnmechanisms underlying these
interactions are poorly understood. To gain a bettelerstanding of the molecular
recognition code for RNA-protein interactions, tHissertation has three related goals: i) to
develop methods for predicting RNA-protein interactpartners; ii) to develop an approach
for predicting interfacial residues in both the RI8Ad protein components of RNA-protein
complexes; and iii) to develop computational taoisl resources for investigating RNA-
protein interactions.

First, we present machine learning classifierpfedicting RNA-protein interaction
partners. The classifiers use the amino acid coimpo®f proteins and the ribonucleotide
composition of RNAs as input to predict whetheineeg RNA-protein pair interacts. We
show that protein and RNA sequences alone (i.¢hdrabsence of any structural
information) contain enough signal to allow rel@lprediction of interaction partners.

Second, we present RPISeq, a webserver that pgateinteraction probabilities of
input RNA-protein pairs, using the above-mentionethine learning classifiers. A
comprehensive database of RNA-protein interactiB®intDB, is integrated with the
webserver to allow users to search for homologootems and their known interacting RNA
partners.

Finally, we perform an analysis of contiguous ifdgeial amino acids and

ribonucleotides in RNA-protein complexes for whgthuctures are known. We generate a
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dataset of bipartite RNA-protein motifs that canused to predict interfacial residues in both
the RNA and protein sequences of a given RNA-pngpair simultaneously. We show that
taking binding partner information into accountdedo higher precision in the prediction of
RNA-binding residues in proteins.

Taken together, these studies have increased derstanding of how RNA and

proteins interact.



CHAPTER 1. GENERAL INTRODUCTION

RNAs interact with proteins to regulate numeroukita processes, ranging from
DNA replication and transcription, to alternati@ising and translation (Hogaet al, 2008,
Licatalosiet al, 2010). RNA-protein interactions (RPIs) also playportant roles in human
health and diseases, viral replication and pathogsistance in plants (Kiet al., 2009 Sola
et al, 2011, Barkan, 2009). Still, a lot of questionsahéo be addressed related to the
specificity and the mechanism of the underlyingiattions between a protein and an RNA
molecule.

The motivating questions behind this dissertati@n ‘dow does a protein bind
certain specific RNAs but not all RNAs? How do RNiAteract with specific proteins? What
is responsible for this specificity?” Many compiudagl studies on RNA-protein interactions
have focused on small interfacial regions of RNAtpin complexes to understand
specificity (Putoret al, 2012). We refer to the problem of identifyingarfacial residues as
“interface prediction problem”. When interfaces predicted on the protein (or RNA)
molecule without considering interacting RNA (oof&in) information, it is considered
“non-partner-specific” prediction. These methodsagls predict the same set of interfacial
residues even if the protein binds to different RINAsing different subsets of those residues.
When a method predicts interface residues on orleamle by considering the interacting
partner molecule, it is termed “partner-specifiaterface prediction. These prediction
problems are different from “partner prediction lgem”, which is a prediction of RNA
interaction partner(s) for a known RNA binding @iat or protein binding partner(s) for an

RNA. The starting datasets required for these tgbe®mputational methods are obtained



from the Protein Data Bank (PDB) (Bermetral, 2000). Because experimental
determination of RNA-protein complexes is difficaltd time consuming, less than 2% of
structures in the PDB are RNA-protein complexesth&ttime this dissertation was initiated,
no study had been published addressing the RNAejor&partner prediction problem” or
“partner specific interface prediction problem”. €@\he past 3 years, five papers have been
published that describe computational methodsedipt whether a given RNA and protein
pair interacts (Pancaldi & Bahler, 2011, Belluetal, 2011, Muppiralat al, 2011, Wang

et al, 2013, Luet al, 2013). Also, high throughput experiments haveubey identify and
characterize pairs of RNAs and proteins that pagdie in RPIsn vivo (Keeneet al, 2006,
Licatalosiet al, 2008, Rayet al, 2009). This indicates the growing need for corapanal
methods to predict RNA-protein interactions onrgdascale. These methods are reviewed in

detail in Chapter 2 of this dissertation.

Overall Goals

The overall research goal of this dissertatiom isrtderstand the determinants of
molecular recognition in RNA-protein interactionsdao identify features that can be used to
accurately predict interaction partners and intealaresidues. My strategy has been to
exploit available data from structure databaseh sasadhe PDB and sequence databases such
as NPInter (Wt al, 2006) to develop computational tools for investiigg and predicting
RNA-protein interactions. Towards this goal, thidwing specific aims have been

accomplished:



1. Develop a method to predict partners in RNA-protetaractions and demonstrate
the application of this method to predict interawti in RNA-protein interaction
networks (Chapter 3)

2. Develop RPISeq, a web server for predicting RNAtgirointeraction partners
(Chapter 4)

3. Develop RPINtDB, a comprehensive database of krfeWA-protein interactions, to
be used in conjunction with RP1Seq (Chapter 4)

4. Analyze RNA-protein sequence motifs and developéfrbased method to predict

interfacial residues in RNA-protein complexes (Cleaj)

In addition to the above specific aims, this ditg@n also includes

5. Aninvited (peer-reviewed) summary of computaticioalls developed to date to
investigate RNA-protein interactions (Chapter 2)

6. Back-end code for the RPISeq webserver and RPIiiAppendix 1)

7. A manuscript describing recent updates to the PREDBrotein-RNA Interface

Database (Lewist al, 2011) (Appendix 2)

Dissertation Organization

Chapter 1is a brief overview of the work described in tHissertation.

Chapter 2 is a review paper published in the Journal of Cat@pScience and
Systems Biology in 2013, entitle€bmputational tools for investigating RNA-protein
interaction partner& This invited peer-reviewed article discussesest#-the-art methods
available to predict partner specific RNA-protaiteractions. It also summarizes the existing

webservers and databases devoted to RNA-protaragttons. | conceived the study,



prepared the initial draft of the manuscript andipigated in revisions and editing.
Benjamin Lewis contributed to the discussion antireyl Drena Dobbs contributed to the
study and revised the manuscript.

Chapter 3is a research paper published in BMC Bioinfornsaiic2011, entitled
“Predicting RNA-protein interactions using only sexce informatioh This paper describes
a new sequence based method to predict partneifisg&ls using machine learning
classifiers. | conceived the study, created thas#ds, carried out the experiments, and
prepared the initial draft of the manuscript. Dr&abbs and Vasant Honavar contributed to
the experimental design, supervised the work, aitéckthe manuscript.

Chapter 4 is a paper to be submitted to Bioinformatics, teadi“RPISEQ &

RPINtDB: Tools for predicting RNA-protein interamts”. It describes RPIntDB, a database
of RNA-protein interactions, and RPISeq, a webseiwepredicting partner specific RNA-
protein interactions. RPIntDB is a comprehensiviéection of known RPIs extracted from
the PDB, NPInter database and published high thmoutgexperiments. A protein sequence
of interest can be BLASTed against RPIntDB to idgmtomologous proteins and their
known interacting RNA partners. Given a proteinusawe(s) and RNA sequence(s), the
RPISeq server predicts the probability of intexactetween the input protein(s) and input
RNA(s). | developed the webserver, implementedititabase and prepared the manuscript.
Drena Dobbs revised the manuscript.

Chapter 5 describes a novel method for predicting RNA bigdiesidues in proteins
and protein binding ribonucleotides in RNAs. Thisriwentitled, ‘A motif-based method for
predicting interfacial residues in both the RNA gdtein components of protein-RNA

complexesis a manuscript in preparation. This study uéBznterfaces (i.e. derived from the



PRIDB) to create bipartite interfacial motifs. Giva pair of protein and RNA sequences,
these motifs are then used as a guide to searchtéoface residues. Benjamin Lewis and |
are co-first authors and contributed equally todkperimental design and manuscript
preparation. Benjamin Lewis generated the motits @ntributed to data analysis. |
conceived the algorithm and implemented the prexfiahethod. Drena Dobbs contributed to
the experimental design, supervised the work aitddthe manuscript.

Chapter 6 summarizes the general conclusions of the digsmrtats potential
applications and impacts. Future directions tomxthis work are presented briefly.

Appendix 1is a detailed description of the implementationhef RPISeq webserver.
It includes pseudocode for the algorithm and orzmtion of the server. The schema for
RPIntDB and documentation useful for future updatesalso recorded.

Appendix 2 is a database paper under revision for submigsidournal of
Databases. It describes recent updates of theiRMA Interface Database (PRIDB)
developed by Benjamin Lewis. | contributed to thepgaration of the manuscript, testing the

functionality of the database manuscript revisiand editing.

References

Barkan A: Genome-wide analysis of RNA-protein iatgions in plants. Methods
Mol Biol 2009, 553:13-37.

Bellucci M, Agostini F, Masin M, Tartaglia GG: Pieting protein associations with
long noncoding RNAs. Nature Methods 2011, 8:444:-445

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat, Weissig H, Shindyalov IN,
Bourne PE: The Protein Data Bank. Nucleic Acids R&30, 28:235-42.

Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Bréin Diverse RNA-binding
proteins interact with functionally related setdRMAs, suggesting an extensive regulatory
system. PLoS Biol 2008, 6:e255.



Keene JD, Komisarow JM, Friedersdorf MB: RIP-Chige isolation and
identification of MRNAs, microRNAs and protein coomgnts of ribonucleoprotein
complexes from cell extracts. Nature protoc 200802-7.

Kim MY, Hur J, Jeong S: Emerging roles of RNA andARbinding protein network
in cancer cells. BMB Rep 2009, 42:125-130.

Lewis BA, Walia RR, Terribilini M, Ferguson J, Zlge€, Honavar V, Dobbs D:
PRIDB: a Protein-RNA Interface Datababkicleic Acids Re2011, 39:D277-82.

Licatalosi DD, Darnell RB: RNA processing and igulation: global insights into
biological networks. Nat Rev Genet 2010, 11:75-87.

Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, C®W, Clark TA, Schweitzer,
Blume JE, Wang X, Darnell JC, Darnell RB: HITS-CLjields genome-wide insights into
brain alternative RNA processing. Nature 2008, 468:9.

Lu Q, Ren S, Lu M, Zhang Y, Zhu D, Zhang X, Li To@putational prediction of
associations between long non-coding RNAs and pat8MC Genomics 2013, 14:651.

Muppirala UK, Honavar V, Dobbs D: Predicting RNAegein interactions using only
sequence informatioBMC Bioinformatic2011, 12:489.

Pancaldi Vv, Bahler J: In silico characterization gmediction of global protein-
MRNA interactions in yeast. Nucleic Acids Res 20111.

Puton T, Kozlowski L, Tuszynska |, Rother K, BujkiidM: Computational methods
for prediction of protein-RNA interactions. J Striiol 2012, 179(3):261-8.

Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry 8ukder S, Blencowe BJ,
Morris Q, Hughes TR:. Rapid and systematic analysthe RNA recognition specificities of
RNA-binding proteins. Nature Biotechnol 2009, 27.68.

Sola I, Mateos-Gomez PA, Almazan F, Zuiiga S, Emsd.: RNA-RNA and RNA-
protein interactions in coronavirus replication arahscription. RNA Biol 2011, 8:237-248.

Wang Y, Chen X, Liu Z-P, Huang Q, Wang Y, Xu D, BgaxS, Chen R, Chen L.
De novo prediction of RNA-protein interactions fr@@quence information. Mol BioSyst
2013, 9:133-42.

Wu T, Wang J, Liu C, Zhang Y, Shi B, Zhu X, ZhangSkogerbg G, chen L, Lu H,
Zhao Y, Chen R: NPInter: the noncoding RNAs andeinorelated biomacromolecules
interaction database. Nucleic Acids Res 2006, 384



CHAPTER 2. COMPUTATIONAL TOOLS FOR

INVESTIGATING RNA-PROTEIN INTERACTION

PARTNERS

Modified from a paper published in Journal of Cotgpiscience and Systems
Biology, 2013, 6:182-187

Usha K Muppirala, Benjamin A Lewis and Drena Dobbs

Abstract

RNA-protein interactions are important in a wideiety of cellular and
developmental processes. Recently, high-througéypgriments have begun to provide
valuable information about RNA partners and binditgs for many RNA-binding proteins
(RBPs), but these experiments are expensive amddimsuming. Thus, computational
methods for predicting RNA-protein interactions (Ran be valuable tools for identifying
potential interaction partners of a given protaifRdA, and for identifying likely interfacial
residues in RNA-protein complexes. This review Besion the “partner prediction” problem
and summarizes available computational methods,seekers, and databases that are
devoted to it. New computational tools for addnegshe related “interface prediction”
problem are also discussed. Together, these cotgnabmethods for investigating RNA-
protein interactions provide the basis for newtsgies for integrating RNA-protein
interactions into existing genetic and developmiengigulatory networks, an important goal

of future research.



Introduction

In the post-transcriptional regulation of gene esgion, RNA-binding proteins
(RBPs) interact with target mMRNAs and non-codingdNncRNAS) to regulate a variety of
cellular processes including RNA splicing, RNA tsport and stability, and translation
(Kishoreet al.,2010, Licataloset al.,2010, Singtet al.,20012). RNA-protein interactions
(RPIs) also play important roles in human healtth diseases (Khalét al.,2011) as well as
in viral replication (Liet al.,2011) and pathogen resistance in plants (Zveseah,2012).
Even though the human genome contains more thak®0n or predicted RBPs (Ray
al., 2013, coolet al.,2011), the structures of RNA-protein complexes tedroles of RPIs
in post-transcriptional regulatory networks (Kishet al.,2010, Mittalet al.,2009) are
much less well characterized than the DNA-proteimplexes involved in transcriptional
regulation. For example, on July 18, 2013, thadtndData Bank (PDB) (Bermaat al.,
2000) contained only 1,593 structures of RNA-prommplexes, compared with more than
2,800 structures of DNA-protein complexes. Recebwever, new experimental
approaches have been used to interrogate RNA-prodenplexes and interaction networks.
For example, high-throughput in vivo and in vitsgeriments have been used to identify
cellular RNA molecules that bind a protein of im&r (Ankoet al.,2012, Koniget al., Riley
et al.,2013). Global proteomic approaches have beeneappiiidentify the entire mRNA-
bound proteome (Baltt al.,2012).

The available structures of RNA-protein complexethe PDB, databases of protein
and RNA motifs, and a growing knowledge base raggrBNA and protein interactions in
the literature have been exploited to develop cdatfmnal methods for addressing several

guestions about RNA-protein interactions:



Does this protein bind RNA?

Which RNA molecules are bound by this protein?

Which RNA sequence or structural motifs are rexoed by this protein?

. Which amino acid residues are directly involvedinding RNA?

In this review, we focus on existing computatiomedthods and web servers for
predicting RNA-protein interaction partners. Weoatsscuss recently developed “partner-
aware” approaches for predicting RNA-protein irdeds, which use information about both
the protein and RNA molecules to identify bindirgions in either one or both sequences.

Finally, available curated databases of RNA-proteieractions are briefly reviewed.

RNA-Protein Partner Prediction Methods and Web Serers

Table 2.1 summarizes the characteristics of conipna methods available for

predicting the interaction probability of a giveNR-protein pair. A general description of

the machine learning methods and performance meatrscussed below is provided in

Supplementary Text S1.

Table 2.1 Computational methods for predicting RNAprotein interaction partners

Method Dataset Features Description
Pancaldi and 5,166 mRNA-protein Predicted protein Protein and RNA sequences encoded using > 100
Béahler interacting pairs from  secondary structure, features are used to train SVM and RF classifiers
immunopurification localization, protein
experiments physical properties,
gene physical
properties, UTR
properties, genetic
interactions
Bellucci et al. 410 interacting pairs Physicochemical Propensities are calculated for each amino acid and
(catRAPID) from 858 RNA- properties including ribonucleotide to generate an interaction profile

protein complexes
from PDB

secondary structure
propensities,
hydrogen-bonding
propensities, and van
der Waals interaction
propensities

(http://service.tartaglialab.com/page/catrapid_group)
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Table 2.1 (continued)

Method Dataset Features Description
Muppirala et 2,241 interacting Sequence Protein and RNA sequences encoded sequence-
al. pairs from 943 RNA- composition of composition-based features are used to train SVM
(RPISeq) protein complexes proteins, represented  and RF classifiers
from PRIDB as conjoint triads, (http://pridb.gdcb.iastate.edu/RP1Seq)
(RPI2241) and RNAs,
represented as
tetrads
Wang et al. RPI 2241 generated Sequence Input to NB and ENB classifiers is a combination of
by Muppirala et al. & composition of protein triads and RNA triad features similar to
367 interacting pairs protein and RNA those used in RPISeq

from NPInter

To the best of our knowledge, the first methoddommputationally predicting
MRNA-protein interactions was proposed by Pancaidi Bahler in 2011 (Pancaldi and
Bahler, 2011) . Their study took advantage of askttof 5,166 mMRNA-RBP interactions
detected using RNA immunopurification experimergg@rmed in S. cerevisiae (Hogah
al., 2008). Two machine learning methods, Support fedachines (SVMs) and Random
Forest (RF) classifiers (see Supplementary Text\wde used to predict the likelihood of
interaction between an RBP and its target mRNAgput for the classifiers included more
than 100 characteristic gene and protein featbxgsyo motifs or experimentally measured
binding specificities were used. Feature classesded gene ontology terms, predicted
secondary structures, mRNA properties, and gemggcactions. Overall, the RF classifier
performed slightly better than SVM. In 2-fold crosdidation experiments, an average
prediction accuracy of 69% was obtained, with agersensitivity of 70% and specificity of
69%. When the authors tried to predict the mRNAets of individual RBPs that were not
included in the training set, the performance efclassifiers was highly variable across the
RBPs. On average, the classifiers performed withcuracy of only 50%. Using the pre-
rRNA processing factor Nop15p as an example, tiieoasi demonstrated that their method

performs better when the training set includegast some of the known mRNA targets for a
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given RBP. The authors acknowledge that the maiitdiion of this method is that it
requires many features of both the RNA and prateter consideration. Although some of
these features are easy to compute, some of thgnmobde available for other RNA-protein
pairs of interest, and they are not trivial to abtxperimentally. Hence, the method may
have limited applicability.

Also in 2011, the catRAPID method for predictingdonon-coding RNA (IncRNA)
partners of RBPs was published (Belluetal.,2011). This study used a dataset consisting
of 858 RNA-protein complexes extracted from the RBBrmanet al.,2000). Values for
several physicochemical properties, including sdaonstructure propensities, hydrogen
bonding propensities and van der Waals interagiropensities, were combined to calculate
an interaction profile for each IncRNA and proteartich was then used to calculate
interaction propensities for every potential IncRiNAtein pair. The interaction propensity
of a RNA-protein pair in the training dataset wegarted using the discriminative power
(DP), which ranges between 0 and 1, with highefidence interactions having higher DP
values. The reported discriminative power on a remtundant training set was 78%. The
performance of catRAPID was also evaluated on iaddent test sets composed of positive
interactions from the NPInter database of ncRNAgarminteractions (Wt al.,2006), for
which 89% prediction accuracy was reported (Bellet@l.,2011). However, when tested
on 12,000 randomly generated RNA associations pribkeins extracted from a non-Nucleic
Acid-binding dataset (Stawiskt al.,2003), ~30% of these were predicted to interadt wit
RNA (bellucciet al.,2011). In a recent study (cirillet al.,2013), the authors used
catRAPID to investigate ribonucleoprotein interans linked to neurodegenerative diseases.

An advantage of the catRAPID algorithm is thasithe only published method that
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simultaneously predicts the binding sites in bodARand protein sequences (Cirik al.,
2013). The catRAPID web server is available at

http://service.tartaglialab.com/page/catrapid_group

A purely sequence-based approach to predict RPPIES&t), was proposed by our
group, also in 2011 (Muppirakt al.,2011). RPISeq is a family of machine learning
classifiers (RF and SVM) designed to predict tr@bpbility of interaction between a given
protein and RNA. In this method, RNA sequencesamded as normalized frequencies of
RNA tetrads, and protein sequences are encoded asianjoint triad feature (CTF) method
originally proposed by Shen et al. (2007). In esegeRPISeq exploits the amino acid
composition of protein sequences and ribonucleattheposition of RNA sequences to
predict the probability that a given pair (one piotand one RNA) will interact. On a non-
redundant dataset of 2241 interacting pairs (RPIR2deated from known RNA-protein
complexes in PRIDB (Lewist al.,2011), the RPISeq-RF classifier performed slight#jter
(average accuracy 89.6%), compared to the RPIS&d-8assifier (average accuracy
87.1%). On an independent test set composed ofpwdyive examples generated from
NPInter, the RP1Seq-RF classifier correctly prestic80.2% of interactions, while RPISeq-
SVM predicted 66.3% of interactions. RPISeq’s perfance on an independent negative
dataset was not reported. RP1Seq’s performanceg ssiquence information alone, was
comparable to that of Pancaldi and Bahler's metiaddch uses extensive feature
information. An independent experimental validatadrRPISeq predictions was published in
a recent study (Het al.,2013), in which RPISeq was used to predict thatitic-UBC1
RNA interacts with PRC2 (Polycomb Repressive Comgle This prediction was

experimentally validated using RNA immunoprecipdat which confirmed that linc-UBC1
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physically interacts with two core protein compotsenf the PRC2 complex, EZH2 and

SUZ12. RPISeq is available as a web servattpt//pridb.gdcb.iastate.edu/RPI1Seq

Another sequence-based method, similar to RPISag proposed by Wang et al. in
2012 (Wanget al.,2013). This study also used the RP12241 dataseppMalaet al.,2011)
as one of the training datasets, a variation ottmoint triad feature representation as
protein descriptors and frequencies of RNA triaslRAIA descriptors. The feature vector
also included all combinations of protein and RN&sctiptors. Only those features that were
enriched in the training dataset were used as iigpiNaive Bayes (NB) and Extended Naive
Bayes (ENB) classifiers (see Supplementary Text lBlgross-validation experiments using
the RPI2241 dataset, the ENB classifier had a tidietter accuracy than the NB classifier
(74% vs. 73%). The classifiers were also evaluatelinown interactions from an
independent dataset extracted from NPInter, wittparted predictive power of 79% (using
the ENB classifier trained on RP12241). In anotsgueriment, the authors used a dataset of
30 ncRNAs and 759 proteins to predict RNA-protaiteiactions in C. elegans. They used an
NcRNA pull-down experiment to validate these predits for one selected ncRNA, sbRNA
CeN72. The experiments identified 51 proteins thigract with CeN72. However, the ENB
classifier predicted a total of 207 CeN72 interagfproteins (see Supplemental Table S5 in
(Wanget al.,2013)); of these, only 10 were true positive pcedns. Although the authors
claim that their method outperforms other existimgthods, no evidence was presented to
support this claim. In fact, as summarized in Sep@ntary Table 2.S1, the published results
demonstrate that RP1Seq-RF (Muppirataal.,2011) outperforms the ENB classifier (Wang

et al.,2013).
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In summary, except for Pancaldi and Bahler’s apghrpall of the methods discussed
above use sequence information as the primary iopuiake predictions. This is a distinct
advantage when making predictions on proteins oA&fdr which little information is
available, other than the sequence. Also, everhoageexcept that of Pancaldi and Bahler
uses training data partly derived from three-dinmamed structures of complexes in the PDB.
Because the number of experimentally determinedtstres of RNA-protein complexes is
relatively small and the PDB does not yet encomplgmssible types of RNA-protein
interactions, one should use caution when intermyehese predictions. A weakness of all of
these predictors is the use of a negative datasetrgted from random pairings of RNAs and
proteins (in which many false negative examples bmincluded). Using real negative
examples based on experimental interaction datdddamidesirable and would increase
confidence in the predictions.

In conclusion, researchers interested in predidiRds are advised to compare results
of more than one method. At present, only two efrtiethods described above are available

as web-based servers (see Table 2.1).

Web servers for partner prediction

The catRAPID servelhftp://service.tartaglialab.com/page/catrapid _gjalgveloped

by Bellucci et al. (2011) provides an estimatehef interaction propensities of given RNA
and protein sequences. The output is displayechagatamap of interaction scores, with x
and y axes representing the RNA and protein se@senespectively. The overall interaction
score and the corresponding discriminative powexdjgtive measure for binding) are also

reported. This server provides another module d¢&@i#RAPID strength that predicts the
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“strength” of a RNA-protein pair by comparing itgeraction propensity with the interaction
propensities of a reference set of 100 proteinsI&@IRNAS.

The RPISeq web servdrt{p://pridb.gdcb.iastate.edu/RPI§@&mplements the

RP1Seq method developed by Muppirala et al. (20RP)Seq takes as input a pair of RNA
and protein sequences and outputs the interactadrapility computed by SVM and RF
classifiers trained using the RP12241 datasetsdt accepts batch submission of multiple
proteins or RNAs. Currently, users can input a mmaxn of 100 sequences. This limitation
can be overcome by using a stand-alone versiamegbtogram, which is freely available

from the authors.

RNA-Protein Interface Prediction Methods

So far, we have discussed computational methodsréaficting the likelihood that a
given RNA-protein pair will interact. Understandihgw individual RNAs and proteins
specifically recognize each other is an importapieat of this problem, and requires
characterization of interfacial contacts at thedws and atomic level. As a step toward
deciphering the rules that govern recognition dpetyi in RNA-protein interfaces, many
computational methods (both sequence-based ardwsttbased) have been developed for
predicting RNA-binding residues in proteins. Threeent reviews have summarized and
compared these methods (Ciritbal.,2013, Putoret al.,2012, Walieet al.,2012), which
we will not reconsider here. With one exceptiohpablished methods for predicting RNA-
binding residues in a protein of interest do nkiéetanto account the specific RNA partner
with which it interacts (i.e., they are or “partregnostic” or “non-partner specific’ methods.

Here, we will focus instead on methods that arettga-aware” or “partner-specific.” For
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protein-protein complexes, the partner-specificrapph has been shown to provide
improved interface predictions over non-partneicgmemethods in several studies (e.g.,
(Ahmad and Mizuguch011,Xueet al.,2011)).

The first partner-specific RNA-binding residue patidn method was proposed by
the Han group (Shrestled al., 2008, Choi and Han, 2011). In this work, both emo@and
RNA features were used as input to an SVM clasdiigredict RNA-binding residues.
Length and amino acid composition of the proteiong with features such as solvent
accessible surface area and interaction propeofség amino acid triplet were used to
encode the input protein. The input RNA was encated 4 element vector representing the
sum of the normalized position of each ribonuct®in the RNA sequence. In 5-fold cross-
validation experiments on a dataset of 3,149 RN&tgin interacting pairs, prediction
accuracy was 84%, with a correlation coefficien€{®©.41. On an independent dataset
comprising 267 RPIs, accuracy was 90%, with CC.24 §Agostiniet al.,2013).

Comparison with non-partner specific methods orstimae datasets showed that the
performance of the partner-specific approach wassor in terms of CC, and comparable in
terms of overall accuracy. It seems likely thahgsnore descriptive features to encode the
sequence of the RNA partner could provide imprgvedormance.

A second partner-specific prediction method fonitfging binding sites in both the
protein and RNA partners of an interacting pacatRAPID (Bellucciet al.,2011). As
discussed above, catRAPID predicts interactiomeastbased on the interaction propensities
of individual residues (Bellucat al.,2011). In several cases, catRAPID binding site
predictions correlate well with experimental resyirillo et al.,2013, Agostinit al.,

2013), but the performance of this method has aenhlevaluated systematically on
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benchmark datasets. Therefore, it is difficult @onenent on the relative accuracy of this

method in predicting interfacial residues in eitR&A or protein sequences.

Sequence and structural motifs in RNA-protein intefaces

Structural analyses of RNA-protein complexes ampisace data from high-
throughput RNA-protein interaction experiments hkageto a rapid expansion in the
collections of structural and sequence motifs dased with interfaces in RNA-protein
complexes. Databases of protein motifs (e.g., BrdSigristet al.,2010)) and RNA motifs
(e.g., FR3D (Sarvest al.,2008)) are valuable resources for investigatinggeition
principles in RNA-protein interactions. In additibmtheir utility for identifying binding sites
in novel proteins and RNAs, motifs can provide gingiinto the biological functions of
protein or RNA families.

Well-characterized RNA-binding motifs in proteimgiude the RNA recognition
motif (RRM), the K-homology (KH) domain, the PunoilFBF (PUF) domain, and the
double-stranded RNA-binding domain (dsRBD) (regergliewed in Chen and Varani
2013). The number of characterized RNA structuraliisiis smaller, but includes several
well-studied examples, such as pseudoknots, tetas| and kink turns (Fritsch and
Westhof, 2010). RNA sequence motifs that serveasgnition sites for RBPs have been
identified using in vitro selection methods suctS8&4 EX (Tuerk and Gold, 1990) and
RNAcompete (Ragt al.,2009). High-throughput approaches for capturimgivo RNA-
protein complexes by Tap-tagging and immunopreatijoih (Hogaret al.,2008) or UV
crosslinking and immunoprecipitation of RNA-proteomplexes combined with microarray

or RNA-Seq analysis (Ankeét al.,2012, Koniget al.,2011) have resulted in a dramatic
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increase in our understanding of recognition matifsellular RNAs. Experimental data
from such studies have been analyzed to determempgesice and structural features of
recognition motifs for RBPs using methods such H#&&bntext (Kazaret al.,2010). These
data are now available in resources such as théBRRtabase (Coodt al.,2011) (see
below), and in RBPMotif (Kazaet al.,2013), a web server for identifying sequence and

structure preferences of RBPs.

RNA-Protein Interaction Databases

At present, there is no single comprehensive databARNA-protein interactions.
Widely used databases that contain RNA-protein dex@s and/or interactions as part of a
broader collection include structure databases) asdhe PDB (Bermagt al.,2000) and
NDB (Bermanet al.,1992), as well as interaction databases, suchcaHD (Starket al.,
2011) and IntAct (Kerrieet al.,2012). The Protein Data Bank (PDB) is a comprefens
database of experimentally determined three-dino@asistructures of macromolecules,
including both proteins and nucleic acids. The MiecAcid Database (NDB) contains
experimental 3D structural information for nuclamds, and includes both DNA-protein and
RNA-protein complexes. BioGRID is a curated databafsprotein interactions and genetic
interactions from more than 45 model organisms. [hb&ct database primarily contains
protein-protein interactions, although it also udgs some protein-small molecule, protein-
nucleic acid and protein-gene locus interactions.

In the remainder of this section, several databtsggocus on RNA-protein

interactions are discussed. Table 2.2 provides UBLthese.
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The first three databases discussed below, PRI{Bujet al.,2012), NPInter (Wu

et al.,2006) and RPIntDBh{tp://pridb.gdcb.iastate.edu/RPISeare collections of RNA-

protein interaction partners. They focus on binatgractions between proteins and RNAs
and do not provide residue or atomic level infolioratbout interfaces. Most interactions in
these databases are extracted from results ofHoughput, or more recently, high-
throughput experiments in published literature.

In contrast, PRIDBH(ttp://pridb.gdcb.iastate.ejl(lL ewiset al.,2011) is a collection

of interfaces in RNA-protein complexes, derivedhirexperimentally determined structures
deposited in the PDB. Databases similar to PRIQB niot focused exclusively on RNA-

protein complexes, include ProNIft{p://www.abren.net/pronjt{Kumaret al.,2006),

which contains experimentally determined thermodyiganteraction data for protein-

nucleic acid interactions; BIPAttp://mordred.bioc.cam.ac.uk/bip@_eeet al.,2009), the

Biological Interaction Database for Protein-Nuclaidd; and NPIDB

(http://npidb.belozersky.msuy(Kirsanovet al.,2013), which also includes structural
information for both DNA-protein and RNA-proteinroplexes, as well as several online
tools for analysis.

The final database included in this section, RDRRByet al.,2013, Coolet al.,
2011), is a recently expanded collection of RNAdang proteins and their experimentally
determined target RNAs. This database providesnmdtion about both RNA-protein
interaction partners and their interfaces, witlh@t on the RNA recognition preferences of

individual RPBs.
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Table 2.2 Databases of RNA-protein interactions anihterfaces.

Database URL Description
BioGRID http://thebiogrid.org/ Manually curated protein and genetic interactions for

major model organisms

IntAct http://www.ebi.ac.uk/intact/ Manually curated molecular interactions, including
comprehensive data about their source experiments

NDB http://ndbserver.rutgers.edu/ Nucleic acid and DNA/RNA-protein complex structures,
including derived data for nucleic acids

NPInter http://www.panrna.org/NPInter/index.php Functional interactions of ncRNAs and protein-related
biomolecules, classified into categories based on
interaction type

PDB http://www.rcsb.org/pdb/home/home.do Experimentally determined three-dimensional structures

PRD http://pri.hgc.jp/ RPIs from 22 species, focusing on gene-level
information

PRIDB http://pridb.gdcb.iastate.edu/ Interface information from RNA-protein complex
structures in browsable and machine-readable format

RBPDB http://rbpdb.ccbr.utoronto.ca/ Experimental data on binding preferences and
specificities of RBPs

RPIntDB http://pridb.gdcb.iastate.edu/RPISeq/ RPIs from databases and high-throughput experiments
in literature

PRD

PRD (ttp://pri.hgc.jp) (Fujimori et al.,2012) is the most comprehensive database of

RNA-protein interactions currently available. Iintains more than 10,000 documented
physical interactions between RNA and proteingdiudes interactions from BioGRID,
IntAct and the PDB;j (Kinjeet al.,2012). The PRD interaction data model is basethen
HUPO POSI-MI model and the database can be seaudieg 11 different fields (e.g., Gene
ID, experiment, biological function) or using t&dywords. Each interaction record contains
information about both the protein and RNA involydte experimental method used to
detect the interaction, and references. Biolodizattions and information regarding binding

sites are also provided, when available. Searalitsesan be exported in PSI-MI XML files.
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NPInter

NPInter @ttp://www.panrna.org/NPInter/index.phfWWu et al.,2006) was the first

database developed to collect experimentally detearfunctional interactions between
ncRNAs and protein-related biomolecules (PRMs), pmoteins, mMRNAs or genomic DNAs.
Interactions involving tRNAs and rRNAs are not umbkd. In 2006, NPInter contained 700
interactions from six model organisms. NPInter \@r2.0, available in 2013, now contains
more than 200,000 interactions from 18 differemgfamisms. It classifies the interactions into
eight categories: ‘ncRNA binds protein’, ‘ncRNAgdates mRNA expression’, ‘'nCRNA
indirectly regulates a gene activity’, ‘ncCRNA exgsen is regulated by protein’, ‘ncRNA
affects protein activity’, ‘ncRNA activity is afféed by protein’, ‘genetic interaction between
NcRNA gene and protein gene’ and ‘other linkagesers can search NPInter by molecule
type (NncCRNA, miRNA, protein) by ID (NONCODE, miRBgdJniProt, PubMed), or using
text queries. NPInter provides a BLAST option t@iuprotein, ncRNA, and miRNA

sequences. Multiple download options are also plexti

RPIntDB

The RNA-Protein Interaction DataBase (RPIntDB),

(http://pridb.gdcb.iastate.edu/RPISegjas developed as a component of the RPISeq server

(Muppiralaet al.,2011). The database includes experimentally vidtlR NA-protein
interactions from several sources. It includes 13 j8roteins and 2,408 RNAs extracted from
known RNA-protein complexes in PRIDB (as of Mar@12), 242 ncRNAs and 282

proteins from ncRNA-protein interactions in the Nfer database and 13,243 RPIs from

high-throughput experiments published in literat{iteganet al.,2008). Users can query
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RPIntDB to determine whether there is experimeenalence that a specific protein of
interest is involved in an RPI. In the current vemsof RPINtDB, the service runs a BLAST
search against the database and returns proteiersess that fall within a user-specified e-
value threshold, along with their experimentalljidated interacting RNA partners. The

corresponding source(s) of the interaction arelaygal in the output results.

PRIDB

The Protein-RNA Interface Database (PRIDB}f://pridb.gdcb.iastate.eyl(l ewis

et al.,2011) is a comprehensive database of RNA-proteerfaces extracted from RNA-
protein complexes in the PDB. It contains 16,35figins and 3,398 RNAs from 1,484
RNA-protein complexes (as of July 1 2013). PRIDBptays interfacial residues on protein
and RNA sequences. It also displays known RNA-Imgdiomains or motifs from ProSite
(Sigristet al.,2010) and RNA structural motifs from FR3D (Sareeal.,2008). Atomic-

level contact details for interfaces in the RNA{eio complexes can be visualized using an
integrated JMol applet or downloaded in a machesdable format. PRIDB also provides

several reduced-redundancy benchmark datasets AfliRidling protein chains.

RBPDB

The RNA-Binding Protein Database (RBPDBjtp://rbpdb.ccbr.utoronto.yéRayet

al., 2013, Coolet al.,2011) is a highly valuable compendium of experitaby determined
RNA-binding specificities for RBPs from human, meuB. melanogaster and C. elegans.
RBPDB contains target site preferences for more 8@ RBPs, extracted from almost

1,500 RNA-binding experiments. RBPDB catalogues di@m 14 types of RNA-binding
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experiments and includes binding site sequenceslégomore than 70 RBPs. The database

can be searched by RBD, experiment type, specttgame name.

Future Directions

The emergence of high-throughput experimental aggres for interrogating RNA-
protein interactions is generating a vast amoumiesf data, which will undoubtedly lead to
improved computational methods for analyzing aretifmting RNA-protein interfaces and
interaction partners.

Despite recent advances in both experimental amgpuatational methodology,
identifying the interaction partner(s) for a specgrotein or RNA sequence is still an
immensely challenging task. For example, even thahg compendium of RNA-binding
proteins and their targets published by the HugimesMorris laboratories includes RBP
recognition sites for more than 200 different RBRayet al.,2013), this impressive number
corresponds to less than half of the known RBPsd#ttin the human genome (caalal.,
2011). An analysis of the mRNA-bound proteome btimman kidney cell line identified
~800 bound proteins (Bal&t al.,2012), nearly one third of which were not previgus
annotated as RNA-binding. With such large numb&RRBs, each of which binds multiple
MRNA and/or ncRNA targets, another difficult tasil Wwe to identify which combinations
of RBPs determine specific post-transcriptionad$atf individual mMRNAs and ncRNAs.
Progress in this direction was demonstrated inaatjative proteomic analysis in S.
cerevisiae, which identified sets of RBPs that ksimdultaneously to common RNA targets

(Klasset al.,2013). Computational tools for constructing ameirogating RNA-protein
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interaction networks and for integrating RPIs iakisting gene and protein interaction
networks will be needed.

Obtaining high-resolution experimental structureRNA-protein complexes is
notoriously difficult and time consuming (Ke andu@ima, 2004, Scott and Hennig, 2008).
Thus, improved methods for computational modeliniglve important for gaining insight
into molecular details of interfaces in recalcitrBNA-protein complexes. Algorithms for
RNA-protein docking (not discussed in this reviealjhough still somewhat naive relative to
those for small molecule and protein docking, dreaaly benefitting from the increased
availability of RNA-containing complex structuréBuszynska and Bujnicki, 2011, &t al.,
2012, Huanget al.,2013).

Finally, another important future direction in rasgh on RNA-protein interactions is
the rational design of RNA-protein interfaces. Exegired DNA binding proteins, such as
ZFNs and TALENS, have become enormously powerfiktéor genome engineering and
are poised to enter clinical settings (Joung amiti&a 2013, Reyoat al.,2012, Rahmaet
al., 2011). Likewise, RNA-binding proteins engineereddcognize specific RNA sequences
(Chen and Varani, 2013) could become valuable toolmanipulating post-transcriptional
regulatory networks in the research laboratory, @oténtially, important therapeutic agents

for treating genetic and infectious diseases.
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Supplementary materials

Supplementary Text S1 Machine learning methods and evaluation metrics
discussed in this review.

Machine learning offers one of the most cost-effecapproaches to constructing
predictive models in settings where experimentadijdated training data are available
(Mitchell T, 1997, Machine Learning). This revieacfises on machine learning classifiers
that are designed to predict whether or not a ginpat RNA-protein pair interacts. The
classifiers are trained using experimentally vaédapairs of RNAs and proteins, together
with their interaction “classification,” i.e., int&cting (positive) or non-interacting (negative).
When negative examples are not available, it ismompractice to randomly generate
negative training data. Trained classifiers are@usenake predictions on unknown RNA-
protein pairs. For every instance or subject, thssifier outputs a probability value ranging
from O to 1. Instances above a certain threshgfudally 0.5) are classified as “interacting,”
and instances below the threshold are classifiéd@asinteracting”. Different researchers
have used: i) different datasets for trainingdifjerent types of information about the RNAs
and proteins as input, e.g., primary sequencesustsral features; iii) different encodings
of the input information; and v) different typesmachine learning classifiers. A brief

description of the four types of machine learnitagsifiers discussed in this review follows.

Machine Learning Classifiers

For an in depth treatment, see Mitchell (Mitchelll®97, Machine Learning).
Naive Bayes (NB) classifie(Mitchell T, 1997, Machine Learning) is a probadtilc

classifier based on Bayesian statistics. It makesimplifying assumption that all attributes
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are independent given the class label. EN® classifierused in Wang et al. (Wang et al.,
2013, Molecular BioSystems 9:133-42) is an extansiathe standard NB model, in which
the correlation between features is considered.

Random Forest (RF)(Breiman |, 2001, Machine Learning 45:5-32) is asemble
of classification trees. Each classification tne¢hie ensemble is trained on a subset of
training examples that are randomly sampled froeretfitire training set. At each node, the
best split is chosen from a setrovariables selected at random from the set of input
features. Given a query instance, the majority wbtal the classifiers is returned as the RF
prediction.

Support Vector Machine (SVM) (Vapnik V, 1995, The Nature of Statistical
Learning Theory) classifies data by finding a hypene that maximizes the margin of
separation between two classes. A strength of SiNtsat they can distinguish classes that
are not linearly separable by mapping the inpub @nhigher-dimensional space using a

kernel function.

Performance Evaluation Metrics

The performance of a classifier can be summarizédur output measures.

TP (true positives¥ the number of positive examples correctly presias positives

TN (true negativesy the number of negative examples correctly prediets
negatives

FP (false positives} the number of negative examples incorrectly mtedi as

positives
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FN (false negatives) the number of positive examples incorrectly pcestl as
negatives

Based on these values, commonly calculated perfarenmetrics include sensitivity,
specificity, precision, accuracy, F-measure andetation coefficient. These terms are
described and defined below.

Sensgitivity or recall is a measure of the classifier’s ability to ideppbsitive
examples. It is defined as the fraction of actusifpves that are predicted to be positives.

Specificity relates to the classifier’s ability to identify regtye examples. It is defined
as the fraction of actual negatives that are ptedito be negatives. In the papers discussed
in the review, specificity was calculated as perabove definition. According to Baldi
(Baldi P et al., 2000, Bioinformatics 16:412-428ecificity is alternatively defined as the
probability that a positive prediction is correthis alternate definition is also widely used in
classifier assessments.

Precision is the fraction of predicted positives that aretpositives.

Accuracy is the percentage of the correctly predicted pasiind negative examples.

F-Measureis the harmonic mean of precision and recall.

Matthews Correlation Coefficient (MCC) measures the linear correlation between

the actual and predicted binary classification.

TP

Sensitivity = TP-}-—FN

TN
SPECifiCity = m

TP

P . . -
recision TP + FP
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TP+TN

A —
CCUracy = TP F TN + FP + FN

2 X Precision X Recall
F-Measure =

Precision + Recall

TP XTN —FP XFN

MCC =
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Comparison of RPISeq classifier with Wang et al.’snethod

Supplementary Table 2.S1: Published performance mets for the ENB classifier of Wang et al.
(2013)Molecular BioSystems 9:133 and the RPI1Seq-RF classifier of Muppirala eal. (2011)BMC

Bioinformatics 12:489, on a balanced RP12241 dataset.

Pe;;zrtrr?;nce ENB Classifier Rg ;Sszgi_;F
Accuracy 0.67 0.90
Sensitivity 0.56 0.90
Specificity 0.79 0.89*
Precision 0.73 0.89

MCC 0.36 0.79*

Both the classifiers used a balanced dataset imgju&]241 positive examples and
2,241 negative examples extracted from the RPI2244set. The specific negative examples
used in the two studies may differ. The result®regal were obtained using 10-fold cross

validation experiments. *The specificity and MC@alues for RPISeq were not included in

the cited publication.
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CHAPTER 3. PREDICTING RNA-PROTEIN INTERACTIONS
USING ONLY SEQUENCE INFORMATION

Modified from a paper published in BMC Bioinformegj 2011, 12:489

Usha K Muppirala, Vasant Honavar and Drena Dobbs

Abstract

Background

RNA-protein interactions (RPIs) play important la a wide variety of cellular
processes, ranging from transcriptional and pe@stsicriptional regulation of gene expression
to host defense against pathogens. High throughmériments to identify RNA-protein
interactions are beginning to provide valuable infation about the complexity of RNA-
protein interaction networks, but are expensivetand consuming. Hence, there is a need

for reliable computational methods for predictingARprotein interactions.

Results

We proposdrPI Seq, a family of classifiers for predictin@NA-proteininteractions
using onlyseguence information. Given the sequences of an RNAagprotein as input,
RPIseqpredicts whether or not the RNA-protein pair intéraThe RNA sequence is
encoded as a normalized vector of its ribonucleofidner composition, and the protein
sequence is encoded as a normalized vector ofiiteromposition, based on a 7-letter
reduced alphabet representation. Two varianBRiSecare presentedRP1Seq-SViMwhich

uses a Support Vector Machine (SVM) classifier RRISeq-RFwhich uses a Random
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Forest classifier. On two non-redundant benchmat&skts extracted from the Protein-RNA
Interface Database (PRIDBYPISecachieved an AUC (Area Under the Receiver Operating
Characteristic (ROC) curve) of 0.96 and 0.92. Qniral dataset containing only mRNA-
protein interactions, the performanceRPISeqwvas competitive with that of a published
method that requires information regarding manfedsint features (e.g., mRNA half-life,

GO annotations) of the putative RNA and proteirtrpans. In additionRPISecclassifiers
trained using the PRIDB data correctly predictegirtajority (57-99%) of non-coding RNA-
protein interactions in NPInter-derived networksnfrE. coli, S. cerevisiae, D. melanogaster,

M. musculusandH. sapiens.

Conclusions

Our experiments witRRP1Seqdemonstrate that RNA-protein interactions can be
reliably predicted using only sequence-derivednmiation.RP1Seqoffers an inexpensive
method for computational construction of RNA-prataiteraction networks, and should
provide useful insights into the function of nordocwy RNAs.RPISegs freely available as a

web-based server http://pridb.gdcb.iastate.edu/RPI1Seq/

Background

Most of the essential molecular functions of calis governed by interactions of
proteins with other proteins, nucleic acids andlshgands. Computational studies of
protein interaction data have helped identify prefaotein interaction PPI networks in
various organisms (Lees al, 2011, Wanget al, 2011). Similarly, studies on DNA-protein

interactions have allowed construction of trandaripfactor-gene regulatory networks (Lee
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2002, Martinez-antonio, 2011). In contrast, althoagveral ribonucleoprotein (RNP)
complexes have been extensively characterized {regribosome, the spliceosome), post-
transcriptional regulatory networks that are mestidity RNA-protein interactions (RPIs) are
much less well studied (Kishoet al, 2010, Mittalet al, 2009, Tsvetanovat al, 2010,
Hafneret al, 2010, Hafneet al, 2010). In addition to their roles in controlliggne
expression at the post-transcriptional level, RBd¢gilate numerous fundamental biological
processes, ranging from DNA replication and trapsion, to pathogen resistance, to viral
replication (Hogaret al, 2008, Licataloset al, 2010, Solat al, 2011, Liet al, 2011).
Recently, high-throughput experiments have proviedence for large numbers of RNA
binding proteins in cells, and are beginning toidlg and characterize pairs of RNAs and
proteins that participate in RPIs (Bar@tial, 2008, Barkan, 2009, Charehal, Kaymaket
al., 2010, Kimet al, 2009, Pachecet al, 2010). At present, however, our understanding of
RNA binding proteins lags far behind our knowleaddgeegulatory DNA binding proteins,
such as transcription factors and replication fiscto

Computational studies of RNA-protein interactioas largely focused on the
"interface prediction problem”, i.e., the problefdentifying the amino acid residues in a
protein that are likely to bind to an RNA (Terrihilet al, 2006, Pérez-Caret al, 2010,
Zhouet al, 2009). Only a few studies to date have focusethe "partner prediction
problem”, i.e., identification of specific RNA irm&ction partner(s) for a known RNA
binding protein, or protein binding partner(s) fmn-coding RNAs (ncRNAS). Although
large-scale experimental analyses of RPIs suciNsscBmpete (Raet al, 2009), RIP-Chip
(Keeneet al, 2006), HITS-CLIP (Licataloset al, 2008), PAR-CLIP (Hafnest al, 2010)

are now providing valuable data about networks lARprotein interactions, these
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experiments are expensive and time-consuming. Thess is a compelling need for
computational methods to accurately predict RPistarconstruct RNA-protein interaction
networks. Given the limited number of structuralharacterized RNA-protein complexes
available in the PDB (Bermaet al, 2000) at present (1,092 as of June 13, 2011}jfend
current availability of only one database of ncRN/¢tein interactions (NPInter (Wat al,
2006)), it would be especially valuable to devedeguence-based methods that can be used
to identify potential RNA-protein partners in thesance of experimental structural
information regarding either partner.

Machine learning offers one of the most cost-effecapproaches to constructing
predictive models in settings where experimentadlijdated training data are available. At
present, however, it is unclear whether the aviElakperimental data regarding RNA-
protein interactions are sufficient for succesgftiaining classifiers using machine learning
algorithms. Against this background, this studylesgs machine learning approaches to

train sequence-based classifiers for predictingsRPI

Results

As a first step towards computational constructbRPI1 networks, we focused on
the following question: Given the sequence of &ARbinding protein, can we predict
whether it interacts with a given RNA sequence@dwneloping sequence-based methods to
answer this question, we considered several redaicglternative alphabet representations
of the input protein and RNA sequences. Séieal. (Sheret al, 2007) used a Conjoint Triad
Feature (CTF) representation to successfully pteulatein-protein interactions. The CTF

representation essentially encodes each proteireseq using the normalized 3-gram
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frequency distribution extracted from a 7-lettedueed alphabet representation of the protein
sequence (Sddethodsfor details). A recent study (Shabal, 2009) demonstrated the

utility of the CTF representation for predicting @her a given protein is an RNA binding
protein. Inspired by these studies, we chose todmeach protein sequence using the
normalizedk-gram frequency distributions extracted from thietfer reduced alphabet
representation of the sequence. The choide8fyielded the best results. We also explored
several alternative representations of RNA sequeand settled on encoding each RNA
sequence using normalized 4-gram frequencies eatralrectly from the 4-letter
ribonucleotide alphabet representation of the Redugnce.

Our choice of Random Forest (RF) and Support Vddachine (SVM) classifiers
was motivated by several studies that have suadbBsated them on classification tasks that
are closely related to the RPI prediction (Wahgl, 2010, Hwangpt al, 2011, Chert al,
2005, Liuet al, 2010). To rigorously evaluate the performancthese methods, we
generated two non-redundant benchmark datasetg@2BPhand RP1369, from PRIDB
(Lewiset al, 2011), a comprehensive database of RNA-protaimpbexes extracted from
the PDB (Bermaet al, 2000). Most of the RNA-protein pairs in RPI224irespond to
RPIs involving rRNAs or ribosomal proteins; thetresrrespond to RPIs involving other
NcRNAs or mRNAs. RPI369 is corresponds to RPIsaex#d from non-ribosomal
complexes in RP12241. “Negative” examples of namiacting RNA-protein pairs were
generated by randomly pairing proteins with RNAd arcluding the known interacting

pairs (sedMethodsfor details).
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RPI Seq classifiers can reliably predict RNA-protein interactions

We compared the performanceRP1Seq-SVMindRPISeq-RFlassifiers to predict
RPIs, using the benchmark datasets described abalte 3.1 summarizes the prediction
results obtained in 10-fold cross-validation expemts. On the RP12241 dataset, the
prediction accuracy was 89.6% (RF) and 87.1% (S\{iBcision and recall for both
classifiers was greater than 87%. On the RP136&sd#atperformance of both classifiers was
considerably lower with an average accuracy of G8ly2% (RF) and 72.8% (SVM).
Notably, values of the F-measure (weighted aveochgeecision and recall) were greater
than 0.70 for both classifiers on both datasetsisTthe performance of classifiers estimated
using 10-fold cross-validation on the larger RP[RBtaset, which includes ribosomal data,
is considerably better than that estimated usiagRRI369 dataset, from which ribosomal
data have been excluded. We also performed leagesoincross validation for the RF
classifier. The results were not significantly diént from 10-fold cross-validation

experiments.

Table 3.1 Performance evaluation of RPISeq. Resultf 10-fold-cross-validation experiments

using RPI12241 and RPI369 datasets.

Accuracy

Dataset Classifier % Precision Recall F-measure
RPI12241 Random Forest 89.6 0.89 0.90 0.90
RPI2241 SVM 87.1 0.87 0.88 0.87
RPI369 Random Forest 76.2 0.75 0.78 0.77

RPI1369 SVM 72.8 0.73 0.73 0.73
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The performance statistics reported in Table 3.tewobtained using classifiers
designed to provide high prediction accuracy. Byywey the classification threshold value,
the prediction specificity can be increased atetkigense of a decrease in sensitivity. The
corresponding trade-off between true positive aaig false positive rate can be seen from
the receiver operating characteristic (ROC) cuha@s in Figure 3.1. Consistent with the
results in Table 3.1, ROC AUCs of 0.97 (RF) an®2q3VM) were obtained for predictions
on the RPI2241 dataset, with lower values of OR85)(and 0.81 (SVM) on the RPI369
dataset. For both classifiers, the AUC of ROC gmicantly greater than 0.50 (random),
indicating the feasibility of predicting RPIs usingly sequence information from the RNA

and protein as input.
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Figure 3.1 Performance of RPISeq classifiers in prdicting RPIs. Receiver operating
characteristic (ROC) curves for RPI predictions, ilustrating the trade-off between true positive rateand
false positive rate forRPI Seg-RF (random forest) andRPI Seg-SVM (support vector machine) classifiers,
using two datasets, RPI12241 and RPI369. The area der the curve (AUC) of each ROC is shown next to

the curve. The AUC for a perfect classifier is 1, 1ad for a random classifier = 0.5.

Comparison with other methods for predicting RNA-protein interactions

Bellucciet al (2011) used a variety of physicochemical propsr(e.g., hydrogen-
bonding propensities, secondary structure progessivf proteins and RNAs to predict the
interaction propensities for individual residuesha RNA and protein sequences of a

potentially interacting pair. Because the catRAB#EDver http://tartaglialab.crg.chtioes not
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directly report predictions as to whether or ngpacific RNA-protein pair is expected to
interact (the “partner prediction problem”), we werot able to directly compare our results
with their method (Bellucoet al, 2011).

Pancaldi and B&ahlest al. (2011) also employed RF and SVM classifiers, hatrt
method uses more than 100 different features of MBM proteins, extracted from the
literature or computed from the protein and RNAuates to make predictions. Examples
of such features include mMRNA half-life, predicfgdtein secondary structure, Gene
Ontology annotation, relative abundance of eachnaracid, codon bias. Using a dataset of
5,166 positive mMRNA-protein RPI partners deriveatrirHogaret al, (2008), and 5,166
randomly generated negative examples of mMRNA-pngiairs, Pancaldi and Bahler reported
an average accuracy of 70% in 2-fold cross-valufatests using an RF classifier based on
500 trees, and 68% using an SVM classifier usinRBR kernel with optimized parameters
(Pancaldi and Béahler, 2011). They also reporteti3Hald and leave-one-out experiments
gave comparable results. We performed 10-fold evafidation experiments on the same
dataset usin@P1Seq-RFwhich uses only sequence informati@ur RF classifier achieved
an accuracy of 68%, based on 500 trees, resultpar@inle to the 70% reported for the RF
classifier of Pancaldi and Bahler (2011). Our S¥lsksifier, using a normalized polykernel,
gave less accurate predictions (61%) than the S¥YRhacaldi and Béahler (68%).

In the Pancaldi and Bahler study, only 5,166 ouw tital of 13,243 positive mRNA-
protein pairs were actually used for predictiorgchese some of the features required by the
classifiers were not available for the remainin@d8, pairs (Pancaldi and Bahler, 2011).
When we tested our method using all 13,243 pairsrass-validation, the prediction

accuracies increased to 78% for the RF and 65% Vo4 classifier. Taken together, our
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experiments indicate that the sequence-based mptbhpdsed here and the multiple feature-
based method of Pancaldi and Béhler have compapablermance in predicting mRNA-
protein interactions. Further, our results sugtest sequences of mMRNAs and proteins carry
sufficient information to allow reasonable predicis regarding whether or not a given
MRNA and protein interact. Because feature inforomatequired by the method of Pancaldi
and Bahler may not be available in many casespaposed method complements theirs,
and may be more generally applicable for predicticBNA-protein partners, in addition to

MRNA-protein partners.

Predicting ncRNA-protein interaction networks

An important potential application &Pl Seq is computational construction of RNA-
protein interaction networks. Recently, Nacher Anaki (2010) used RPIs from the NPInter
database (Waet al, 2006), a database of non-coding RNA-protein atgons, to construct
non-coding RNA-protein networks for several difigrenodel organisms. Their study
revealed significant similarities between ncRNA4pm and transcription factor-gene
regulatory networks. To explore whethi&PISeqcould be useful for constructing networks
of ncRNA-protein interactions, we evaluated ourimoeltin predicting RPIs in networks
derived from NPInter. Because the NPInter RPI pdarsiot include any pairs derived from
ribosomes, in this experiment, we also comparegdénmrmance of models trained on the
RPI1369 (which lacks ribosomal sequences) versu2ZRR| to evaluate the potential effect

of strong ribosomal sequence bias on performance.
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Table 3.2 RPISeq predictions on NPInter dataset usg RF and SVM classifiers trained on

RPI2241.
Organism Total R-PI Pairs predicted by Pairs predicted by
pairs RF (%) SVM (%)
H. sapiens 1189 888 (74.7) 681 (57.3)
S. cerevisiae 254 249 (98.0) 252 (99.2)
M. musculus 120 98 (81.7) 85 (70.8)
D. melanogaster 81 80 (98.8) 72 (88.9)
E. coli 37 34 (91.9) 25 (67.6)
Total 1681 1349 (80.2) 1115 (66.3)

Table 3.3 RPISeq predictions on NPInter dataset usg RF and SVM classifiers trained on

RPI369.
_ Total RPI  Pairs predicted by Pairs predicted by
Organism
pairs RF (%) SVM (%)
H. sapiens 1189 808 (68.0) 988 (83.1)
S. cerevisiae 254 168 (66.1) 226 (89.0)
M. musculus 120 81 (67.5) 111 (92.5)
D. melanogaster 81 38 (46.9) 53 (65.4)
E. coli 37 20 (54.0) 24 (64.9)
Total 1681 1115 (66.3) 1402 (83.4)

Tables 3.2 and 3.3 show the number of RPI painectly predicted for each
organism. When trained on the RPI2241 dataset €TaLl), the RF classifier correctly
predicted ~ 80% (1,349 of 1,681 total interactiofi$le output probabilities ®@PISegare

estimates of interaction propensities for a spe&iNA-protein pair. In Tables 3.2 and 3.3,
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the probability threshold used for "positive" irgetions was 0.50. Among the 1,349
interactions predicted by the RF classifier, orilf vere predicted with probabilities0.80,
and another 1,230 interactions were predicted prtivabilities in the range 0.50-0.80. The
SVM classifier generally had slightly lower perfance, correctly predicting ~ 66% of the
interactions.

In contrast, when trained on the RPI369 datasetSWM classifiers out-performed
the RF classifiers (Table 3.3). Overall, the SVMsslifier correctly predicted 1,402 (83%)
and the RF classifier correctly predicted 1,1134%6f the interactions. Among the 1,402
interactions correctly predicted by SVM classifieore than 850 interactions were predicted
with probabilities> 0.80, and another 525 interactions were predisiédprobabilities in
the range 0.50 to 0.80. For the RF classifier, &@lynteractions were predicted with
probabilities> 0.80.

With regard to the effects of ribosomal sequenes,lthese results are somewhat
difficult to interpret. The best "overall" predimh performance was obtained using the SVM
classifier trained on the RPI1369 dataset, with @3idteractions correctly predicted; the RF
classifier trained on the RPI12241 dataset corrquidylicted 80.2% of the total interactions.
This difference in overall performance, based @ndbmbined data from all five organisms,
is relatively small. In contrast, however, diffeces in performance of classifiers trained on
the two different datasets are much larger whedigtiens for each model organism are
considered individually. For example, Ior melanogastersubstantially better predictions
were obtained with an RF classifier trained onRifd2241 dataset (98.8%) versus an RF
classifier trained on the RP1369 dataset (46.9%0¢0ntrast, for predicting human and mouse

RNA-protein interactions, SVM classifiers trained the RPI1369 dataset (which excludes the
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ribosomal sequences) provide the best predictioiomeance. For yeast RPIs, both the RF
and SVM classifiers trained on RPI12241 generategléent predictions, 98.0% and 99.2%,
respectively, whereas classifiers trained on RPI&&8e more errors, with correct
predictions for 66.1% (RF) and 89.0% (SVM) of tases.

Figure 3.2 shows the ncRNA-protein interaction reeknfrom S. cerevisiaghased on
the data in NPInter. In Figure 3.2RPISeqpredictions obtained using classifiers trained on
the RPI2241 dataset are mapped onto the networllessibed above, the SVM classifier
(right) makes more correct predictions (green edged fewer incorrect predictions, i.e.,
false negatives, (red edges) than the RF clasgiéty. In Figure 3.2B, REeqpredictions

made using classifiers trained on the RPI1369 dgtaséch results in more errors, are shown.
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Figure 3.2 RPISeq correctly predicts a majority ofinteractions in a yeast ncRNA-protein
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interaction network. Circles represent RNA and squaes represent proteins. RNA-protein pairs predicted
by RPISeq-RF or RPISeq-SVM classifiers are mappednto the network of validated interactions, with
correctly predicted interactions shown as green edgg and incorrect predictions as red edges. (A)
Predicted interactions using classifiers trained orthe RP12241 dataset. Among 254 known interactions,
RPISeq-RF and RPISeq-SVM classifiers correctly preidted all except 5 and 2 edges, respectively. A
protein hub, highlighted in yellow, shows interactbns of a helicase (SEN1) with several snoRNAs. Oak
several RNA hubs, highlighted in purple, illustrates interactions of an snRNA (u4560) with various Sm-
like proteins in the LSM complex. (B) Predicted ineractions using classifiers trained on RPI1369 datas.
Among 254 known interactions, RPI1Seq-RF classifiecorrectly predicted 168 (66%) and RPISeq-SVM
correctly predicted 226 (89%). A protein hub highlghted in yellow, shows interactions of a helicase
(SEN1) with 8 snoRNAs. One of several RNA hubs, Hifighted in purple, illustrates interactions of an
snRNA (u4560) with various Sm-like proteins in theeSM complex. (C) An enlarged view of the protein
(SEN1) and RNA (snRNA) hubs described in B. abov&dges are labelled with the interaction
probabilities predicted by RPISeq-RF (left) and RPEeq-SVM (right) classifiers, providing estimates of

the relative pairwise interaction propensities.

One protein hub (highlighted in yellow), which appeas a green square node with
connections to several RNA nodes (pink circlesppparent in these views of the network.
It corresponds to the yeast SEN-1 helicase, whidmown to interact with several snoRNAs
(Ursicet al, 2004). Several RNA hubs, represented by redlaracodes, each connected to
several green protein nodes, are also apparentofihese RNA hubs (highlighted in
purple), corresponds to SnRNA u4560, which interagth various Sm-like proteins in the
LSM complex (Vidalet al, 1999).

Figure 3.2C shows an enlarged view of these hudtisgated from Figure 3.2B. Edges
are labelled with the interaction probabilitiesgioted by each classifier. Using classifiers

trained on the RPI369 dataset, the RF classifietenmaore errors (i.e., predicted a known
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interaction with probability < 0.5) than the SVMaskifier in both cases: for SEN-1 helicase,
the RF classifier correctly identified only 4 odit®known snoRNA interactions, whereas the
SVM classifier correctly identified 6 out of 8. Siarly, of 8 proteins known to interact with
SNRNA u4560 in yeast, the RF classifier identifiedvhile the SVM classifier correctly
identified all 8 interaction partners. Notably,sk®wn in Figure 3.2A, both RF and SVM
classifiers trained on the RP12241 dataset cogréddintified all 8 RNA interaction partners
of the SEN-1 helicase, and both classifiers missgg 1 of 8 protein interaction partners of

the snRNA u4560.

Discussion

Regulation of gene expression at the post-transenial level is often mediated by
interactions between RNA binding proteins and mRNMABCRNAS (Kishoret al, 2010,
Licatalosiet al, 2010, Blencowet al, 2009). In this work, we present a new method,
RPISeqgfor predicting RNA-protein interaction partnersjng only sequence information,
with up to 90% average accuracy. We also demoestifztRPISeqcan effectively predict
RNA-protein interaction networks, based on evaaratising available data from five model

organisms.

Sequence-based prediction of RNA-protein interactios

While several computational methods for predictiegvorks of protein-protein
interactions have been developed (Lekal, 2011, Wanget al, 2011), very few studies
have focused on computational analysis or prediaifdRNA-protein interactions (Lest al,

2002, Martinez-antonio, 2011). One of the majollehges in solving the “partner
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prediction problem” for RNA-protein interactionstige limited amount of experimental data
currently available. Unlike the “interface predastiproblem,” for which detailed structural
information for more than 1,000 RNA-protein compsxs available in the PDB, mRNA
partners for only a handful of RBPs are known (Hogjaal, 2008). Currently, two basic
types of information regarding RNA-protein inteiaatpartners are widely available: i)
experimentally-determined structures of RNA-protedmplexes, available in primary
resources such as the PDB (Bermeaial, 2000) and NDB (Bermaet al, 1992), and
secondary resources such as PRIDB (Lewil, 2011) and BIPA (Leet al, 2009); and ii)
experimental data fronm vivo or in vitro cross-linking studies focused on individual progei
(e.g., SFRS1 (Sanfoet al, 2009), PUF (Gerbeat al, 2004) or from high throughput RNA-
binding microarrays (Ragt al, 2009), stored in repositories such as NPInter éi\al,
2006), CLIPZ (Khorshiekt al, 2010) and RBPDB (Coadt al, 2010).

RPISegequires only sequence information to generatdigtions. In the current
version ofRPISegthe classifiers were trained using only RPIswhich experimental
structures are available. RP12241 is a non-redurtdaning dataset consisting of 2241
interacting RNA-protein pairs, and includes a wideiety of different functional classes of
proteins and RNA (e.g., rRNA, tRNA, miRNA, mRNARNA-ribosomal protein pairs
constitute ~ 40% of the total, reflecting the pr@dlmance of ribosomal structures in the
current version of the PDB. To investigate theaetf this bias on machine learning
methods for predicting RPIs, we also generatedallendataset of 369 RNA-protein
partners (RPI369), from which all rRNA-containiogmplexes had been removed (see

Methodsfor details).
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We used RPI2241 and RPI369 as non-redundant benkhiatasets for developing
and rigorously evaluating the performance of vasimachine learning classifiers. In cross-
validation experiments, classifiers trained ante®n the larger dataset had superior
prediction performance, indicating that the greatenber and diversity of complexes in
RPI12241, relative to RPI1369, has a stronger paseifect on classification accuracy than the
potentially negative effect of sequence bias inZ2BL. When we evaluated classifiers using
independent datasets of RPIs from NPInter, howelassifiers trained on RPI369, in some
cases, had better prediction performance. The basikis observation is currently under
investigation.

To identify sequence features of the proteins aNé Rnportant in determining their
specific interactions, we analyzed the featurestimequently used by the Random Forest
classifier to predict interacting partners (8&ethodsfor details).

The four most often selected RNA tetrads waldUC, AGUG, UUUU, UCAA
Notably, these tetrads were found in the interfaggion in only 15% of the cases
examined. The most frequently selected conjoiattin protein sequences wdsk, F,

PK A, G, { R, K}, which represents twenty-four possible amino ddjlets (e.g.JAR,

IAK, IGR, IGK..). The complete list of important RNA and prat&atures is provided in
Supplemental Data S1. Although additional experimand analyses of these features will
be required to extract precise “rules” that speaifyarticular RNA-protein interaction, our
current analysis indicates that at least 50 feat(@eombination of RNA and protein
features) are required to accurately classify amgiRNA-protein pair as interacting or not.

In this studyRPISedaccurately predicted RPIs in both cross-validaérperiments

using the benchmark datasets and in experimentddependent datasets. This suggests that
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normalizedk-mer frequency distributions of RNA and proteinseaces (specifically,
reduced alphabet representations of protein segsgirccombination with appropriate
machine learning methods, provide an effective @qgn to construct RPI predictors.
Because the data used in this study representacsiyall fraction of cellular RNA-protein
complexes and interactions, we anticipate that raocairate predictions will be possible

when larger and more diverse datasets of experatigntilidated RPIs become available.

Comparison with other available methods

The method of Pancaldi and Bahler (2011), which deaseloped to predict mRNA-
protein interactions (rather than ncRNA-proteirerattions), also uses RF and SVM
classifiers, but requires a much more extensivefsietatures regarding the mRNAs and
proteins. Input for the classifiers, which corsist a vector constructed by concatenating the
features of potential RNA and protein partners.(esgelectric point of protein, protein
localization, mRNA half-life), cannot be extractedcalculated from sequence information
alone. This requirement restricts the applicabityhis method in practice: Pancaldi and
Bahler were not able to extract the necessaryfesfior a majority of interactions in their
RPI dataset. ThRPISegmethods do not suffer from this limitation becatisgy require only
sequence-derived features to make reliable preditiln fact, the performance RPISeq
improved substantially (by 8% in accuracy) whenleatd on the entire dataset of Pancaldi
and Bahler. Thus, for predicting mRNA-protein i@etions, the sequence-based approach
implemented irRPISeqorovides performance comparable to that of clessithat require a
more extensive set of features, including thosedaanot be extracted from RNA and

protein sequences alone.
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Application of RPI Seq to constructing RNA-protein interaction networks

Encouraged by the succesRP¥ISedn predicting specific RPIs, we examined its
effectiveness in constructing RNA-protein interanthetworks in several model organisms,
using only information derived from RNA and protsequences. The networks were
extracted from the “ncRNA binds protein” categofyN®Inter [27], currently the only
available database of functional interactions &MNA with proteinsRPISegwas able to
successfully predict the interactions of a singlatgin with multiple RNAs (protein hubs), as
well as interactions of a single RNA with multigdeoteins (RNA hubs).

In the case of the yea§, cerevisiagRPISeqprovided excellent predictions of RPIs:
both the RF and SVM classifiers trained on the RR12dataset correctly predicted > 98% of
interactions in the NPInter database (@{al, 2006). TheRPISeq-RFlassifier trained on
the RPI12241 dataset also correctly identified gdanajority of interactions in the
D. melanogaste(99%) anck. coli (92%) networks. For human and mouse networks,
however, classifiers trained on the RPI369 datgae¢ better performance, with tR®1Seq-
SVMclassifier correctly identifying 83% of the intetens in human and 93% in the mouse.
It is important to note that these evaluationsbeaged on predicting only knowpositive”
interactions currently available in NPInter (Wual, 2006);"negative"data regarding non-
interacting protein-RNA-protein pairs are not irdda in NPInter. Because the experimental
data in NPInter are incomplete, it is problematiassume that RNA-protein pairs not
included in NPInter do not, in fact, interact. Alsome experimentally-determined RPIs
included in NPInter could correspond to false poss.

Given the relatively small sizes of the RNA-protagtworks analyzed in this study,

differences in the results obtained using diffedassifiers to predict RPIs in different
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species must be interpreted with caution. It walliimportant to evaluate these methods on
larger, more complete datasets of experimentaligai®d RNA-protein interactions as they
become available. On the whole, our results sudhgasRPISegshould be valuable for

constructing and analyzing regulatory RNA-proteiteraction networks.

Conclusion

In this work, we tested whethBP1Segqa family of purely sequence-based
classifiers, can be used to predict whether a Bp&tNA-protein pair is likely to interact.
Our results demonstrate that the corresponding RhAprotein sequences alone contain
sufficient information to allow reliable predictiai RPIs. Such predictions can be used to:
(i) identify putative RNA partners of a target peiot, or protein partners of a target RNA;
and (ii) computationally construct RNA-protein irdetion networks. The datasets used in
this study are relatively small compared with thegé number of RNA-protein complexes
and diverse interactions that occur in cells. THoegasing availability of transcriptome-wide
experimental data should lead to improvements mpdational methods for predicting
RNA-protein interactions and for modelling regulgtoetworks of RNA-protein
interactionsRPISeqs freely available as a web-based server at

http://pridb.gdcb.iastate.edu/RPISeq/

Methods

RPI benchmark datasets derived from structure-base@xperimental data

For training and testing classifiers, two benchmask-redundant datasets of RNA-

protein interacting pairs were extracted from 943gin-RNA complexes in PRIDB using an
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8 A distance cut-off (Lewist al, 2011). PRIDB is a database of protein-RNA inteefa
calculated from protein-RNA complexes in the PDEi{Banet al, 2000). The original 943
complexes from PRIDB contained a total of 9,68%qrochains and 2,074 RNA chains; the
final dataset RP12241 (see below), which contaiteta of 952 protein chains and 443 RNA
chains, was derived from these complexes by applyia following criteria. Redundant
protein sequences (i.e., with30% sequence identity) interacting with similar RN
sequences (i.e., with 30% sequence identity) were discarded. Also, rddanRNA
sequences (i.e., with 30% sequence identity) interacting with similantein sequences

(i.e., with> 30% sequence identity) were discarded. Only pnsteihose length is greater
than 25 and RNAs at least 15 nucleotides long wetened. This resulted in a dataset of
"positive" examples, RP12241, consisting of 224fpexkmentally validated RNA-protein
pairs (Supplemental Data S2).

To generate a balanced dataset of "non-intera&tMg-protein pairs” (negative
examples), we randomly paired the RNAs and protieom the 943 protein-RNA complexes
and removed similar interacting RNA-protein paasgndomly generated pair A-B was
discarded if there exists a positive interactiom gaB, and A and C share30% sequence
identity). Because ~40% of RNA-protein complexethe PDB correspond to ribosomal
structures, the RPI12241 dataset is also stronglydoi towards ribosomal RPIs. Thus, we
constructed a second dataset, RPI1369, which ibsesof RP12241 generated by removing
all RPIs that contain ribosomal proteins or riboabRNAs (Supplementary Data S3).

RPI1369 contains only non-ribosomal complexes (6RNA, mMRNA, viral RNA, miRNA).
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RPI benchmark datasets derived from non-structure-lased experimental data

For evaluation of our method on independent RRAs#ds, we used two datasets of
RPIs obtained from RNA immunoaffinity purificati@md microarray experiments, published
by Hoganet al (2008). One dataset comprises 5,166 mRNA-protearactions; this dataset
was also used in the study of Pancaldi and BaBEtL). The second dataset is larger,
consisting of 13,243 RPIs, and including all 5,1@@ractions in the smaller dataset.
Pancaldi and Béahler were not able to evaluate thethod on this larger dataset because of
missing feature information for RNAs and proteingdlved in these interactions. Because
RPISequses only sequence information, we were able atuate our method using all of the
available data.

To test the ability oRPISeq tgredict ncRNA-protein interaction networks, wedise

the NPInter databasht{p://www.panrna.org/NPIntgr/which includes eight different

categories of functional interactions between noditg RNAS, but excludes ribosomal
RNAs and proteins. We extracted only those int@astfor which there is experimental
evidence for physical association of ncRNA withratein, i.e. the ‘ncRNA binds protein’

category.

Alternative representations of protein and RNA seqgences

Each RNA-protein pair is represented as a 599-featector, in which 343 features
are used to encode the protein sequence and 2bBefeare used to encode the RNA
sequence. Proteins are encoded using the conjaidtfeature (CTF) representation
previously used by Sheat al (2007). In this method, the 20 amino acids arsstl&d into 7

groups according to their dipole moments and theme of their side chainsX G, V}, {1,
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LF,PL{Y,MT, S, {H N, Q W, {R K}, {D, E}, { C}. Each protein sequence is then
encoded using the 7-letter reduced alphabet. Eanthip feature represents the normalized
frequency of the corresponding conjoint triad, i3emer in the 7-letter reduced alphabet
representation of the protein sequence. Thus, gatbin sequence is represented by a 343
(7x7x7) dimensional vector, where each element@f/ector corresponds to the normalized
frequency of the corresponding 3-mer in the seqaiésee (Sheat al, 2007) for details).
Based on results of preliminary tests comparingitrenalizedk-mer frequency
representation of RNA sequences for different @i, we chose to encode RNA
sequences using a 4x4x4x4 or 256-dimensional vaotahich each feature represents the
normalized frequency of the corresponding 4-meeappg in the RNA sequence (e.g.,

AAUG, CGAU, GGCC).

Machine learning Algorithms

The support vector machine (SVM), a machine legraigorithm developed by
Vapnik [47], is widely used for classification aregjression tasks. SVM is a binary
classification method that takes two differentllgdbed classes as input and outputs a model
to classify unlabeled data. SVM maps the input @ntagher dimensional space and
constructs a hyperplane to separate the two clagdea maximum margin. In this work, we
used the SMO implementation in Weka 3.7 [48]. TMCEclassifier implements the
sequential minimal optimization algorithm to tr&WMs. We used a normalized polykernel
function with[J = 1.0E-12 and C=1.0 and built logistic models lo& $VM to output
probability estimates for the predictions. The nalized polykernel gave the better

performance than other kernels tested, includiegRBF kernel (data not shown).
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Random Forest (RF) methods have been successfuyllied to many problems in
bioinformatics, including prediction of protein-pein interactions [32, 33, 49]. Random
Forest is an ensemble classifier consisting of meagrstructures classifiers. For the
problem addressed here, in which the number oftifgatures is large, significant
improvements can be expected by employing featlexton [50]. We used the Random
Forest implementation in Weka 3.7 for model buiddand evaluation. We constructed the
RF classifiers with 20 trees (unless otherwisedat#id) and 10 features were evaluated at
each node. For performing feature selection, we AsgibuteSelectiortlass in Weka
toolkit. We usedvrapper subset evaluatan combination with Random Forest classifier and

best first search method.

Performance Evaluation

Standard 10-fold cross-validation procedures weesldo evaluate and compare
classifier performance on the benchmark datasetshé RF classifier, we also performed
leave-one-out cross-validation; results were ngiificantly different from those obtained
using 10-fold cross-validation (data not shown).

We computed the following statistics to measurepgrdormance of the classifiers.

proision — TP
recision = TP n FP
Recall = —
CCA = TP+ FN
TP + TN

A —
CUracy = TP ¥ TN + FP + FN

2 X Precision X Recall

F-M =
easure Precision + Recall
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where TP is the number of true positives, FP istlmaber of false positives, TN is
the number of true negatives, and FN is the nurobtise negatives.

The F-Measure is a composite indicator of perforceahat attempts to "balance”
precision and recall. F-Measure values range fddm1, with values close to 1 indicating
better performance. The area under the curve (Add@)e receiver operating characteristic
curve (ROC) was also computed. AUC values alsogdram O to 1: the AUC =1 for a

perfect classifier and for a random classifier 5. 0.
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file with two columns. The first column is a list proteins and the second column is a list of

corresponding RNAs.

References

Barkan A: Genome-wide analysis of RNA-protein iatgions in plants. Methods
Mol Biol 2009, 553:13-37.

Baroni TE, Chittur SV, George AD, Tenenbaum SA: Adees in RIP-chip analysis :
RNA-binding protein immunoprecipitation-microarrpsofiling. Methods Mol Biol 2008,
419:93-108.

Bellucci M, Agostini F, Masin M, Tartaglia GG: Pieting protein associations with
long noncoding RNAs. Nature Methods 2011, 8:444:-445

Berman HM, Olson WK, Beveridge DL, Westbrook J, lgselA, Demeny T, Hsieh S-
H, Srinivasan AR, Schneider B: A comprehensiveti@hal database of three-dimensional
structures of nucleic acids. Biophys. J 1992, 6B:759.



61

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat, Weissig H, Shindyalov IN,
Bourne PE: The Protein Data Bank. Nucleic Acids R&30, 28:235-42.

Blencowe B, Brenner S, Hughes T, Morris Q: Postgcaiptional gene regulation:
RNA-protein interactions, RNA processing, mRNA diggband localization. Pac Symp
Biocomput 2009:545-548.

Charon C, Moreno AB, Bardou F, Crespi M: Non-pnoteoding RNAs and their
interacting RNA-binding proteins in the plant calicleus. Mol Plant 2010, 3:729-739.

Chen X-W, Liu M: Prediction of protein-protein iméetions using random decision
forest framework. Bioinformatics 2005, 21:4394-400.

Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR: IRBB: a database of RNA-
binding specificities. Nucleic Acids Res 2010, 323308.

Gerber AP, Herschlag D, Brown PO: Extensive associaf functionally and
cytotopically related mRNAs with Puf family RNA-ldimg proteins in yeast. PLoS Biol
2004, 2:E79.

Hafner M, Landthaler M, Burger L, Khorshid M, Haasg, Berninger P, Rothballer
A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrichardle GS, Dewell S, Zavolan
M, Tuschl T: Transcriptome-wide identification oNR-binding protein and microRNA
target sites by PAR-CLIP. Cell 2010, 141:129-141.

Hafner M, Landthaler M, Burger L, Khorshid M, Haasg, Berninger P, Rothballer
A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrichardle GS, Dewell S, Zavolan
M, Tuschl T: PAR-CIiP--a method to identify traniptome-wide the binding sites of RNA
binding proteins. J Vis Exp 2010.

Hall M, Frank E, Holmes G, Pfahringer B, Reutem&nWitten IH: The WEKA data
mining software: An update. SIGKDD Explorations 20@1:10-18.

Ho TK: The random subspace method for constructewsion forests. IEEE Trans
Pattern Anal Mach Intell 1998, 20:832-844.

Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Br&n Diverse RNA-binding
proteins interact with functionally related setdRiMAs, suggesting an extensive regulatory
system. PLoS Biol 2008, 6:e255.

Hwang H, Vreven T, Whitfield TW, Wiehe K, Weng Z:rAachine learning approach
for the prediction of protein surface loop flexityil Proteins: Struct. Funct. Bioinf. 2011,
79:doi: 10.1002/prot.23070.

Kaymak E, Wee LM, Ryder SP: Structure and functbnematode RNA-binding
proteins. Curr Opin Struct Biol 2010, 20:305-312.



62

Keene JD, Komisarow JM, Friedersdorf MB: RIP-Chige isolation and
identification of MRNAs, microRNAs and protein coomgnts of ribonucleoprotein
complexes from cell extracts. Nature protoc 200802-7.

Khorshid M, Rodak C, Zavolan M: CLIPZ: a databasé analysis environment for
experimentally determined binding sites of RNA-bngproteins. Nucleic Acids Res 2010,
39:245-252.

Kim MY, Hur J, Jeong S: Emerging roles of RNA andARbinding protein network
in cancer cells. BMB Rep 2009, 42:125-130.

Kishore S, Luber S, Zavolan M: Deciphering the @i&NA-binding proteins in the
post-transcriptional control of gene expressioneBfunct Genomics 2010, 9:391-404.

Lee S, Blundell T: BIPA: a database for proteinieigcacid interaction in 3D
structures. Bioinformatics 2009, 25:1559-1560.

Lee TI: Transcriptional regulatory networks in Sa@m®myces cerevisiae. Science
2002, 298:799-804.

Lees JG, Heriche JK, Morilla I, Ranea JA, Orenga Gpstematic computational
prediction of protein interaction networks. PhysIE1011, 8:035008.

Lewis BA, Walia RR, Terribilini M, Feguson J, Zhe@ig Honavar V, Dobbs D:
PRIDB: a Protein-RNA Interface Database. Nucleitcd&dres 2011, 39:D277-82.

Li Z, Nagy PD: Diverse roles of host RNA binding#ins in RNA virus replication.
RNA Biol 2011, 8:305-315.

Licatalosi DD, Darnell RB: RNA processing and ggulation: global insights into
biological networks. Nat Rev Genet 2010, 11:75-87.

Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, ICBW, Clark TA, Schweitzer,
Blume JE, Wang X, Darnell JC, Darnell RB: HITS-CLyjields genome-wide insights into
brain alternative RNA processing. Nature 2008, 466:9.

Liu Z-P, Wu L-Y, Wang Y, Zhang X-S, Chen L: Predlet of protein-RNA binding
sites by a random forest method with combined featuBioinformatics 2010, 26:1616-
1622.

Martinez-antonio A: Escherichia coli transcriptibregulatory network. Netw Biol
2011, 1:21-33.

Mittal N, Roy N, Babu MM, Janga SC: Dissecting thgression dynamics of RNA-
binding proteins in posttranscriptional regulatagtworks. Proc Natl Acad Sci U S A 2009,
106:20300-20305.



63

Nacher JC, Araki N: Structural characterization amatleling of ncRNA-protein
interactions. Biosystems 2010, 101:10-9.

Pacheco A, Martinez-Salas E: Insights into thedgglof IRES elements through
riboproteomic approaches. J Biomed Biotechnol 2d®010.1155/2010/458927.

Pancaldi V, Bahler J: In silico characterization gmediction of global protein-
MRNA interactions in yeast. Nucleic Acids Res 20111.

Pérez-Cano L, Ferndndez-Recio J: Optimal proteidikRMa, OPRA: a propensity-
based method to identify RNA-binding sites on prateProteins 2010, 78:25-35.

Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry 8ukder S, Blencowe BJ,
Morris Q, Hughes TR:. Rapid and systematic analysthe RNA recognition specificities of
RNA-binding proteins. Nature Biotechnol 2009, 27.68.

Sanford JR, Wang X, Mort M, VanDyun N, Cooper DNodhey SD, Edenburg HJ,
Liu Y: Splicing factor SFRS1 recognizes a functibndiverse landscape of RNA
transcripts. Genome Res 2009, 19:381-94.

Shao X, Tian Y, Wu L, Wang Y, Jing L, Deng N: Praig DNA- and RNA-
binding proteins from sequences with kernel methddsheor Biol 2009, 258:289-293.

Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, LiJ¥ang H: Predicting protein-
protein interactions based only on sequences irdbom. Proc Natl Acad Sci U S A 2007,
104:4337-41.

Sola I, Mateos-Gomez PA, Almazan F, Zuiiga S, Emsd.: RNA-RNA and RNA-
protein interactions in coronavirus replication arathscription. RNA Biol 2011, 8:237-248.

Terribilini M, Lee J-H, Yan C, Jerniga RL, Honaw&rDobbs D: Prediction of RNA
binding sites in proteins from amino acid sequeR¢A 2006, 12:1450-62.

Tsvetanova NG, Klass DM, Salzman J, Brown PO: Bratewide search reveals
unexpected RNA-binding proteins in Saccharomycesvigiae. PLoS One 2010, 5:e12671.

Ursic D, Chinchilla KISF, Culbertson MR: Multiplegbein/protein and protein/RNA
interactions suggest roles for yeast DNA/RNA hae&enlp in transcription, transcription-
coupled DNA. Nucleic Acids Res 2004, 32:2441-2452.

Vapnik V: The Nature of Statistical Learning Theddew York: Springer; 1995.

Vidal VP, Verdone L, Mayes AE, Beggs JD: Charazegion of U6 snRNA-protein
interactions. RNA 1999, 5:1470-81.

Wang T-Y, He F, Hu Q-W, Zhang Z: A predicted pratgerotein interaction network
of the filamentous fungus Neurospora crassa. Mosgst 2011.



64

Wang Y, Wang J, Yang Z, Deng N: Sequence-basee@iprptotein interaction
prediction via support vector machine. J Syst Sun@lex 2010, 23:1012-1023.

Wu J, Liu H, Duan X, Ding Y, Wu H, Bai Y, Sun X: &fiction of DNA-binding
residues in proteins from amino acid sequencegusinandom forest model with a hybrid
feature. Bioinformatics 2009, 25:30-5.

Wu T, Wang J, Liu C, Zhang Y, Shi B, Zhu X, ZhangSkogerbg G, Chen L, Lu H,
Zhao Y, Chen R: NPInter: the noncoding RNAs andenorelated biomacromolecules
interaction database. Nucleic Acids Res 2006, 38(PA.

Zhou P, Zou J, Tian F, Shang Z: Geometric simyasgtween protein—RNA
interfaces. J Comput Chem 2009, 30:2738-2751.



65

CHAPTER 4. RPISEQ & RPINTDB: TOOLS FOR

PREDICTING RNA-PROTEIN INTERACTIONS

Abstract

RPISeq 2.0 is an enhanced web-based implement#temnovel algorithm that
predicts RNA-protein interaction partners. It takgsrotein sequence and an RNA sequence
as input and predicts the probability that the gipeotein and RNA physically interact with
each another. The server allows for submissionudfiphe protein or RNA sequences,
allowing users to scan a defined proteome or trgsteene for potential interacting partners.
The server also allows users to query a proteinesacg of interest against the RNA-Protein
Interaction DataBase (RPIntDB) to identify homolaggroteins and their interacting

partners. RPISeq 2.0 is availabléntip://pridb.gdcb.iastate.edu/RPISeq

Introduction

RNA-protein interactions (RPIs) play important la a wide variety of cellular
processes. High throughput experiments designatetdify RNA-protein interactions are
beginning to provide valuable information about tenplexity of RNA-protein interaction
networks, but are still expensive and time consgmie develope®&PISeq(Muppiralaet
al., 2011) to address the need for reliable computatimethods for predicting RNA-protein
interaction partners. Whereas many computation#thoals and several webservers (Walia
al., 2012) are available for predictif®NA binding residues proteins, only five methods
have been published for predictiRgNA-protein interaction partnef®ancaldi & Bahler,

2011, Belluccet al, 2011, Muppiralat al, 2011, Wanget al, 2013, Luet al, 2013)
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reviewed in Muppiralat al.(2013) and only two webservers that implement such method

are currently availabld®RPISeq (http://pridb.gdcb.iastate.edu/RPISeghdcatRAPID

(http://service.tartaglialab.com/page/catrapid_gjoup

Method

The basic RPISeq algorithm (Muppiratal, 2011) uses either Random Forest (RF)
or Support Vector Machine (SVM) classifiers to petavhether a given pair of protein and
RNA sequences is likely to interact, using onlywstge information as input. In this
approach, the protein sequence is encoded as diB#Bsional vector, using a conjoint triad
feature (CTF) method (Shexn al, 2007), in which each feature represents the noreth
frequency of the corresponding conjoint triadshie $equence. Similarly, the RNA sequence
is encoded as a 256-feature vector, in which eaatufe represents the normalized frequency
of the corresponding RNA tetrads. RPISeq was tcharel tested on a dataset of 2,241
experimentally validated physical interactions ated from the Protein RNA Interface
Database (PRIDB) (Lewist al, 2011) and 2,241 randomly generated negative ebegnapd
achieved accuracies of 89.6% (RF classifier) an@%®1SVM classifier) with AUC of 0.97
(RF classifier) and 0.92 (SVM classifier) (Muppaet al, 2011). When tested on an
independent dataset of 126 positive interactiomegded from the NPInter (Wat al,

2006), 112 interactions were correctly predictedibyclassifier. On an independent dataset
of 332 negative interactions generated by pairimgwkn non-RNA binding proteins with
RNAs in the training set, 196 (59%) were corregtigdicted as negatives. All the proteins
and RNAs used in these independent test sets apeeuand do not overlap with the training

data used to generate the models.
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RPI1Seq webserver output

The output of the basic RPISeq algorithm is a ptrabability scores (from both RF
and SVM classifiers) that indicate the likelihoddrderaction between the given protein and
RNA pair. RNA-protein pairs with scores greatemi@eb are predicted to interact.

A high-demand application of RPISeq is screeniteyge number of RNA or protein
sequences for potential interaction partners. Tguated version of RPISeq described here,
RPISeq (v 2.0) provides a mechanism for accepting multiple segegm batch mode. If
the user is interested in identifying many potdriRiA partners for a particular protein, the
user can input the protein sequence of interesuptahd a set of potential RNA target
sequences as a single file in FASTA format. Sirylaa user can input one RNA sequence
and upload multiple protein sequences at oncdaloh submission mode, the results can be
viewed online or downloaded in a tab-delimited.fifiggure 4.1 A shows sample output of a
single protein-RNA interaction prediction. Resulfsa sample batch submission are shown
in Figure 4.1 B.

In summary, RPISeq (v 2.0) allows users to add3agpes of questions: 1) Does a
specific protein sequence interact with a spe&iNA sequence? 2) For a given protein of
interest, what are its likely RNA interaction pats? 3) For a given RNA of interest, what
are its likely protein interaction partners?

An advantage of RPISeq over other available met{@@dscaldi and Bahler, 2011,
Bellucciet al, 2011, Wanget al, 2013) is its speed: RPISeq can process a sijjuglgy in

less than one second.
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Saarch lowa State University || NN

RNA-Protein Interaction Prediction (RPISeq)

Dobbs and Honavar Laboratories

About
Datasets
Related Links
References
Funding
Contact Us
Dobbs Lab Software

Bioinformatics and
Computational Biology

IOWA STATE UNIVERSITY

Input Sequences

Protein:

MAKGQSLADPFLNALRRERVPVSIY LVNGIKLQGQIESFDOFVILLKNTVSQMVYKHALS
TVVPSRPYSHHSHNNAGGGTSSNYHHGSSAQNTSAQQADSEETE

RNA:
GAAAGACGCGCAUUUGUUAUCAUCAUCCCUGAAUUCAGAGAUGAAAUUUGGCCACUCAC
GAGUGGCCUUUU

Interaction probabilities
Prediction using RF classifier 0.8
Prediction using SWM classifier 0.81

Search lowa State University _

RNA-protein Interaction Prediction (RPISeq)

Dobbs and Honavar Laboratories

About/FAQSs
Datasets
Related Links
Referances
Funding
Contact Us
Dobbs Lab Software
Bininformatics and
Computational Biology

Center for
Computational

Results

Protein ID| RF Classifier| SVM Classifier
=024562 05 0.68
=0aM2G5 05 0.527
=814 1 0.8 0.395
=P00178 0.8 0.907
=P82159 05 0.66
=P11084 0.8 0.91
=C189AL1 0.6 0.975

The results can be downloaded in a tab-separated format here

Figure 4.1 A. Sample output of RPISeq webserver wita single protein and a single RNA. B.

Sample output of a batch submission predictions wlita single RNA and multiple proteins.

A current limitation of the RPISeq v 2.0 servethat input is limited to 100 protein

seqguences or 100 RNA sequences during batch submissgth a maximum file size of ~1.5
MB. If users are interested in running predictionsa larger scale, they can request a free

local implementation of RPISeq.
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RPIntDB

Another important enhancement implemented in thESB&v 2.0 server is seamless
integration with a newly developed database, thé&fXotein Interaction DataBase

(RPINtDB) (ttp://pridb.gdcb.iastate.edu/RP1Seq/RPIntDB.hthhis feature allows users to

guery a protein sequence against a large collecofiexperimentally validated RNA-protein
interactions. RPINtDB contains a total of 44,586ARpiotein interactions, comprising
11,928 unique RNAs and 2190 unique proteins. luphes interactions from structurally
characterized RNA-protein complexes in the PRIDBwWlset al, 2011), as well as
individual and high throughput experiments extrddtem the NPInter database (Weual,
2006). For RPINtDB queries, RPISeq accepts a sprgiein sequence as input. The protein
sequence is used as the query in a BLAST seard¢bcfAllet al, 1990) against all protein
sequences in RPINtDB. The resulting protein hitgether with their known RNA interaction
partners, are returned to the user. When querygamst the database, the user can adjust the
e-value for the BLAST search to either improve tpedficity of BLAST hits (i.e., reduce
false positives) or enhance the search sensitiwitjmprove detection of remote homologs.
Sample output from an RPIntDB search is shown guifé 4.2. For each hit in the output,
links are provided to additional information abthu protein, RNA and source of each

interaction.
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Search lowa State University _

Figure 4.2 Sample RPIntDB results.

RNA-Protein Interaction Prediction (RPISeq)
Dobbs and Honavar Laboratories
m e | Protein o otoin Description| RNAID RNA Description Source
About/FAQs vole .l
Pilasate 4e-72115813 A |Eukaryotic 1813 B |5-R*CP*GP*UP*GP*AP*CP*UP*CP*U)-3' Crystal structure of the PAZ domain of FPRIDB
translation initiation human elF2c1 in complex with 3 9-mer siRMAHike duplex
Related Links factor 2C 1 Crystal
References structure of the PAZ
% domain of human
Funding elF2c1 in complex
Contact Us with a 9-mer
siRMA-like duplex
Te-09|1T2R A |Argonaute 2 AT2R B [5-R{*CP*UP*CP*AP*C)-3' Structural basis for 3’ end recognition of nucleic acids bythe |PRIDB
Dobbs Lab Structural basis for Drosophila Argonaute 2 PAZ domain
Software 3 end recognition
. - of nucleic acids by
Bioinformatics the Drosophila
and Argonaute 2 PAZ
Computational domain
Biology 0.0 |GEEGRE|GEEGRE_CAEEL |ni178094|snmRMA Caenorhabditis elegans CeN23-2 MPInter,
Center for Protein ALG-1, 20062054
: isoform a
Computational 0S=Caenorhabditis
Intelligence, elegans GN=alg-1
Learning & FE=2 8v=1
Discovery 0.0 |GEEGRG | GSEGRE_CAEEL |n327662 | other Caenorhabditis elegans C. elegans RNAtranscript ROTHE.2 INPInter.
Protein ALG-1, 20062054
Department of isoform a
Genetics, 03=Caenorhabditis
Development elegans GM=alg-1
and Cell PERERVEA
Biology 0.0 |QOUKVE (AGO2_HUMAN n3G8610 |IncRMA Homo sapiens Human lincRNA INPInter.
Protein argonaute-2 21572407
0S=Homo sapiens
I GN=AGO2Z PE=1
Sv=3
géw% 0.0 |QBCJG0 |AGD2_MOUSE n259201 |mRMNAlike IncRMA Mus musculus Mouse noncoding transcript MPinter,
Qe 6"‘ Protein argonaute-2 21633356
HEM 05=Mus musculus
GMN=AgoZ PE=1
- sv=3
@_@.. 0.0 |Q8CJG0 AGO2_MOUSE n275106 |mRMAlike IncRMNA Mus musculus Mouse noncoding transcript INPinter,
> 8 Protein argonaute-2 19536157
X 08=Mus musculus
GN=AgoZ PE=1
CIAG

The RPISeq 2.0 webserver provides a tutorial tkplaens how to use RP1Seq and
includes examples of results obtained for typicadrees. Sample protein and RNA sequences
are provided on each input page. The datasetsing®idiSeq are freely available for
download. In addition, all interactions in RPIntl@Bn be downloaded as a tab-delimited file.

RPISeq 2.0 runs on the Apache 2.2 webserver, My8QL 14.14 as a database
backend for RPIntDB and PHP 5 for user interfacefions. Input processing and prediction

algorithms are implemented using Perl 5 scripts\&ietta 3.7.1 (Hall et al., 2009). In
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addition to the RPISeq 2.0 webservett://pridb.gdcb.iastate.edu/RP1Jeg local

implementation of RPISeq is freely available upeguest.
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CHAPTER 5. AMOTIF-BASED METHOD FOR

PREDICTING INTERFACIAL RESIDUES IN BOTH THE RNA

AND PROTEIN COMPONENTS OF PROTEIN-RNA

COMPLEXES

Abstract

Efforts to predict interfacial residues in prot&MNA complexes have largely focused
on predicting RNA binding residues in proteins.dfectng residues on the RNA side of the
interface, i.e., predicting protein binding residiure RNA sequences, is a problem that has
received little attention to date. Although theueabf sequence motifs for classifying and
annotating protein sequences is well establisheljence motifs have not been widely
applied to predicting interfacial residues in mawotecular complexes. Here, we propose a
novel sequence motif-based method for “partneriipémterfacial residue prediction.
Given a protein-RNA pair, the goal is to simultangly predict RNA binding residues in the
protein sequence and protein binding residuesarRiNA sequence. In 5-fold cross
validation experiments, our method, PS-RPIMotifjiaged a specificity of 92% and a
sensitivity of 61%, with correlation coefficient @} of 0.58 in predicting RNA-binding sites
in proteins. The method achieved 69% specificity @% sensitivity, but with a low CC of
0.13 in predicting protein binding sites in RNA&n8ar results were obtained when PS-
RPIMotif was tested on an independent “blind” dataf 327 protein-RNA interactions,

suggesting the method should be widely applicabtevaluable for the identifying potential
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interfacial residues in protein-RNA complexes fdrieh structural information is not

available.

Introduction

Despite the important roles of protein-RNA interags in many cellular activities,
including transcription, translation, viral replica and pathogen resistance (Hogaml,
2008, Licataloset al, 2010, Kimet al, 2009, Solat al, 2011), the determinants of protein-
RNA recognition are not yet fully understood. Thetein Data Bank (PDB) (Bermaat al,
2000) is a valuable resource for studying proteNARComplexes, but the number of protein-
RNA complex structures available in the PDB is lss 1% of the total structures. Even so,
these data have been successfully exploited tda@egeveral computational methods for
predicting interfacial residues in protein-RNA cdexes (Jeongt al, 2004, Terribiliniet
al., 2006, Maetschke and Yuan, 2009, reviewed in Petah, 2012, Walieet al, 2013) and,
recently, a few methods for predicting interactpamtners in protein-RNA interaction
networks (Muppiralat al, 2011, Belluccet al, 2011, reviewed in Muppirakt al, 2013).

Methods for predicting RNA-binding residues in giat fall into two major classes:
i) methods that use only sequence information gndeathods that take advantage of
structural information, when available (Putetral., 2012Waliaet al.,2013). None of the
published methods, with one exception, Choi and (2840), take into account information
regarding the RNA partner, i.e., they are non-parspecific predictors of interfacial
residues.

Computational prediction of protein-binding RNA temtides is an even harder

problem (Choi and Han, 2013). Due in part to thatkd 4-nucleotide alphabet of RNA (and
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its consequently low per-character information eoty, studies that have attempted to draw
more general conclusions about protein-RNA intéoasthave focused on the protein side of
the interface. Many analyses of RNA sequence hamased on specific features involved in
cellular pathways, such as ribosome binding siBsfget al, 2013). While some small
structural elements in RNAs have been elucidateits(f and Westhof, 2010, Petreval,
2013), examination of these motifs has focused giignon their roles in mediating RNA-
RNA contacts in the context of a larger RNA struefwith few studies considering the
interaction between RNA structural motifs and pireg€Ciriello et al, 2010).

Here, we perform a large scale analysis of contigilgequence motifs present in the
interfaces of protein-RNA complexes and develogwa fpartner-specific’ motif-based
method to simultaneously predict RNA binding resilin the protein component and

protein binding ribonucleotides in the RNA componeina given protein-RNA pair.

Methods

Generating interfacial sequence motifs

To generate interfacial sequence motifs with whachcan target sequences, a dataset
of all protein-RNA complex structures depositedha Protein Data Bank (PDB) as of
September 2012 was analyzed to find short regmorgjguous in primary sequence, and
composed entirely of interacting (as defined usin@A distance cutoff) residues in either
the protein or RNA chains. The sequences of th@sefacial segments (without any
information about their interacting partner resgjugere extracted aa-mer motifs’, where

n can vary between 3 and 8. No requirement was rwaidrotifs to be bounded by non-



76

interacting residues; therefore overlapping matiése included. Note that a 5-mer motif

necessarily contains two 4-mer motifs and threeeB-motifs.

Datasets for interface prediction

To generate a dataset for evaluating the utilitynofifs for interface prediction,
interacting protein and RNA chains were extractedhfribosomal complexes with at least
3.5A resolution. Proteins of length less than 25nanacids and RNAs of length less than
100 ribonucleotides were not included. The inteoacinformation (i.e., interfacial residues)
for these chains was downloaded from PRIDB (Lestial, 2011). For this dataset, residues
in protein and RNA chains were defined as intenacii any atom in one chain lies within a
5A distance cutoff from any atom in the other ch&edundant protein sequences (i.e., with
> 30% sequence identity across the entire lengthjanting with similar RNA sequences
(i.e., with> 30% sequence identity across the entire lengting @iscarded and vice-versa
for redundant RNA sequences. This resulted inal 6ft1,637 interacting protein-RNA
pairs. 327 pairs were kept aside for independealiuation and 5-fold cross-validation was

performed on the remaining 1,310 pairs.

Generating a protein-RNA interface motif lookup tade

The protein-RNA interface motif lookup table consisf pairs of protein and RNA
interfacial sequence motifs that are known to ottreae another (i.e., to have at least one
amino acid-ribonucleotide interaction) in a chagazed protein-RNA complex. Entries in
the lookup table were obtained as follows: Fitsg, protein sequences in all known protein-
RNA pairs were scanned for interfacial sequencefs@tentified as described above) using

a sliding window approach. Similarly, RNA sequenaese scanned for interfacial sequence
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motifs. Second, every pair of prot-RNA sequences in the dataset of known pr-RNA
interactions was scanned to identify cases in wthiehe exiss at least one physic

interaction between the amino acids and ribonuitlestof a corresponding pair of seque

A) Protein motifs RNA motifs
PR;LK AUUAC
RSLEKK AAGCA
SLEEKG ACCCG
KTWSR UUARU
TRTYR UAUUG
YVGVK UUGCA
B)
Protein _
(1194-s) |PRSLKKGVEVDDHLLEKVLELNAKGEKRLIKTWSRI.VGHKLGEFAFTRTYR
1 31 77
ENA
(1194-) UGUUGG...GGUE;UAALIUCGEAGCAIACGCGAAG..AUGCUAGGG AACCCGGG...
1
c) D) Protein-RNA Motif lookup
table
PDB ID |PChn |AA# |AA |Patom [RChn |[NT# |NT |Ratom |Distance
194 | F7[THR |O A 9364 N6 3.35 PESLE ACCCE
134 |5 TBlARG | CB A 364 NE»I 4,75 RELKK Accce
1194 |5 T9(THR |C A 934U c4 4.39 TRTYR ACCCG
TRTYR UUARAT

motifs. If an interaction is observed, that partie proteil-RNA sequence motif pair

added to the lookup table. This method is fur explained in Figure. 5.1.

Figure 5.1 Generating the [rotein-RNA motif lookup table. A) A subset of the protein and RNA
interfacial motifs used to san target sequences are showB) The protein and RNA sequence of eac
protein-RNA pair in the training d ataset are scanned with these interfacial motifs.d¥ the purpose of
illustration, only a portion of the example sequenes and a subset of the interfacial motifs (indited in
green boxes) are showrC) PRIDB is used to identify interacting residues \ithin an distance threshold of
5A. Only a subset of interactions identied in this example are shownD) Only protein and RNA motif

pairs which contain at least one such interactiondtween them are added to the prote-RNA motif
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lookup table. Of the eighteen possible protein-RNAnotif pairs illustrated in this example, only four

satisfy this criterion and are added to the lookugable.

Motif-based prediction of interfacial residues in th RNA and protein

After generating the protein-RNA interface motibkup table, prediction of
interfacial residues in a query protein-RNA pairsvagne in a single step. The protein and
RNA sequences were scanned simultaneously forréeepce of all motif pairs in the lookup
table. If any motif pair is present, those aminma@nd ribonucleotides are marked as
“interfacial” in the given sequences. The remainiegidues and ribonucleotides are marked
as non-interfacial residues. For example, usinddblkup table in Figure 5.1, if TRTYR’ is
found in the query protein and ‘UUAAU’ is found the query RNA, the corresponding

amino acids and ribonucleotides are predictedtasfatial residues.

Performance evaluation

We used the following measures to evaluate theopeeince of motif-based
prediction of interfacial residues on both proteansl RNAs. TP (true positives) refers to the
number of interface residues correctly identifisdsach by the method. FP (false positives)
refers to the number of non-interface residues lassdied as interface residues. FN (false
negatives) refers to the number of interface ressduisclassified as non-interface residues.
TN (true negatives) refers to the number of noeffiace residues correctly identified as such

by the method.

S itivity = P
ensitivity =
e TN
Specificity =

TN + FP
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TP

p . . —_
recision TP + FP

TP X TN — FP X FN
J(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

Results

Distribution of interfacial amino acid motifs in pr oteins from known protein-

RNA complexes

Although there are 2@lifferent potential combinations of amino acid &m) only
0.3% (11,269) of the theoretically possible motvire observed in interfaces extracted from
known protein-RNA complexes (1,408 complexes, casipy 17,385 protein chains) in the
PRIDB database (Lewkst al, 2011). In this comprehensive dataset of intedacertain
motifs, such as ‘AKTDS’, ‘LPVRG’ and ‘DPHPG’, aredhly over-represented relative to
other motifs (data not shown). To examine the fesqy distribution of these motifs, we
extracted motifs from a non-redundant subset oatiwve dataset, which was generated
using Blastclust with a 30% sequence identity duiidie motif frequency distribution plot
obtained for the non-redundant dataset is showiguare 5.2. Several peaks corresponding
to interfacial motifs that occur at a high frequgmace observed (e.g., AKTDS, LPVRG,
QYAKT). Approximately 50% of the protein 5-mer nmistare observed only once (as a

contiguous stretch of interfacial residues) inititerfaces.
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Figure 5.2 Frequency distribution of protein 5-mermotifs in non-redundant protein sequences in
PRIDB. Some of the peaks corresponding to highly presented motifs such as ‘AKTDS’ and ‘LPVRG’

are labeled.

Motif-based partner-specific prediction of interfadal residues

To evaluate whether an interface motif lookup tadale be used to predict interfacial
residues in specific protein-RNA pairs, we firstfpemed preliminary experiments in which
we tested the effect of varying the length of proteotifs from 4 to 6 amino acids, and the
length of RNA motifs from 4 to 8 ribonucleotidegéMethod$. As expected, using shorter
motifs resulted in a larger number of false posifivedictions, whereas using longer motifs
resulted in larger number of false negative préahist Based on these results, we determined
that a protein motif of length 5 should provideand balance between prediction specificity
and sensitivity.

To predict RNA binding residues in the protein camgnt of a given protein-RNA

pair, we used a protein motif size of length 5 waded the RNA motif lengths from 4 to 6.
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Table 5.1 summarizes the average prediction reshtined using a 5-fold cross validation
approach, in which 80% of the data was used torgeméne protein-RNA motif lookup table
and predictions were made on the remaining 20%eftlata. There is little difference in the
specificity or correlation coefficient (CC) usindNR motifs of length 4 and 5. Although
using an RNA motif of length 6 resulted in highpesificity (0.94), it resulted in lower
sensitivity and CC compared with using RNA 4- anmhérs. Using an RNA 4-mer resulted
in higher sensitivity (0.65) compared with usingasd 6-mers.

Table 5.1 RNA-binding residue prediction performane using 5-fold cross validation on a non-

redundant dataset of 1,310 protein-RNA pairs

Pro}ginngmmif Rl\ll;;ntﬁtif Specificity Sensitivity CC
5 4 0.90 0.65 0.58
5 5 0.92 0.61 0.58
5 6 0.94 0.54 0.54

To predict which ribonucleotides in the RNA compohef a given protein-RNA pair
participate in protein binding, we again used agiromotif size of length 5 and varied the
RNA motif lengths from 4 to 6. Table 5.2 summariies prediction results obtained in 5-
fold cross-validation experiments. Again, as theARNotif size is increased, the specificity
increased, but with the expected decrease in satysitA high specificity of 0.91 is
obtained using an RNA motif length of 6, but theresponding CC is much lower than that

obtained for RNA binding site prediction (Table).1
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Table 5.2 Protein-binding residue prediction perfomance using 5-fold cross validation on a non-

redundant dataset of 1,310 protein-RNA pairs

Pro}ginngmmif Rl\ll;;ntﬁtif Specificity Sensitivity CC
5 4 0.35 0.89 0.07
5 5 0.69 0.75 0.13
5 6 0.91 0.55 0.21

Prediction on an independent test set

To more rigorously test the performance of the méthve evaluated it on an
independent dataset of 327 protein-RNA pairs (8ethod3. As summarized in Table 5.3,
using protein and RNA motifs of length 5, we ob&lr92% specificity and 64% sensitivity
in predicting RNA binding residues. In predictingpein binding ribonucleotides, the
specificity was 67% and sensitivity was 79%. Thesformance on the independent test set
was comparable to that obtained in cross-validagiperiments. This suggests that our
proposed “partner-specific” method for predictingA&Rprotein interfaces using sequence

motifs, which we call PS-RPIMotif, should be gerigrapplicable.
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Table 5.3 Prediction performance on an independenest set 0f327 protein-RNA pairs

using protein and RNA motifs of length 5.

Prediction Specificity Sensitivity CC
RNA binding amino
acids in proteins 0.92 0.64 0.59
Protein binding 0.67 0.79 0.13

nucleotides in RNA

Comparison with other interface prediction methods

Only one other published study has addressed #ugbion of binding sites in
proteins and RNAs simultaneously. The catRAPID métproposed by Belluceit al.

(2011) divides the protein and RNA sequences intaraber of fragments and calculates
interaction propensities between each pair of preRNA fragments. Binding site prediction
on a per residue basis was not reported. Becaitbenthe details of the method nor the
performance evaluation results were reported, waaacompare our PS-RPIMotif method
with catRAPID.

The only other published method for predicting piotinding sites in RNAs was
reported by Choi and Han (2013). Unfortunately,hage not been able to make direct
performance comparisons with their method becaagkar their test dataset nor a working
webserver is available. In an earlier report, Gial Han also proposed a partner-specific
RNA binding site prediction method, in which the REequence is encoded as the sum of
the normalized positions of each nucleotide (AGGNd U) in the sequence (Choi and Han,
2010). When we examined the dataset used in thdy,sive noticed that all except one RNA

sequence was less than 100 nucleotides in lengthapproximately half of the dataset
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consists of very short RNAs (< 15 nts). Becausentiremum length of the RNA used in our
training dataset is 100 nt, and, as discusseckiméixt section, our method is not suitable for
small RNAs, we did not compare PS-RPIMotif with €and Han’s method. There is no
webserver implementing the Choi and Han methodvandid not attempt to re-implement it
in order to provide a direct comparison with ourtlneel. Choi and Han reported prediction
performance of 91% specificity, 60.7% sensitivityhna CC of 0.24 on a dataset of 267
interacting protein-RNA pairs (Choi and Han, 2010).

We were able to compare the performance ofpaumner-specific®S-RPIMotif
method with existingnon-partnerspecific sequence-based methods for predicting RNA
binding residues in proteins. Wabk#al. (2013) performed a systematic comparison of
existing methods for predicting RNA binding residand showed that PSSM-based
methods had the best performance among publislogesee-based approaches. Thus, we
directly compared the performance of PS-RPIMotitvRNABINndRPlus (Waliaet al, in
preparation), which combines homology-based prigdhistwith predictions from an
optimized SVM classifier that uses a PSSM-basedaaguh. Because homology-based
methods exploit existing structures and interfaaes, our independent test set was extracted
from the PDB, we expected the homology-based metihpérform very well. Homology-
based methods fail, however, when the query seguesE no homologs in the PDB. We also
compared our method with the SVM component of RN#ABRPlus and the results are also
shown in Table 5.4. PS-RPIMotif has better perfarogain terms of specificity (0.92), but
lower sensitivity (0.64) compared to RNABINdRPIBNABINdRPIus had the highest CC

(0.71); the CCs for the other two methods werelam(0.59 vs 0.61). A larger difference is
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seen in the precision (or positive prediction ratiethe two methods: PS-RPIMotif has
higher precision (0.80) than RNABIndRPIlus (0.76)tlis dataset.

Table 5.4 Performance comparison of PS-RPIMotif andcRNABIndRPIlus in the prediction of

RNA binding sites.

Method Specificity Sensitivity Precision CC
PS-RPIMotif 0.92 0.64 0.80 0.59
RNABIndRPlus 0.85 0.88 0.76 0.71
RNAB'“Sﬁ;’ES (SVM-— (.74 0.90 0.65 0.61

* The RNABindRPIlus (SVM-only) did not return pretians for protein chains 1W2B_G, 3D5B_J

and 1JJ2_G; it failed to generate PSSMs for thegaeaces.

Discussion

Our results indicate that specific subsets of sbontiguous interfacial motifs are
over-represented relative to other interfacial fsatiithin the sequences of both protein and
RNA components of protein-RNA complexes. A largenbver of interfacial amino acid
motifs occur only once in the dataset analyzed.Hérs may be a consequence of the
criteria for generating the short RNA binding meiifi this study: all residues in an
interfacial motif must be contiguous in sequenac RISt interact with at least one atom in a
ribonucleotide within a 5 A distance cutoff. Itsgiking that a simple lookup table of motif
pairs, identified in a training set of protein-RNAmMplexes, can be used to accurately predict
interfacial residues in an independent set of cengd. Although we have not yet directly
calculated the interface propensities of thesefste., the over-representation of these

motifs in interfacial versus non-interfacial regsoof the protein and RNA sequences), it may
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be possible to improve prediction of interfaciaideies by focusing on motifs with high
interface propensity.

The interface prediction results reported here detrate that an RNA motif of
length 5, while not informative on its own, cantbghly informative when used in
combination with a protein motif of length 5. Frahe non-redundant dataset of RNA-
protein complexes used in this study, we generatedkup table of 55,154 protein-RNA
motif pairs, comprising 3,275 unique protein moéfed 835 unique RNA motifs. Using a
non-redundant dataset is the appropriate way tluateaand compare interface prediction
methods, but doing so is expected to exclude safoemative motif combinations. Thus, we
created a motif lookup tableithoutdiscarding redundant motifs. As expected, many
additional protein-RNA motif pairs were identifie@ total of 88,994 protein-RNA motif
pairs, comprising 4,035 protein motifs and 893 RMétifs.

Our results indicate that binding partner informaatiwhich has been largely ignored
for predicting interfacial residues in protein-RNAmplexes, can be valuable for making
“partner-specific” interface predictions. Figur@ Hllustrates this with an example. In tBe
coli ribosome 16S rRNA in the small subunit interacts with vasgrotein components of
the 30S subunit, using different binding sitesetattion of S4 and S11 proteins with a
segment of 16S ribosomal RNA (PDB 4GAS) is showth&inset of Figure 5.3. In this
structure, the majority of 16S rRNA nucleotidest thiad the S4 protein are located in the
region 400 — 440. In contrast, region 670 — 72068 RNA contains most of S11 protein
binding residues. In 16S RNA, different interfacedctions are obtained for the S4 and S11

proteins. As shown in Figure 5.3, many interfacesidues are correctly predicted in the S4
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binding region, while on the same regions, wherg @btein does notind, only a few

residues are incorrectpyredicted as interfacial (i.e., are false posipvedictions)

Prediction results for 165 RNA interaction with S4 protein

GCCGCGUGUAUGAAGARA GUUGUA ACUU
———————————— i113iiizasiaiag)———————-o-131313 ——13111

GUGUA CGGGU

TP — True positives

FP — False positives

Figure 5.3Example of a partner-specific interface prediction. Different interfacial residues
(protein-binding residues) are predicted for the san RNA sequence (Residues 3887 of 16S RNA (PDE
ID: 4GAS)), when it is paired with two different protein partners (S4 protein and S11 protein). Th
predictions are indicated by ‘1’ and -‘. The inset picture shows the structure of 16S ribsomal RNA

bound to proteins S4 and S11. Residues -437 are part of the S4 binding region.

PS-HomPPI is a partn-specific homologyased method for predicting prot-
protein interaction sites; it predicts interfagi@sidues in both partners of a query prc-
proten complex by identifying homologous protein pawshich a complex structure
available (Xueet al, 2011). The method performs very well if a proteamplex

homologous to the query can be identified in thé8PBS-RPIMotif takes into account tt
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partner information, as does PS-Hom-PPI, but diffierthat it uses only small sequence
motifs to scan the inputs.

A limitation of the current PS-RPIMotif method fsat it cannot predict interfacial
regions of lengths shorter than 5 residues bedhesainimum length of motifs used for
scanning the sequences is 5. In particular, theeoirmplementation cannot accurately
predict interface residues in very short RNAs. $RNAs (which often correspond to
interface-containing fragments of much longer RNtessent in native complexes) are
common in structurally-characterized protein-RNAngdexes in the PDB. Thus, the
likelihood that every ribonucleotide in such an Ri$Aan interfacial residue is very high
compared to the situation for longer RNAs, in whacbnly a small fraction of the
ribonucleotides directly contact the bound pro®inBecause of this short RNA bias in the
PDB, we excluded RNAs less than 100 nts in lengtlgénerating our motifs (sééethods.

In our experiments, PS-RPIMotif performed well oONAS greater than 100 nts in length, but
poorly when tested on RNAs shorter than 100 ntea(dat shown). Thus, PS-RPIMotif can
be used to predict protein-binding sites in MRNAS\As, long non-coding RNAs and many
short ncRNAs, but predictions on RNAs less thanii8are likely to be unreliable.

In future work, we plan to evaluate effect of inporating predicted RNA secondary
structure in the RNA sequence representation, wimai lead to better performance in
predicting protein binding residues in RNA. Curkgnive are evaluating whether our motif-
based approach can be applied to the partner pimdproblem (i.e., predicting whether or
not a given protein-RNA pair will interact). A wedyser for PS-RPIMotif is under

construction and will be available soon.
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Conclusion

We have developed a new method for predicting paigpecific interfacial residues
in protein-RNA complexes using short sequence madiB5-RPIMotif can simultaneously
predict interfacial residues in both the proteid &NA components of a complex. An RNA
motif of length 5, in combination with a protein tii@f length 5, can be used to predict
interfacial residues with high specificity (0.92 RNA binding residues in proteins; 0.67 for
protein binding residues in RNA), indicating th&-RPIMotif can be a valuable tool for
experimentalists who wish to target interfacespecsic protein-RNA complexes or to

perturb specific interactions in protein-RNA intetian networks.
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CHAPTER 6. GENERAL CONCLUSIONS

Protein-RNA interactions are responsible for regntpa wide variety of cellular
processes. Characterization of these interactinalsiding identification of RNA-protein
interaction partners and interfacial residues otgins and RNAs, is essential for
understanding how these processes are regulatdds ldissertation, we have presented: i) a
new method for predicting protein-RNA interacticerimers; ii) a webserver for predicting
partners; iii) a comprehensive database of knonwtep-RNA interactions; and iv) a new
“partner-specific’ method for predicting interfacrasidues on proteins and RNAs

simultaneously.

Contributions

Classifiers that predict RNA-protein interaction partners

We developed a novel sequence-based machine lganathod to predict whether a
given protein and RNA interact (Muppiradaal, 2011). We demonstrated that, at least for a
large dataset of protein-RNA complexes extractethfthe PDB, the protein and RNA
sequences alone (i.e., without taking advantagapfavailable structural or functional
information) contain enough signal to allow rel@lprediction of interaction partners. Our
method was also shown to perform well on an inddpehdataset of RNA-protein
interactions extracted from NPInter (V@ual, 2006), and to accurately predict ncRNA-
protein interaction networks. Our approach cansezluo predict either putative RNA
partners for a target protein or putative protaripers for a target RNA. One of the

limitations of this method is a high number of &fsositives when tested on non-RNA
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binding proteins. This can be overcome by usingmegative examples to train the

classifiers.

A webserver for predicting binding partners of proteins or RNAs

We developed RPISeq, a server for predictingrberaction probability of a given

protein-RNA pair [ittp://pridb.gdcb.iastate.edu/RPISedRPI1Seq allows users to submit

multiple protein or RNA sequences and to make ptextis on a large scale. RPISeq has
been accessed thousands of times from 25 courDiesrecent study used the RPISeq
webserver to identify linc-UBC1 RNA as a potentrdkeraction partner of the PRC2
(Polycomb Repressive Complex 2) protein; this prgoin was experimentally validated
using RNA immunoprecipitation (Het al, 2013). At this time, since the webserver restrict
the length of input proteins and RNAS, it is nosgible to run large scale predictions on the
entire proteome or transcriptome of an organisnwéi@r, users can request an offline

version of the program is available upon request.

A comprehensive database of RNA-protein interactios

We developed RPIntDB, a comprehensive databaR&IgFprotein interactions,
which is integrated with the RPISeq webserver. RPBnis a collection of interactions from
existing literature and databases, such as PRIR®Bidet al, 2011) and NPInter (Wet al,
2006), Currently, RPIntDB contains 44,586 intei@atd comprising 2190 unique proteins
and 11,928 unique RNAs. Queries of RPIntDB candmsluo complement or corroborate
RPISeq predictions: users can identify potentiaARdrtners for a protein of interest based
on a BLAST search against protein sequences intRBInThe search returns homologous

protein sequences for which interacting RNA padrage known. Taken together, RPISeq
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and RPIntDB are valuable resources for those istedein studying protein-RNA interaction

partners.

A motif-based method for “partner-specific” interface residue prediction

With the goal of identifying sequence motifs potalhy predictive of protein-RNA
interfaces, we performed an analysis of contiguntesfacial amino acids and
ribonucleotides in protein-RNA complexes in the BRI We showed that certain protein 5-
mers occur more frequently than others in intedaBased on this result, we a developed a
novel sequence motif-based method that simultamgpusdicts interfacial residues in both
the protein and RNA partners of a complex. We destrated that protein 5-mer motifs, in
combination with RNA 5-mer motifs, can be used tedict “partner-specific” interfacial
residues, and that using available binding paitrffermation leads to higher precision in the

prediction of RNA-binding amino acids in proteins.

Future Studies

Predicting protein-RNA interfaces and interacti@mtpers are challenging problems.
Especially, predicting protein binding residuesiNA is a very hard problem that has
received very little attention to date, and thedpr#ons we have obtained so far are not
optimal. There are several avenues to pursue td boithe work presented in this
dissertation to improve both the prediction of pmetRNA interfaces and the prediction of
interaction partners.

Improving the prediction of interaction partners by RPISeq: One limitation

mentioned above is the lack of validated “negatimedmples for training classifiers that
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predict interaction partners. In training the R&J®lassifiers, positive examples were
derived from proteins and RNAs found in structwyralharacterized complexes (i.e., from the
PDB). Negative examples were generated by randpailjng the same set of proteins and
RNAs (and removing any pairs that were presertiénpositive set). Making use of real,
experimentally-validated negative examples idegdifiin high throughput RNA-binding
experiments such as RIP-Chip (Keatal, 2009) would be expected to improve prediction
accuracy.

For protein-protein interactions, theegatome (Smialowslat al, 2010), is a
database of protein and protein domain pairs tteatialikely to be engaged in direct
physical interactions. For protein-RNA interactipne such database exists. It would be
useful to have a repository of non-interacting @iiRNA pairs. Information on non-
interacting pairs can also be obtained from sorgh-throughput experiments (Rayal,
2009). In future, we plan to provide a user-frigniditerface through which researchers can
submit their interaction data (both positive andatere examples) for incorporation in the
RPIntDB database. Submitted information will beated and added into the database.

Further development of RPINtDB: The current implementation of RPIntDB allows
users to input a single protein sequence to olbt@amologous proteins and their
corresponding RNA partners. In the future, we péaprovide search functionalities that will
enable users to search for specific RNA sequerxegh We also plan to provide options
to filter the search results based on the sourast@factions.

Increase distance cutoff for predicting interfacesfor prediction of interfacial
residues, we have obtained the sequence motifg agilistance cutoff of 5A. While this

cutoff is sufficient to capture many types of sharige interactions, it may miss important
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longer range interactions such as electrostatézastions (typically ~8 A). By increasing the
distance cutoff, we may be able to capture moexaation signals.

Develop a webserver for “partner-specific” predicton of interfacial residues:
Application of any prediction method is limitectlifere is no available webserver or an easy
way to reproduce the method. We are developingrawebserver that implements the
partner-specific interfacial residue prediction hoet. Users will input a pair of potentially
interacting protein and RNA sequences. Outputpvidvide predicted interfacial residues
labeled as ‘+’ and non-interfacial residues labelsd. We will provide provision for batch
submission of multiple protein-RNA pairs. We wilsa allow download of the protein-RNA
motif lookup table.

Develop a multi-stage classifier for predicting inéraction partners and
interfaces: We have developed two methods for i) predictingtgin-RNA interaction
partners and ii) interfacial residues. Future wahkuld include combining these methods to
generate a multi-stage classier. First, a givetepr can be tested for its RNA-binding
propensity. If it is predicted to be an RNA bindimgptein, then its interaction with a given
RNA(s) can be tested. If there is a high probabditinteraction with a specific RNA
sequence, the interfacial residues can be predistied) the motif-based method (or other

methods developed in our group for predicting fiai@al residues in RNA binding proteins).
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APPENDIX A. IMPLEMENTATION OF RPISEQ AND
RPINTDB

In this chapter, the back-end code and implemeamtati RP1Seq webserver and
RPIntDB database are provided.

The RPISeq webserver is developed using Perl, RidRHaAML. It has 4 different
forms to accept input. The first form accepts amg protein and one RNA sequence at a
time. This is the default page for RPISeq. ‘batobtiptml’ allows user to upload a FASTA
file of RNA sequences and a single protein sequenp&in text format. Similarly,
‘batch_rna.html’ accepts multiple protein sequerares a single RNA sequence. The
pseudocode given below converts the input sequentea feature vector as described in

the original algorithm. Each line generated coroesis to a single RNA-pair.

#!/bin/perl

##NOTE:

## The model files used for predictions were built using Weka 3.7.0. The
models are incompatible with any other version of W eka.

## Input: [Protein file] [RNA file].
## The input files are in the usual FASTA format.

## HOW THE PROGRAM WORKS:

## 1. Load the protein sequences into a hash.
nmy %protein_sequences =();

## 2. Load the RNA sequences into a hash

ny %rna_sequences = ();
## The individual amino acids and nucleotides are s eparated into groups.
The mapping is given below.
ny %proteinGroups = (
‘AN =>0,
‘G =>0,
Vo =>0,
To=>1,

Lo=>1,
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=1,
Po=>1,
Y= 2,
‘™Mo=>2,
T =2,
'St =2,
H =3,
‘N =>3,
Q =>3,
‘W =>3,
'R =>4,
'K =>4,
D" =>5,
'E' =>5,
=6 );
ny %rnaGroups = (

‘AT =>0,

Uo=>1,

c =2,

‘G =>3

)

## Each line in the weka input file corresponds to
pair.

## We need to generate the input file for Weka pred
input variables is equal to P*3 + R,

## The number P corresponds to the number of protei
number R corresponds to the number of RNA groups (4

## For the protein sequence, we count every 3-mer i
'GVI', 'LYC', etc.).

for (my $c =0; $c < length (@protein ) - 2;
{
ny $three_mer 0 = @protein [ $c];
ny $three_mer 1 = @protein [$c +17];
nmy $three_mer 2 = @protein [$c +2];
nmy $three_mer = $three_mer 0 . $three_mer_1
## Keep a count of the three-mers.
$counts { $three_mer } ++;
}

## Calculate the maximum and minimum counts.

$minimum
$maximum

min (val ues %ecounts ) ;
max( val ues %counts ) ;

## Calculate the weighted average of each 3-mer in

++5¢)

a single protein-RNA

iction. The number of

n groups (7) and the
).

n the sequence (eg.

. $three_mer_2 ;

the protein sequence

$weighted { $three_mer } = (S$counts {S$three_mer } - $minimum)/ ( $maximum) ;
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## For the RNA sequence, we do the same thing as ab ove for every 4-mer in
the sequence (eg. 'AUUG', 'GCAC")

for (ny $c =0; $c < length(@rna) - 3; ++%c)
{
nmy $four_mer 0 = @rna[ 0] ;
nmy $four mer 1 = @rna[$c +11];
ny $four mer 2 = @rna[ $c +21];
nmy $four mer 3 = @rnal $¢ +31];
nmy $four_mer = $four_mer 0 . $four_mer_1 . $four_mer_2 . $four_mer_3
$counts { $four_mer }++;
}
$minimum = min(val ues %counts ) ;
Smaximum = max(val ues %counts ) ;

$weighted { $four_mer } = (S$counts {S$four_mer } - $minimum)/ ( $Smaximum) ;

## From these weighted counts, we can construct the input weka line
ny $weka_ line =" ;
for (ny $c =0; $c <343 ; ++5c)
$weka_line .= $weighted { $three_mer };
}
for (ny $c =343 ; $c <343 +256; ++5c)
{
$weka_line = $weighted {$four_mer };
}

Add the arff header to the generated input. Thighesdider file lists the data types of
the 599 features encoded in the vector. The fnstlines and the last files of the arff header

file are shown below.

@relation interactions

@attribute P1 NUMERIC
@attribute P2 NUMERIC
@attribute P3 NUMERIC

@attribute R254 NUMERIC
@attribute R255 NUMERIC
@attribute R256 NUMERIC




101

While making predictions on a single protein withltiple RNAs, the feature vector
encoding of the protein is concatenated with eV encoding vector. For example, 1
protein and 20 RNAs will generate a 20-line wekauirfile. After appending the arff header
to the beginning of the file, predictions are obéal by running the models on the weka input
file.

The fourth form of RPISeq webserver is RPIntDB.htidgre, the user can submit a
protein sequence to obtain homologous proteinkgardatabase and their interacting RNA
partners. The users have the option of adjustiagthalue for the BLAST run.

In RPIntDB, there are 3 tables: interaction, protnd rna. The schema for these
tables are shown below.

The ‘interaction’ table contains the protein id&atiand rna identifier of an
interaction pair along with its source. Proteinntiigers are typically UNIPROT identifiers.

If there is a structure associated with the complex identifiers are PDB complex id with

chain identifiers (e.g. 1ASY_A for protein and 1A for RNA).

Field Type Null Key Default Extra
uid int(11) No PRI NULL | auto_increment
proteinid varchar (60) No NULL
rnaid varchar (60) No NULL
source Text No NULL
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The ‘protein’ table contains information about preteins listed in the ‘interaction’
table. The information includes name of the prqgteeagquence and PDB complex name

(when structures are available). The ‘rna’ tabletams similar information about the

interacting RNAs.

Field Type Null Key Default Extra
uid int (11) No PRI NULL | auto_increment
proteinid varchar (60) No NULL
Complex Text YES NULL
name Text YES NULL
sequence Text No NULL
Field Type Null Key Default Extra
uid Int (11) No PRI NULL | auto_increment
rnaid| Varchar (60) No NULL
Complex Text YES NULL
name Text YES NULL
sequence Text NULL

All the protein sequences in the database aretedlén create a FASTA file.

‘makeblastdb’ command is used to format the prasequences for use with BLAST
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program. When the user submits a protein sequentseecifies a threshold, the ‘blastp’
program is used to search the formatted proteiabdae using the query sequence. If the user
does not specify an e-value, a default value d@1ds used. The BLAST results are then
parsed to obtain the homologous proteins and tredues for each hit. The protein hits are
then used to query the ‘interaction’ table to abthie interacting RNAs and the sources. The
protein and RNA information for each pair are ob¢al from the ‘protein’ and ‘rna’ tables
respectively.

Whenever RPIntDB is updated with new entries, nevtgin database has to be

created to include all new protein sequences.
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APPENDIX B. PRIDB V2.0: AN UPDATE TO THE PROTEIN-

RNA INTERFACE DATABASE

Abstract

The Protein-RNA Interface Database (PRIDB) is ap@hensive database of
protein-RNA interfaces extracted from protein-RN#mplexes in the Protein Data Bank
(PDB). It is designed to facilitate both detailedgestigation of individual complexes and
creation of custom datasets. PRIDB provides atoamd-residue-level interaction
information for 1,484 protein-RNA complexes, consprg 16,350 protein chains and 3,398
RNA chains. Information about interactions and dateal motifs can be visualized within
linear primary sequences of proteins or RNAs, aekfacial residues can be displayed in
the context of three-dimensional structures, @ machine-readable file format. Here, we
present several new features of PRIDB: integradioRNA structural motifs from the RNA
3D Motif Atlas; refinement of the geometric rulesed to define protein-RNA interactions;
visualization of user-submitted structures, alloywietailed examination of structures not
currently in the PDB; an additional non-redundaatidet, RB344, which includes
annotations of protein-RNA complexes; and sevegdigpmance improvements to increase
user interface responsiveness and decrease compatdime requirements. The PRIDB

database is freely availabletdtp://pridb.gdcb.iastate.edu
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Introduction

Protein-RNA interactions play important roles inmpaellular and developmental
processes. The results of the ENCODE Project (Mjetbal, 2012) suggest that our
understanding of the roles and prevalence of nalingodRNAS in the human genome
remains largely incomplete. While high-throughpedencing technology has led to
exponential growth in the availability of RNA seaques, the corresponding growth in
experimentally determined structure information basn considerably more modest, with
protein-RAN complex structures comprising only ~1#&touctures in the Protein Data Bank
(PDB). Despite these limitations, careful analydidgetailed structural information has
provided insights into fundamental principles obtein-RNA recognition (Borozaet al,

2013) and characteristics of protein or RNA molesuhvolved in protein-RNA complexes
(Iwakiri et al, 2013, Ananttet al, 2013). This information also informs computatibna
methods, which have applied structural informatmithe problems of protein-RNA docking
(Perez-Canet al, 2010, Huangt al, 2013), protein-RNA interaction prediction (Putetn
al., 2012, Walieet al, 2012), and protein-RNA partner prediction (Mupgaret al, 2013,
Cirillo et al, 2013).

PRIDB is a repository of protein-RNA interfacesided from structures in the
Protein Data Bank (PDB). For each protein-RNA carpPRIDB uses atomic coordinate
information to calculate interface information wgim distance threshold-based definition and
geometric rule-based criteria. This information baraccessed as annotations on the primary
sequence of each protein or RNA, as a three-dirapaktisplay implemented via a JMol
applet, or as a machine-readable CSV file. Usarsatso upload their own structures in PDB

format and inspect them via any of these chanheksddition to interaction information,
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PRIDB also integrates information about protein BMNA motifs from third-party sources
(see below), with links to the original databadReIlB’s robust search function allows users
to filter results by criteria such as experimemalthod, X-ray crystal resolution, protein or
RNA length, or presence of a subsequence or n8siferal pre-calculated non-redundant

datasets are also provided.

New features

Integration of RNA structural motifs from the RNA 3 D Motif Atlas

Since the initial publication of PRIDB (Lewet al, 2011), a consistent nomenclature
and accession scheme for structural motifs in R Ieen provided by the recently
published RNA 3D Motif Atlas (http://rna.bgsu.edwfifs) (Petrovet al, 2013). The motifs
from this resource are generated using FR3D (Satwad, 2008), which was used by the
previous version of PRIDB to annotate RNA strudtanatifs. PRIDB v2.0 has adopted the

RNA 3D Motif Atlas accession scheme in its annotadi

Refinement of geometric interaction definitions

PRIDB calculates interacting residues in proteinf/Rdmplexes using two different
schemes: a distance-based definition, and a rideebdefinition that considers the atomic
geometries necessary for various types of physamatal interaction. The first version of
PRIDB used rules adapted from the program ENTANGAEers and Shamoo, 2001);
however, certain classes of contacts are not atieguafferentiated by this rule set.
Following the example of Treger and Westhof (20@RJDB v2.0 introduces two new

classes of contacts: i) a ‘clash’ interaction, viahiepresents close van der Waals contacts;
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and ii) a ‘salt bridge’ interaction, which repretea hydrogen bond between a donor and
acceptor that also form an electrostatic interacfidhe definition of hydrogen bonding has
also been updated to allow carbon to act as a lygdrdonor. A full list of geometric

interaction definitions used by PRIDB v2.0 is presd in Table 1.

Visualization of user-submitted structures

PRIDB allows visualization of user-submitted strres in PDB format for interface
calculation using either of the two interactionidefons described above. Whereas the first
version of PRIDB returned that information in a imae-readable format only, PRIDB v2.0
also allows users to access user-submitted stesctua the same interface used to view
existing PDB structures in the database. This tedwisualization of both annotated

primary sequences and three-dimensional repregamatia a JMol applet.

Creation of a new non-redundant dataset, RB344

PRIDB provides several pre-calculated benchmar&sdds for the convenience of
users. These datasets are filtered to limit prateguence redundancy and exclude low-
resolution structures, making them ideal for usepst to computational methods that
require protein-RNA interaction information as Itiag’ data. PRIDB v2.0 introduces an
additional benchmark dataset, RB344, containinga bf 344 non-redundant protein chains
and corresponding bound RNA chains. RB344 was lzbkxiusing the most recent data
available in PRIDB and incorporates the modifiedrgetric rules described above. In
addition to interfacial information, RB344 is anat&d to indicate the functional class (e.g.,

ribosomal, viral) of protein-RNA complexes in thataset. The RB344 benchmark dataset
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including both interface information and functiolédss annotations are available from the

‘Datasets’ section of the PRIDB homepage.

Performance enhancements and other improvements

The previous version of PRIDB used the BioPerl ned8tajichet al, 2002) for all
interface calculations. PRIDB v2.0 instead use$’Bibon’s Bio.PDB module (Hamelryck
and Manderick, 2003), which implements a KD tre€int+ to allow rapid lookup of atom-
atom contacts. This reduces the computation tirgeired for calculation of user-submitted
complex interfaces and the time required to symuaeoPRIDB with the PDB.

After the initial publication of PRIDB, we analyzedmmonly used search criteria to
guide the creation of additional database indetkéshas considerably improved the
performance of SQL queries. This modification, dedpwith other alterations to the front-
end PHP code, has significantly increased userfate responsiveness during complex
searches. Other portions of the user interfacdy aa¢he tutorial and FAQ section, have also

been updated with the goal of improving usability.

Conclusions

In addition to the new features outlined above répgesentation of protein-RNA
complexes has grown substantially in the updatesioe of PRIDB. The number of protein-
RNA complexes in PRIDB has increased from 926 (lsewil, 2011) to 1,424 as of March
2013. Further, a 73% increase in the size of ndosidant datasets extracted from PRIDB
(RB199 to RB344), reflects a significant increas¢hie diversity of protein-RNA complexes

in the database. This richer database of intemstimgether with new features, such as the
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inclusion of RNA structural motifs from the RNA 3Dotif Atlas and improved rules that
more finely differentiate classes of interactiostspuld make PRIDB v2.0 a valuable

resource for researchers studying protein-RNA auons.
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