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Figure 18. Stiffness parameters for bridges with no interior diaphragms 
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In Table 3, it can be seen that for the case of two dia

phragms, (f) is dependent primarily on d/L. For all cases where 

d/L = 0.05, <)) = 0.0037±0.0002. For all cases where d/L = 0.07, 

(() = 0.0055+0.0002. Thus, the value of (j) for the cases where two 

diaphragms are present is nearly determined completely by the 

shearing rigidity of the diaphragms. 

From the preceding discussion, the physical significance 

of the parameter <)) may be seen. For the case of no diaphragms, 

an increase in (j) was accomplished by increasing the depth or 

web spacing. Thus, an increase in (j) is accomplished by increas

ing the flexural rigidity and decreasing the transverse shearing 

rigidity of the structure. For the case of two diaphragms, <j) 

is independent of the flexural rigidity. Thus, for large trans

verse shearing rigidity, an increase in cj) is accomplished only 

by decreasing the transverse shearing rigidity. 

The aspect ratio of the bridges studied above varies from 

0.30 for W = 33 feet and L = 110 feet to 1.50 for W = 75 feet 

and L = 50 feet. However, it is felt that a total width of 

75 feet is somewhat above a practical limit. A practical 

upper bound for the aspect ratio would be about 1.20. This 

would result from a short - wide bridge such as one with L = 50 

feet and W = 60 feet. 

Bridge design practice generally limits the width of 

cantilevered top edge flanges to one-half of the web spacing 

(13). The maximum effective width will occur for the greatest 
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width of edge flanges. In the case where the width of the edge 

flanges is equal to one-half of the web spacing and the thick

ness of the edge flanges is the same as the thickness of the 

interior top flange, the maximum effective width, as derived 

from equation 92, can be expected to be equal to about 

Sw(N-0.5). The minimum effective width would occur in the case 

where there are no flanges extending beyond the outermost webs. 

In this case, the minimum effective width would be equal to . 

s^(N-l.O). In the succeeding section, the extreme cases of 

effective width shown above are considered so that the behavior 

of the structure is ascertained for the entire range of edge 

conditions. 

Parameter Study 

Selected values of the governing parameters for practical 

bridge configurations have been taken from the ranges presented 

in the previous section for use in detailed behavioral studies. 

The parameter values have been selected so that they cover the 

full range of normal designs. In the case of the stiffness 

parameter, (j), and the aspect ratio, W/L, upper, lower, and 

intermediate values of these ranges were studied. To determine 

the effects of edge conditions, the full cantilevered and non-

cantilevered top edge slab conditions were studied for each 

combination of the aspect ratio and the stiffness parameter. 
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The values of <j) and W/L selected for study are: 

Stiffness parameter, <|): Values of 0.0045, 0.06, and 0.24 

were studied. 0.0045 represents the average value of $ for the 

condition of two intermediate diaphragms. It is seen that this 

value represents a practical minimum for common bridge configu

rations. As seen in Figure 18, ̂  = 0.006 is representative of 

the majority of no-diaphragm bridges where depth varies between 

2.5 and 5.5 feet. For the case of an extremely deep bridge 

without diaphragms, (j) becomes a maximum. ^ = 0.24 is selected 

to represent this maximum for practical structures. This value, 

as seen from Figure 18, represents the average stiffness 

parameter for the 7.7 feet deep bridges studied. 

Aspect ratio, W/L; Three aspect ratios, 0.318, 0.700, 

and 1.260, were studied for (j) = 0.0045 and 0.06. For (p = 0.24, 

the two aspect ratios, 0.318 and 0.573, were studied. The 

choice of these ratios follows from the previous study of the 

range of parameters. For (j) < 0.06, the width and span ranges 

are 35 feet < W < 63 feet and 50 feet < L < 110 feet. Thus, it 

follows that 0.318 < W/L < 1.260. In addition to the extreme 

values of W/L, the intermediate value of 0.700 was studied 

because of the large range of W/L. Since (f) = 0.24 occurs only 

for extremely deep bridges, it is seen from the previous study 

of parameter ranges that this stiffness parameter is obtainable 

only for long spans of about 110 feet. Thus, for 35 feet < 

W < 63 feet and L = 110 feet, it is seen that the range of 
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aspect ratios for = 0.24 is 0.318 < W/L < 0.573. An inter

mediate aspect ratio is not used in this case since the range 

of W/L obtainable for (f) = 0.24 is not great. 

Widths are explicitly defined for each of the aspect 

ratios given above for the purpose of determining the number 

of girders in each structure studied. Based on the assumed 

limiting ranges of W and L given in a previous paragraph, it 

is seen that for W/L = 0.318, W must be equal to 35 feet. 

Similarly, for W/L = 1.260 where (j) = 0.0045 and 0.06, and for 

W/L = 0.573 where (j) = 0.24, W must be equal to 63 feet. For 

W/L = 0.700, the width was chosen to be an intermediate value 

of 49 feet where L = 70 feet. The number of girders, N, was 

determined so that the spacing between the vertical webs, s^, 

was within the practical design range of 7 to 9 feet. Thus, 

for W/L = 0.318 where W = 35 feet, N = 5; for W/L = 0.700 

where W = 49 feet, N = 7; and for W/L = 0.573 and 1.260 where 

W = 63 feet, N = 9. 

Figure 19 illustrates the two edge conditions considered 

for each structure studied. For an actual bridge design where 

the width of roadway and number of girders are specified, these 

cases represent the limiting possibilities for the bridge cross-

section. In Figure 19, case 1 represents the full cantilevered 

top edge flange condition and case 2 represents the condition 

where there are no cantilevered flanges. If the top and bottom 

flange thicknesses are nearly equal, the effective width, W^, 
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for case 1, as derived from equation 92, will be approximately 

W - s^^/2, where s^j^ is equal to the web spacing for case 1, 

For case 2, it is seen that = W. Thus, if = W - s^/2, 

the effective widths and web spacings for each of the aspect 

ratios selected for the study of the effect of the cantilevered 

flange edge condition are: 

for W/L = 0.318, Wg = 31.5 feet and s^ = 7.0 feet, 

for W/L = 0.700, Wg = 45.5 feet and s^ = 7.0 feet, and 

for W/L = 0.573 and 1.260, W^ = 59.5 feet and s^ = 7.0 

feet. For case 2, the effective widths will be equal to the 

total widths. In this case, the web spacing is; 

for W/L = 0.318 or W = 35 feet, s^ is 8.75 feet, 

for W/L = 0.700 or W = 49 feet, s^ = 8.16 feet, and 

for W/L = 0.573 and 1.260 or W = 63 feet, s^ = 7.88 feet. 

Finally, the effect of the transverse position of the 

applied external loads was investigated. For each of various 

combinations of (j), W/L, and effective width, two load positions 

were used - a central load and an eccentric load. In the 

central loading case, the load was applied at the centerline of 

the structure, or at e/b = 0.0. In the eccentric loading cases, 

the centroid of the applied load is located 3.5 feet from the 

outside edge of the structures. Thus, for W = 35 feet, e/b = 

0.800, for W = 49 feet, e/b = 0.857, and for W = 63 feet, 

e/b = 0.889. The load width, 2f, used approximates the width 

of a tandem truck wheel and was set at 2.5 feet. Thus, for 
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W = 35 feet, f/b = 0.071; for W = 49 feet, f/b = 0.051; and for 

W = 63 feet, f/b = 0.04. 

In summary, three stiffness parameters were studied, 

$ = 0.0045, 0.06, and 0.24. For (j) = 0.0045 and 0.06, the 

three aspect ratios, W/L = 0.318, 0.700, and 1.260, were used, 

and for (f) = 0.24, the two aspect ratios, W/L = 0.318 and 0.573, 

were used. For each of the above combinations of parameters, 

the full cantilevered and non-cantilevered edge conditions 

were investigated. Finally, eccentric and central loading 

conditions were considered for every case studied. 

Nine coefficients have been calculated for the various 

combinations of parameters, six coefficients per unit width 

and three coefficients per beam. The six coefficients per 

unit width, as given by equations 73 through 77 and 79, are: 

longitudinal bending moment, M^, transverse bending, M^, 

twisting moment, deflection, w, longitudinal shearing 

force, Q , and transverse shearing force, Q . The three coef-X y 

ficients per beam, as given by equations 81 through 83, are: 

longitudinal bending moment, twisting moment, and 

longitudinal shearing force, . Since all loads are applied 

at mid-span, M^, w, and are measured at mid-span. 

0^, ®xb' ̂ xy' ^xyb measured at the reaction, x = 0. 

Results of the parameter study are presented for both the 

coefficients per unit width and the coefficients per beam. The 

distributed coefficients represent behavior which is dependent 
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only on (j), W/L, and the load eccentricity, e/b. It is seen that 

the transverse unit force quantities, and Q^, and the deflec

tion coefficient, w, are representable only in the distributed 

form. However, the longitudinal bending moment, twisting 

moment, and longitudinal shearing force coefficients are repre

sentable in both distributed and beam forms. Results are 

presented as coefficients per beam for the purpose of determining 

the effect of edge conditions and to show the range of design 

forces that may be expected for the range of parameters 

considered. 

Table 4 shows the extremum distributed coefficients for 

each of the combinations of parameters considered. Only the 

extremum values are shown since the effects of parameter varia

tions are most easily seen by examining these values. However, 

the complete transverse distribution of the various coefficients 

is shown in Figures 20 & 21 for a typical combination of param

eters for the purpose of qualitatively indicating the distri

butions. These figures show the distributions for the case 

where <|) = 0.06 and W/L = 0.700. Figure 20 represents a central 

load where e/b = 0.0, and Figure 21 represents an eccentric load 

where e/b = 0.857. 

Complete results of the beam distribution coefficients are 

presented so that the effects of variations of edge beam 

geometry are ascertained. Tables 5 through 7 present all beam 



Table 4. Extremum coefficients per unit width for the parameter studied 

Extremum coefficients per unit width 

$ W/L e/b 
V 

w Ox «y 

0.0045 0.318 0.0 1.209 0.097 ±0.033 1.028 1.276 ±1.321 
0.800 1.513 -0.033 0.172 1.169 1.252 1.903 

0.0045 0.700 0.0 1.664 0.380 ±0.022 1.076 1.841 ±2.823 
0.857 2.387 -0.136 0.421 1.686 1.797 3.860 

0.0045 1.260 0.0 2.480 0.830 ±0.130 1.297 2.754 ±4.010 
0.889 3.706 -0.233 0.782 2.776 3.360 6.110 

0.06 0.318 0 .0 1.333 -0 .064 ±0.070 1.085 3.535 ±0.444 
0.800 1.816 0.095 0.227 1.264 3.532 0.787 

0.06 0.700 0.0 2.053 0.131 ±0.172 1.324 6.564 ±1.005 
0.857 3.004 0.174 0.530 2.019 6.731 1.655 

0.06 1.260 0.0 3.308 0.304 ±0.348 1.913 10.787 ±1.723 
0 .889 4.641 0.228 0.969 3.422 11.647 2.720 

0.24 0.318 0.0 1.382 -0.13 8 ±0.169 1.137 6.852 ±1.850 
0.800 2.052 0.135 0.309 1.451 6.914 1.440 

0.24 0.573 0.0 2.072 -0.314 ±0.317 1.434 22.145 ±0.333 
0.889 3.447 0.286 0.615 2.318 22.377 0.819 
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Table 5. Beam coefficients for (j) = 0.0045 

\b 
Beam 

W/L e/b number Case 1 Case 2 

0.318 o
 
o
 

1 0.771 0.572 
2 1.094 1.208 
3 1.272 1.440 

0.318 0.800 1 0.678 0.498 
2 0.943 1.038 
3 1.020 1.146 
4 1.193 1.433 
5 1.166 0.886 

0.700 

o
 
o
 1 0.672 0.479 

2 0.945 0.998 
3 1.108 1.175 
4 1.549 1.696 

0.700 0.857 1 0.448 0.310 
2 0.652 0.669 
3 0.742 0.774 
4 0.877 0.945 
5 1.086 1.213 
6 1.465 1.830 
7 1.730 1.258 

1.260 0.0 1 0.532 0.361 
2 0.776 0.785 
3 0.927 0.949 
4 1.237 1.299 
5 2.057 2.210 

^xyb ®xb 

Case 1 Case 2 Case 1 Case 2 

- 0 . 0 2 2  
-0.015 

0 . 0  

0.079 
0.125 
0.147 
0.168 
0.140 

-0.001 
0.018 
0.021 
0 . 0  

0.119 
0.199 
0.258 
0.322 
0.381 
0.422 
0.333 

0 . 0 6 6  
0.135 
0.165 
0.127 
0 . 0  

-0.018 
-0.019 

0 . 0  

0.056 
0.135 
0.167 
0.197 
0.106 

0 . 0 0 2  
0 . 0 2 8  
0.033 
0 . 0  

0.079 
0.199 
0.270 
0.348 
0.414 
0.453 
0.231 

0.049 
0.146 
0.193 
0.159 
0 . 0  -

0.787 
1.062 
1.303 

0.794 
1.053 
1.049 
1.059 
1.046 

0.727 
1.009 
1.063 
1.402 

0.632 
0.830 
0.873 
0.973 
1.109 
1.237 
1.346 

0.582 
0.835 
1.006 
1.218 
1.718 

0.589 
1.191 
1.439 

0.595 
1.181 
1.183 
1.259 
0.783 

0.520 
1.076 
1.151 
1.507 

0.435 
0.849 
0.907 
1.055 
1.246 
1.516 
0.992 

0.397 
0.841 
1.030 
1.309 
1.846 



Table 5. Continued 

Beam 
^xb ^xyb ^xb 

W/L e/b number Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

1.260 0.889 1 0.191 0.125 0.076 0.048 0.273 0.172 
2 0.300 0.288 0.138 0.128 0.347 0.326 
3 0.381 0.372 0.203 0.196 0.391 0.368 
4 0.502 0.509 0.291 0.294 0.505 0.499 
5 0.686 0.719 0.406 0.420 0.717 0.747 
6 0.949 1.038 0.537 0.567 1.035 1.146 
7 1.353 1.536 0.675 0.705 1.473 1.692 
8 2.038 2.589 0.771 0.780 1.921 2.410 
9 2.600 1.823 0.611 0.390 2.339 1.640 

Table 6. Beam coefficients for <{) = 0.06 

Beam 
^xb ^xyb ®xb 

W/L e/b number Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.318 0.0 1 0.722 0.529 -0.004 -0.006 0.560 0.419 
2 1.091 1.189 0.040 0.045 0.766 0.858 
3 1.374 1.564 0.0 0.0 2.347 2.448 



Table 6. Continued 

\b 
Beam 

W/L e/b number Case 1 Case 2 

0.318 0.800 1 0.601 0.442 
2 0.859 0.941 
3 0.966 1.088 
4 1.226 1.516 
5 1.349 1.014 

0.700 o
 

o
 

1 0.579 0.407 
2 0.861 0.890 
3 1.138 1.190 
4 1.843 2.025 

0.700 0.857 1 0.379 0.256 
2 0.544 0.544 
3 0.628 0.644 
4 0.775 0.833 
5 1.023 1.167 
6 1.541 2.048 
7 2.110 1.508 

1.260 0.0 1 0.414 0.277 
2 0 .626 0.618 
3 0.828 0.828 
4 1.316 1.363 
5 2.631 2.830 

^xyb ^xb 

Case 1 Case 2 Case 1 Case 2 

0.038 
0.144 
0.177 
0 . 2 2 6  
0.148 

-0.004 
0.091 
0.163 
0 . 0  

0.037 
0.121 
0.211 
0.317 
0.433 
0.532 
0.331 

0.014 
0.121 
0.245 
0.347 
0 . 0  

0.023 
0.121 
0.211 
0.276 
0.070 

- 0 . 0 0 2  
0.091 
0.188 
0 . 0  

0 . 0 2 0  
0.109 
0.214 
0.314 
0.482 
0.594 
0.129 

0.005 
0.108 
0.252 
0.385 
0 . 0  

0.549 
0.729 
0.742 
0.776 
2.203 

0.493 
0.703 
0.799 
3.010 

0.345 
0.481 
0.546 
0.658 
0.815 
1.009 
3.145 

0.346 
0.535 
0.709 
0.975 
3.867 

0.402 
0.803 
0.837 
1.298 
1.660 

0.348 
0.739 
0 . 8 6 2  
3.101 

0.229 
0.477 
0.557 
0.706 
0.922 
1.804 
2.305 

0.230 
0.526 
0.715 
1.038 
3.981 



Table 6. Continued 

xb xyb ®xb 
Beam ^ 

W/L e/b number Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

1 0.136 0.087 0.019 0.010 0.117 0.071 
2 0.206 0.191 0.061 0.051 0.171 0.153 
3 0.269 0.253 0.112 0.102 0.220 0.202 
4 0.377 0.371 0.183 0.177 0.309 0.300 
5 0.555 0.573 0.287 0.290 0.460 0.471 
6 0.828 0.905 0.440 0.465 0.691 0.752 
7 1.277 1.482 0.661 0.718 1.040 1.191 
8 2.145 2.945 0.902 0.975 1.509 2.605 
9 3.207 2.193 0.590 0.209 4.489 3.256 

Table 7. Beam coefficients for 4) = 0.24 

Beam 
^xb ^xyb ^xb 

W/L e/b number Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.318 0.0 1 0.700 0.507 0.017 0.009 0.255 0.189 
2 1.092 1.184 0.113 0.126 0.351 0.392 
3 1.417 1.618 0.0 0.0 3.789 3.838 



Table 7. Continued 

Beam 
^xb ^xyb ®xb 

W/L e/b number Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.318 0.800 

0.573 0.0 

0.573 0.889 

1 0.488 0.355 -0.017 -0.019 0.221 0.157 
2 0.765 0.825 0.082 0.082 0.314 0.339 
3 0.942 1.060 0.190 0.232 0.346 0.389 
4 1.300 1.627 0.285 0.363 0.389 1.308 
5 1.505 1.133 0.159 0.023 3.730 2.807 

1 0.530 0.362 0.008 -0.001 0.218 0.151 
2 0.787 0.799 0.102 0.093 0.303 0.314 
3 0.945 0.965 0.203 0.213 0.328 0.342 
4 1.282 1.341 0.294 0.325 0.361 0.385 
5 1.912 2.066 0.0 0.0 6.581 6.615 

1 0.245 0.161 -0.057 -0.043 0.110 0.070 
2 0.386 0.376 -0.020 -0.033 0.175 0.169 
3 0.470 0.466 0.050 0.042 0.216 0.213 
4 0.578 0.591 0.131 0.132 0.262 0.269 
5 0.732 0.770 0.228 0.243 0.320 0.336 
6 0.947 1.037 0.337 0.375 0.385 0.417 
7 1.294 1.476 0.459 0.522 0.464 0.512 
8 1.939 2.444 0.572 0.662 0.549 2.235 
9 2.408 1.679 0.304 0.006 6.517 4.779 
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coefficients ^xyb' for ail of the combinations 

of parameters studied. Results for (p = 0.0045 are given in 

Table 5, (j) = 0.06 in Table 6, and 4) = 0.24 in Table 7. In the 

case of central loads, only the results for beams 1 through 

(N + l)/2 are presented since and are symmetric and 

M^yb is antisymmetric about the central beam. 

In addition to the results presented in Tables 5 through 

7, values of and are presented in graphical form for 

selected combinations of parameters so that the effect of 

individually varying parameters may be qualitatively examined. 

Figures 22 through 27 represent the transverse distribution of 

and for these parameter variations. So that the effect 

of the stiffness parameter, <|), is ascertained, and are 

plotted in Figures 22 through 24 for constant combinations of 

W/L and edge conditions. In these figures, the edge condition 

is configuration case 1, as shown in Figure 19, and the W/L 

values are: W/L = 0.318, shown in Figure 22, W/L = 0.700, shown 

in Figure 23, and W/L = 1.260, shown in Figure 24. Figures 25 

through 27 present the transverse distribution of and 

for constant combinations of (j) and W/L where the edge conditions 

are varied. In Figure 25, low values of 0.0045 and 0.318 are 

respectively used for (p and W/L. In Figure 26, the intermediate 

values, (|) = 0.06 and W/L = 0.700, are used, and in Figure 27, 

the high values, <J) = 0.24 and W/L = 0.537, are used. 
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In summary, the parameter study presented herein completely 

describes the behavior of box girder bridges for the range of 

parameters that are found for practical structures. The ex-

tremum coefficients per unit width, as given in Table 4, serve 

to show the variation of maximum and minimum coefficients for 

the full range of stiffnesses and aspect ratios when the edge 

condition is not a variable. Tables 5 through 7 present the 

beam coefficients, ^xyb' ^xb' variations of <ji, 

W/L, and edge condition. Figures 22 through 24 present 

and for varying <p when W/L and edge conditions are constant. 

Figures 25 through 27 present and for variable edge 

conditions when ({> and W/L are held constant. 

Results of the Parameter Study 

A discussion of the ranges of the various coefficients and 

the effect of variations of the parameters on the coefficients 

are included in this section. The transverse coefficients, 

and Q^, and the deflection coefficient, w, are represented only 

as distributed quantities, or as coefficients per unit width. 

Thus, the following discussion of Q^, and w is based on the 

parameter study results presented in Table 4. The longitudinal 

bending moment, longitudinal shear force, and twisting moment 

coefficients are examined in the coefficient per beam form. 

Thus, Tables 5 through 7 and Figures 22 through 27 are used as 

a basis for the discussion of and The ranges 
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of the coefficients and the effect of variations of the param

eters on the coefficients are: 

1. Transverse bending moment coefficient per unit length 

MyZ The range of extrema is -0.314 to 0.830. The upper 

and lower limits of this range are obtained when W/L is maximum 

and when the load eccentricity, e/b, is zero. The minimum 

extremum, -0.314, occurs for ({> = 0.24. Conversely, the maxi

mum extremum, 0.830, is obtained for (j) = 0.0045. Thus, maxi

mum and minimum extrema occur when W/L is large and e/b is 

small. Also, My extrema tend to increase as ^ decreases. 

2. Transverse shear force coefficient per unit length, 

Qy : The range of is -4.010 to 6.110. The limits of this 

range are obtained for (j) = 0.0045 and W/L = 1.260. The minimum 

value occurs for e/b = 0.0 and the maximum value for e/b = 

0.889. Also, the extrema increase in absolute value for 

increasing W/L and decreasing cj). In addition, except for the 

case when (j) = 0.24, absolute maximum Q^. extrema are obtained 

for large load eccentricities, and the absolute minimum 

extrema are obtained for small load eccentricities. 

3. Deflection coefficient, w: The range of deflection 

coefficient extrema is 1.028 to 3.422. The minimum value of 

this range is obtained for (|) = 0.0045, W/L = 0.318, and e/b 

= 0.0. Conversely, the maximum w extremum is obtained for 

large 4>» W/L, and e/b. Thus, as (j), W/L, and e/b increase, the 

w extrema tend to increase. 
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4. Twisting moment coefficient per beam, The 

range of is -0.022 to 0.975. The minimum value is obtained 

for (j) = 0.0045, W/L = 0.318, e/b = 0.0, and the full cantilevered 

top edge slab or configuration case 1 (Figure 19). The maximum 

value of is obtained for (|) = 0.06, W/L = 1.260, e/b = 

0.889, and configuration case .2 or the non-cantilevered top edge 

flange condition (Figure 19). In general, M^yjj increases for 

increasing W/L, and e/b. Also, edge beam twisting moment 

coefficients tend to be smaller for configuration case 2, and 

interior M^yj^ tend to be smaller for configuration case 1. 

5. Longitudinal bending moment coefficient per beam, 

The range of maximum is 1.193 to 3.207. The minimum value 

of this range is found when <}) = 0.0045, W/L = 0,318, e/b = 

0.800, and the edge condition is configuration case 1. The 

maximum is obtained for (j) = 0.06, W/L = 1.260, e/b = 0.889, 

and the edge condition is configuration case 1. It is seen 

that as (p, W/L, and e/b increase, the longitudinal bending 

moment coefficient per beam maximum values increase. The effect 

of edge condition is dependent on the load position. For 

central loads, configuration case 2 tends to produce maximum 

M^b* Conversely, for eccentric loads, configuration case 1 

tends to result in maximum 

6. Longitudinal shear force coefficient per beam, 

The range of maximum is 1.059 to 6.615. For the minimum 

value of this range, the parameters are: (p = 0.0045, 
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W/L = 0.318, e/b = 0.800, and edge configuration case 2. For 

the maximum value, the parameters are: (J) = 0.24, W/L = 0.573, 

e/b = 0.0, and edge configuration case 2. The maximum values 

of are seen to increase for an increase in either <j) or 

W/L. Also, configuration case 2 tends to produce maximum 

values. However, the effect of the load position on maximum 

values is seen to be dependent on the value of W/L. In 

general, for low values of W/L, maximum values are found 

for central loads. Conversely, for higher W/L values, 

becomes a maximum for eccentric loads. 

From the results of the parameter study and the summary 

of the ranges of the coefficients, the parameter which has the 

greatest influence on the behavior of the structures studied 

is the aspect ratio, W/L. For all coefficients except where 

<p = 0.24, an increase of W/L results in an increase of the 

absolute values of the various coefficient extrema. The excep

tion to this trend, decreasing for increasing W/L when 

(j> = 0.24, may be attributed to the very great increase of 

when W/L is increased from 0.318 to 0.941 for (}) = 0.24. Thus, 

a much greater portion of the total vertical shear force is 

carried longitudinally for large (|) and W/L than is the case 

when (j) is small and W/L is large. The effect of the variation 

of W/L on the distributions of and is illustrated by 

Figures 22 through 24. It is seen that for constant (j) and e/b, 

the distribution curves do not change their relative positions. 
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but do significantly increase their values when W/L is 

increased. 

The stiffness parameter, tj), is also seen to have a sig

nificant affect on the various coefficients. The transverse 

coefficients per unit length, and Q^, are seen to decrease 

for increasing <J). This result intuitively follows since <{> is 

a measure of the transverse shearing rigidity of the structure 

so that as (j) increases, the transverse shearing rigidity of the 

structure decreases. Thus, it follows that a decrease in 

rigidity would result in a corresponding decrease in the trans

verse coefficients, and Q^. For all coefficients except 

and Qy, increasing ([) results in the increase of the coefficients' 

extremum values. The effect of variations of (j) on the distri

bution of and for constant W/L and e/b is illustrated 

in Figures 22 through 24. Increasing (f) causes an increase in 

the difference between maximum and minimum values of the beam 

coefficients for any given distribution curve. Hence, increas

ing (j) results in poorer distributions of the beam coefficients, 

and In addition, it is observed that for a uniform 

increase in a greater change occurs in the distributions of 

and when W/L is large. Finally, it is seen from the 

figures that variations of (j) affect the distribution to a 

much greater extent than the distributions. 

A qualitative examination of the effect of edge beam 

geometry on the distributions of and follows from the 
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study presented in Figures 25 through 27. For centrally applied 

loads, or e/b = 0.0, the full cantilevered top edge flange con

dition, or configuration case 1, results in better distribution 

of and That is, less variation exists between the 

maximum and minimum coefficient values for a given combination 

of parameters. However, for eccentric loads, the effect of the 

edge condition on the distribution of and is dependent 

on W/L and <j). In general, it is observed that for (j) and W/L 

small, configuration case 1 results in better distribution of 

and Conversely, for ij) and W/L large, the non-

can tilevered top edge flange condition or configuration case 2 

results in better and distributions. Also, it is seen 

that as W/L increases, the relative difference between the dis

tributions as found from either configuration diminishes. This 

follows since greater widths and, hence, a greater number of 

beams results from the large W/L values. For a large value of 

the number of beams, N, the coefficient per beam values approach 

the coefficients per unit width values. Thus, for W/L large, 

the coefficient per beam values approach the common coefficient 

per unit width values for variations of edge beam geometry. 

In summary, it has been shown that an increase of the 

aspect ratio, W/L, generally results in poorer distribution of 

all of the coefficients studied. The exception to this trend 

occurs for very large values of (j). It was shown that for cj) = 

0.24, the distribution of was improved for an increase in W/L. 
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Increasing the stiffness parameter, <p, had the effect of im

proving the distribution of and However, for all other 

coefficients, an increase in 4) resulted in poorer distributions. 

Edge beam configuration case 1 was shown to result in better 

distributions of the beam coefficients in the case of centrally 

applied loads. For eccentric loads, edge beam configuration 

case 2 resulted in better beam coefficient distributions when 

(j) and W/L were large. For the case of eccentric loading and 

(|) and W/L small, configuration case 1 resulted in better 

distributions. 

Design Considerations 

The results just presented lead to the following recommen

dations concerning the proportioning of the governing parameters 

for the most favorable load distribution. Usually in practical 

design circumstances, the overall geometry or width and span of 

the structure are governed by factors other than load distribu

tion. However, it is seen from the behavioral study that the 

least possible W/L ratio should be used for the most optimum 

distribution of all of the forces, moments, and deflections 

existing in the structure. 

The variation of the stiffness parameter, (j), has been 

shown to have a significant effect on the load distribution, 

especially on the distribution of longitudinal shear forces. 



145 

It has been noted that decreasing (j) results in more favorable 

distributions of all of the coefficients except the transverse 

moment and shear force coefficients. My and Q^. From Table 4, 

it is seen that the transverse moment coefficient extrema are 

small even in the case where (j) is small. Also, the transverse 

shear force coefficient extrema do not become large until (j> 

becomes small, or equal to about 0.0045, and the aspect ratio, 

W/L, is large. Thus, to obtain a favorable transverse shear 

force distribution, a minimum value of (J) = 0.01 is recommended 

when W/L is greater than about 0.7. This value of (j) would be 

obtained in a practical structure having one interior diaphragm 

and an intermediate d/L ratio of about 0.06. From the relation 

ships developed for the calculation of the stiffness parameter, 

it is seen that for bridges without interior diaphragms, the 

most effective method of reducing (j) is to reduce the depth of 

the structure, d, or to use the minimum permissible d/L ratio. 

Other less effective methods for the reduction of would be 

the use of small web spacings or the use of thicker webs. The 

use of interior diaphragms significantly decreases ( p .  I f  

interior diaphragms are used, it has been shown that <{) is pri

marily dependent on the depth-span ratio. Thus, if interior 

diaphragms are present and a decrease in ({) is desired, then 

d/L must be decreased. 

The edge beam configuration has been shown to affect the 

distribution of the beam coefficients. However, the effect is 
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dependent on the load position and W/L. Since the governing 

load configuration is usually determined so that the loads are 

in their most eccentric position (9), recommendations for the 

most optimum edge beam configuration are based on the effect 

of eccentric loads. Therefore, it is recommended that for 

W/L less than about 0.5, the edge beam configuration should 

correspond to configuration case 1. For W/L greater than about 

0.5, the amount of top flange cantilevering should be decreased 

as W/L decreases. 

In summary, the best load distribution is usually obtained 

in a bridge with; 

1. the smallest practical W/L ratio, 

2. a small value of the stiffness parameter <(); 

for bridges with no interior diaphragms, the smallest flexural 

rigidity - transverse shearing rigidity ratio, and for bridges 

with diaphragms, the largest transverse shearing rigidity, 

3. edge configuration case 1 if W/L<0.5, and if W/L>0.5, 

an edge configuration with less top edge flange cantilevering. 

It should be noted that certain forces and moments do not 

follow these general statements, but they can be used as design 

guides. 
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SUMMARY AND CONCLUSIONS 

Summary 

A procedure has been developed for the complete determina

tion of the load distribution in simply supported concrete box 

girder highway bridges. Expressions have been presented for 

the complete determination of the moments, shearing forces, and 

deflections in the structure due to externally applied vertical 

concentrated loads. 

The procedure developed was used for an extensive study of 

the behavior of the range of commonly built concrete box girder 

highway bridges. The behavior of the bridges studied was found 

to depend on three parameters; the ratio of the width to the 

span of the bridge, W/L, a stiffness parameter reflecting the 

relative flexural and torsional rigidities of the structure, (j), 

and an effective width, W^, which is a function of the bridge's 

edge beam geometry. The ranges of the internal forces, moments, 

and deflections for the bridges studied are presented, and the 

effect of variations of the governing parameters on these 

quantities is discussed. The results of the behavioral study 

were used to discuss optimum design configurations so that a 

more uniform distribution of the internal force quantities 

may be obtained. 

The computer programs used for the determination of the 

load distribution results are given in the appendices. The 
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program developed for the complete determination of load dis

tribution in concrete box girder highway bridges is shown in 

Appendix A, and the program used for the determination of 

longitudinal moments and deflections in orthotropic plates is 

shown in Appendix B. 

Conclusions 

The concept of replacing the actual cellular structure of 

a concrete box girder highway bridge by a uniform plate with 

structural properties equivalent to those of the actual bridge 

has been shown to be a valid method of analysis. The use of 

this analysis results in an accurate and comparatively simple 

method for the complete determination of load distribution in 

concrete box girder highway bridges. The accuracy of the 

method has been demonstrated in the section of the study con

cerned with the verification of the proposed analysis. The 

simplicity of the use of the analysis results from the require

ment that only the three parameters, W/L, and need be 

specified for the complete description of the behavior of the 

structure. 

From the behavioral study, the following conclusions were 

drawn: 

1. The parameter found to have the most significant 

effect on the distribution of the internal force and deflection 

quantities is the aspect ratio, W/L. An increase in W/L results 
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in poorer distribution of all of the quantities considered. 

2. The stiffness parameter, (j), significantly affects the 

distribution of the force and deflection quantities. Except 

for the transverse bending moment and shear force, an increase 

in <j) results in poorer distribution of forces, moments, and 

deflections. Thus, by decreasing the flexural rigidity to 

transverse rigidity ratio, better distribution of forces and 

deflections generally occurs. 

3. The edge beam configuration, which is represented by 

the effective width parameter, W^, influences the distribution 

of the internal forces and deflections. However, the influence 

of is not as great as the influence of W/L and ({>, on the 

load distribution. For W/L less than about 0.5, the fully 

cantilevered top edge flange condition generally results in 

better load distribution. For W/L greater than about 0.5, 

decreasing the amount of top flange cantilevering in proportion 

to the increase of W/L generally results in the most optimum 

load distribution. 

Recommendations for Further Research 

The scope of this study has been limited to the analysis 

of simply supported concrete box girder highway bridges. In 

addition, only non-skew bridges (bridges with rectangular plan) 

were included in the scope. However, continuous, skew, and 

horizontally curved concrete box girder bridges are being 
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increasingly used for highway structures. Thus, it would be 

desirable to obtain solutions to the governing equations of the 

equivalent plate for the boundary conditions representing these 

structures. The complexity of these boundary conditions may 

rule out Qn analytical solution of the governing equations. 

However, the equations could be easily converted to finite 

difference operators, and the solutions could thus be found by 

numerical procedures. 

In conclusion, the foundations for the analysis of more 

complex box girder bridges have been presented and proven. 

Further applications of the theory to more complicated bridge 

configurations could prove to be a valuable technique for the 

analysis of these structures. 
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APPENDIX Ae COMPUTER PROGRAM FOR THE DETERMINATION OF LOAD 
DISTRIBUTION BY THE EQUIVALENT PLATE ANALYSIS 
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C COMPLETE SOLUTION FOR LOAD DISTRIBUTION IN A SIMPLY 
C SUPPORTED CONCRETE BOX GIRDER HIGHWAY BRIDGE 
C 

DIMENSION EBRAT(10),BAB(10Î,DC0F(17), BCOF( 101, XV( 171 
DIMENSION XM( 17) ,YM( 17) ,XYM(I7) ,DEF(17),XSH(17),YSH(17) 
DIMENSION XMB(10),XYMB(10),XVB(10),YV( 17) 
DIMENSION CHEK(IO) 
DOUBLE PRECISION ET 1 (3 ) , ET2 (3 ), C(3,4 ), DELT( 3 », A( 12, 12) , 

I8B( 12) ,AA( 144) 
DOUBLE PRECISION SH,CH 
DOUBLE PRECISION CNU,PNU,CS , ZET ,BET , PHN, PPH, CLAM, PPHl, 

1SB,CB,HB,HSHB,HCHB,SHB ,CHB ,ETT1 ,ETT2 ,C0NMBN,CBE1 ,CBE2, 
2SBE1,SBE2, DCBE, DS BE, EOCBE, EDSBE,BTW, BREA, ET, BE, SBE ,CBE , 
3XM1,YM1,XYM1,DEF1,SHX1,SH1,V1,VX1 

EQUIVALENCE (A(1,1),AA(1)) 
1 F0RMAT(8F10.2) 
2 F0RMAT(3I10) 
3 FORMAT (10F5 .2) 

200 FORMAT('l ',47X,'** BOX GIRDER BRIDGE RESULTS **') 
201 FORMAT*'0',40X,'STIFFNESS PARAMETER =',1PE20.4) 
202 F0RMAT('0',40X,'WIDTH = •,F20.2) 
203 FORMAT*'0',40X,'SPAN = ',F20.2) 
204 FORMAT ('OS 40X,'NO. OF SERIES TERMS =',I20) 
205 FORMAT*'0» ,40X,'LOAD POSITION',12,' E/B =',F10.3) 
207 FORMAT*'0',67X,'** Y/B **') 
208 FORMAT ('OQUANT ITY '  ) 
210 FORMAT*»1',60X,«COEFFICIENTS PER BEAM*/) 
211 FORMAT*'OBEAM NUMBER ',10110) 
212 FORMAT**OBEAM X-MOM. COEF. *,10F10.3) 
213 FORMAT*'OBEAM X-MOM. COEF. SUM =',F10.3) 
214 FORMAT *'0VALUES OF LONG. SHEAR AT THE DISCONTINUITIES:' 

1,4F10.3) 
217 FORMAT*'0',40X,'1ER =»,I5///) 
219 FORMAT*'0',60X,'**C0NSTANTS**'/) 
220 FORMAT*'0',28X,' A* '  , 11 ,• ) =',1PD10 .2 , ' B*',I1, 

1') = ' , 1PD10.2, '  Ml',11, •) = ',1PD10.2,' N(',I1, 
2* )=',1PD10.2) 

221 FORMAT*'OBEAM XY-MOM. COEF.',10F10.3) 
222 FORMAT*'OBEAM SHEAR COEF. ',10F10.3) 
223 FORMAT*'OBEAM SHEAR COEF. SUM =',F10.3) 
224 FORMAT*'OBEAM XY-MOM.COEF. SUM =',F10.3) 
230 FORMAT*'OXMOM. COEF.',17F7.3) 
231 FORMAT*'OYMOM. COEF. '  , 17F7. 3) 
232 FORMAT*'OXYMOM.COEF.', 17F7.3) 
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233 FORM&Tt'ODEFL. COEF. « ,17F7.31 
234 FORMAT('OXSHR. C0EF.',17F7.3) 
235 FORMATf'OYSHR- COEF.•,17F7.3) 
236 FORMAT*'OXREA. COEF.•,17F7.3) 
237 FORMAT("OYREA. COEF.•,17F7.3) 

8 READdtl) PH,RNU,WID,CLEN,XARAT,XARAT1,CARAT,DBRAT 
IF(WID) 9,999,9 

9 READ(1,2) NN,NG,NEB 
READ(1,3) (BAB(LL),LL=2,NG) 
NG1=NG+1 
BAB(1)=-1. 
BAB(NG1»=1. 
READ(1,3) (EBRAT(LL),LL=1,NEB) 

C 
C INITIAL CALCULATIONS 
C 

PI =3.14159 
CNU=RNU 
PNU=1.0D0-CNU 
B=WID/2. 
DELTC 1)=0.0D0 
DELT(2»=1 .000 
OELT( 3) =0-000 
BDRAT=1./DBRAT 
GN=NG 
TTM=GN*BDRAT*CLEN/(PI*WIO) 
TTD=BDRAT/PNU 

C 
C LOAD LOOP 
C 

DO 150 JJJ=l,NEB 
CS=EBRAT( JJJ)+DBRAT 
ZET=EBRAT(JJJ)-OBRAT 
DEN=0. 
0END=0. 
DENXS=0. 
DENYS=0. 
DO 7 J=l, 10 
CHEKU )=0. 
XMB(J)=0. 
XYMB(J)=0. 

7 XVB(J»=0. 
DO 10 J=l,17 
XM{J1=0. 
YM( J)=Q. 
XYM(J ) = 0. 
DEF{J)=0. 
XSH(J)=0. 
XV(J 1=0. 
YV(J)=0. 
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10 YSH(J )=0. 

PRIMARY SERIES LOOP 

H=-I .  

DO 100 1=1,NN,2 
H=H*HM 
CCC=I 
BET=CCC*PI*B/CLEN 
ALPH=BET/B 
PHN=PH*(CCC*PI)*•? 
PPH=PHN+1.0D0 
CLAM=(PHN* (l.+CNU)-PNU)/2. 
TSH=H/CCC 
TM=TSH/CCC 
TMB=TM/CCC 
TD=TMB/CCC 
TRE=H/ALPH 
SXAR = SIN(CCC*PI*XARAT/2.) 
CXAR=C0S(CCC*PI*XARATl/2.) 

LOAD SIMULTANEOUS EQUATION COEFFICIENT ARRAY 

DO 11 11=1,12 
BB{ 111=0.ODO 
DO 11 JJ=1,12 

11 A(II,JJ)=O.ODO 
PPH1=CL AM-PHN+l.CDO 
S8=SH(BET) 
CB=CH{8ET) 
A(1,1)=-SB 
A(1,2)=CB 
AC 1,3)=CLAM*BET*SB-PPH*CB 
A(1,4)=-CL AM*BET*CB+PPH*SB 
A(2,1)=CB 
A( 2, 2)=-S3 
A(2,3)=-(CLAM*BET*CB+PPH1*S8) 
A( 2,4)=CLAM*BET*SB+PPH1*CB 
A(11,9)=SB 
ACll,10)=CB 
A(11,11)=A(1,3) 
A(ll,12)=-A(l,4) 
A(12,9)=CB 
A( 12, 10I = SB 
A(12,ll)=-A(2,3) 
A(12,12)=A(2,4) 
DO 20 L=l,2 
GO TO (12,13),L 

12 11=3 
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JJ=-4 
H8=BET#ZET 
GO TO 14 

13 11=7 
JJ=4 
HB=BET*CS 

14 SHB=SH(HB) 
CHB=CH(HB) 
HSHB=HB*SHB 
HCHB=HB*CHB 
A(II,5)=-SHB 
A(II ,6)=-CHB 
A( II ,7)=-CLAM*HSHB 
A( 11,8 )=-CLAM*HCHB 
A(II+1,5)=-CHB 
A(II + 1,6)=-SHB 
A(II+1,7) = -CL AM*;HCHB+SHB) 
A(II + 1,8)=-CLAM*(HSHB+CHB) 
A(Il+2f5)=SHB 
A(II+2,6)=CHB 
A(11+2,7)=CLAM*HSHB-PPH*CHB 
A(II+2,8)=CLAM*HCHB-PPH*SHB 
A(II+3,7)=-SHB 
A(II+3,8)=-CHB 
113=11+3 
DO 16 NR=II,II3 
DO 16 NC=5,8 

16 A(NR,JJ+NC)=-A(NR,NC) 
20 CONTINUE 

BB(3) = PNU 
BB(5)=CNU 
BB(7) = PNU 
BB(9J=CNU 
CALL DSIHE(BB,AA,12,12,1,.000001,1ER) 
KL=-4 
DO 22 KK=1,3 
KL=KL+4 
00 22 LL=1,4 
KLL=KL+LL 

22 C(KK,LL)=BB(KLL) 
C 
C INITIATE TRANSVERSE LOOP 
C 

PAREN=2.0D0*CLAM-PHN-1.0D0 
DO 30 KIK=1,21 
IF(KIK-5I 600,605,610 

600 GO TO (601,601,607,6071,KIK 
601 ET=ZET 

GO TO (602,6031,KIK 
602 LL=1 
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GO TO 611 
603 LL=2 

GO TO 611 
605 ET=-1.12500 

GO TO 610 
607 ET=CS 

GO TO (30,30,608,609),KIK 
6C8 LL=2 

GO TO 611 
609 LL=3 

GO TO 611 
610 CONTINUE 

ET=ET+.125D0 
611 CONTINUE 

BE=BET*ET 
SBE=SH(BE) 
CBE=CH(BE) 
IF(KIK-5) 613,612,612 

612 CONTINUE 
IF(ET-ZET) 23,24,24 

23 LL=1 
GO TO 27 

24 IF(ET-CS) 25,25, 26 
25 LL=2 

GO TO 27 
26 LL=3 
27 XM1=C(LL,1)*SBE+C(LL,2;*CBE+C(LL,3)*(CLAM*BE*SBE+CNU* 

1PPH*CBE)+C(LL,4)*(CLAM*BE*CBE+CNU*PPH*SBE)+DELT( LL) 
YM1=C(LL,1)*$BE+C(LL,2)*CBE+C(LL,3)*(CLAM*BE*SBE-PPH* 

1CBE)+C(LL,4)*(CLAM*BE*CBE-PPH*SBE)-DELT(LL)*CNU 
XYM1=C(LL,1)*CBE+C(LL,2)*SBE+C(LL,3)*(CLAM*BE*CBE-PNU* 

lPPH*SBE/2.)+C(LL,4)*(CLAM*BE*SBE-PNU*PPH*CBE/2.) 
DEF1=C(LL,1)*SBE+C(LL,2)*CBE+C(LL,3)*CLAM*BE*SBE+ 

1C(LL,4)*CLAM*BE*CBE+DELT(LL)*PNU 
613 CONTINUE 

S HX1=C(LL,3)*CBE+C(LL,4» *SBE+DELTC LL) 
IF(KIK-5) 615,614,614 

614 CONTINUE 
SH1=C(LL,3)*$BE+C(LL,4)*CBE 
V1=C(LL,1)*CBE+C(LL,2)*SBE+C(LL,3)*(CLAM*BE*CBE+PPH1* 

1SBE)+C(LL,4)*(CLAM*BE*SBE+PPH1*CBE) 
VX1=C(LL,1)*SBE+C(LL,2)»CBE+C(LL,3)*(CLAM*BE*SBE+PAREN* 

1CBE)+C(LL,4)*(CLAM*BE*CBE+PAREN*SBE)-DELT(LL) 
J=KIK-4 
XM( J)=XM( J)+TK*XM1*SXAR 
YM(J)=YM(J)-TM*YM1*SXAR 
XYM(JI=XYM(J)+TM*XYM1*CXAR 
DEF(J)=DEF(J)+TD*nEFl*SXAR 
XSH(J) = XSH(J)+TSH*SHX1*CXAR 
YSH(J)=YSH(J)+TSH*SH1*SXAR 



160 

XV(J)=XV(J)-TSH*VX1*CXAR 
YV(J)=YV(J)+TSH*V1*SXAR 

615 IF(KIK-5) 616,30,30 
616 CHEK(KIK)=CHEK(KIK )+TSH*SHXl*CXAR 

30 CONTINUE 
DEN=DEN+TM*SXAR 
OENO=DEND+TD*SXAR 
DENXS=OENXS+TSH*CXAR 
DENYS=DENYS+TSH 

C 
C CALCULATE BEAM COEFFICIENTS 
C 

DO 50 L=1,NG 
ETT1=BAB(L ) 
ETT2=BAB(L+1 ) 
IF(ETTl-ZET) 32,40,40 

32 IF(ETT2-ZET) 33,33,35 
33 Ll=l 

L2=l 
ET1(1} = ETT1 
ET2(1)=ETT2 
GO TO 48 

35 IF(ETT2-CS) 36,36,38 
36 Ll=l 

L2=2 
ETKl )=ETT1 
ET2( 1)=ZET 
ET1(2) = ZET 
ET2(2)=ETT2 
GO TO 48 

38 Ll=l 
L2=3 
ET1(1)=ETT1 
ET2(1 )=ZET 
ETK 2Ï -ZET 
ET2(2)=CS 
ET1(3)=CS 
ET2( 3)=ETT2 
GO TO 48 

40 IF(ETTl-CS) 41,44,44 
41 IF(ETT2-CS) 42,42,43 
42 LI=2 

L2=2 
ET1(2»=FTT1 
ET2(2)=ETT2 
GO TO 48 

43 Ll=2 
L2 =3 
ETK 2)=ETT1 
ET2(2»=CS 
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ETll 3)=CS 
ET2(3)=ETT2 
GO TO 48 

44 Ll=3 
L2=3 
ET1(3)=ETT1 
ET2(3) = ETT2 

48 CONMBN=0.000 
BTW=C. ODO 
BREA=O.ODO 
DO 49 LL=L1,L2 
CBE1=CH(BET*ET1( LL) ) 
CBE2=CH( BET*ET2CLL )  )  
SBE1=SH(BET*ET1(LL)) 
S8E2=SH( BET*ET2( LL ) ) 
0CBE=CBE2-CBE1 
0SBE=SBE2-SBE1 
EDCBE=ET2(LL )*CBE2-ET1(LL)*CBE1 
EDSBE=ET2(LL)*SBE2-ET1(LL)*S8E1 
C0NMBN=C0NMBN+C(LL,1)*DCBE+C(LL,2)*DSBE+C(LL,3)*(CLAM* 

1BET*EDCBE+(CNU*PPH-CLAM)*DSBE)+C(LL,4)*(CLAM*BET*EDSBE 
2+(CNU*PPH-CLAM)*DCBE)+DELT(LL)*(ET2(LL)-ETl(LL))*BET 

BTW=BTW+C(LL,1)*DSBE+C(LL,2)*DCBE+C(LL,3)*(CLAM*BET* 
1EDSBE-PHN*0CBE)+C(LL,4)*(CLAM*BET*EDC8E-PHN*DSBE) 

BREA=BREA+C(LL,3)*0SBE+C(LLf4)*DCBE+ 
20ELT(LL)*BET*(ET2(LL)-ET1(LL))  

49 CONTINUE 
XMB( L)=XMB(L)+TMB*CDNMBN*SXAR 
XYMB(L)=XYMB(L)+TMB*BTW*CXAR 
XVB(L)=XVB(L)+TM*6REA*CXAR 

50 CONTINUE 
IF (1-9) 100,501,501 

501 CONTINUE 
WRITE(3,200) 
WRITE(3,201) 
WRITE(3, 202) 
WRITE(3, 203) 
WRITE(3,204) 
WRITE(3, 217) 
WRITE(3,219) 
DO 91 KK=1,3 

91 WRITE(3,220) 
1C(KK,4) 

WRITE( 3,205) 
WRITE(3,207) 
WRITE(3,2C8) 
DO 92 LL = 1, 17 

92 DCOF(LL)=BDRAT*XM(LL)/DEN 
WRITE(3,230) ( DCOF ( LL) ,LL=1 ,17) 
DO 93 LL=1,17 

PH 
WIO 
CL EN 
I  
1ER 

KK,C(KK,1),KK,C(KK,2),KK,C(KK,3),KK, 

JJJ,EB*AT<JJJ) 
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93 DCOFCLL ) = BDRAT*YM(LL)/DEN 
WRITE(3,231) (DCOF(LL),LL=lt17) 
DO 94 LL=1,17 

94 DCOF(LL)=BORAT*XYM(LL»/DEN 
NRITE(3,232) (DCOF<LL),LL=I,17) 
DO 95 LL=ltl7 

95 DCOF(LL)=TTD*DEF(LL)/DEND 
WRITE(3»233) (DCOF(LL),LL=1,17) 
DO 96 LL=1,17 

96 DCOF(LL)=BDRAT*XSH(LL)/DENXS 
WRITE(3t234) (DC0F(LL),LL=1,17) 
DO 103 LL=1,4 

103 BC0F(LL)=8DRAT*CHEK(LL)/0ENXS 
WRITE* 3, 214) (BC0F(LL),LL=1,4) 
DO 97 LL=1,17 

97 DCOF(LL)=BDRAT#YSH(LL)/DENYS 
WRITE(3,235) (DC0F(LL),LL=1,17) 
DO 98 LL=1,17 

98 DCOF(LL)=BDRAT*XV(LL)/OENXS 
WRITE(3,236) (OCOF(LL),LL=1,17) 
DO 99 LL=1,17 

99 DC0F(LL)=8DRAT*YVCLL)/DENYS 
WRITE(3,237) (OCOF(LLÏ,LL=1,17) 
WRITE(3,210) 
WRITE(3,211) (LL,LL=1,NG) 
T0T=0. 
DO 90 111=1,NG 
BCOFdII )=XMB(III)*TTM/DEN 

90 TOT=TOT+BCOF(III) 
WRITE(3,212) (BCOF(LL )»LL=1,NG) 
WRITE(3,213) TOT 
T0T=0. 
DO 101 IB=1,NG 
6C0F(IB)=TTM*XYMB(I8)/DEN 

101 T0T=T0T+BC0F(IB) 
WRITE{3,221) (BC0F(LL),LL=1,NG) 
WRITE( 3,224) TOT 
T0TSH=0. 
DO 105 IB=1,NG 

105 TOTSH=TOTSH+XVB( IB) 
TOT=C. 
DO 106 13=1,NG 
BCOF( IB)=GN*XVB( IB )/TOTSH 

106 TOT=TOT+BCOF(IB) 
WRITE(3,222) (BCOF<LL),LL=1,NG) 
WRITE(3, 223) TOT 

100 CONTINUE 
150 CONTINUE 

GO TO 8 
999 STOP 
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END 
C 
C 
C 
C HYPERBOLIC SINE FUNCTION SUBROUTINE 
C 

DOUBLE PRECISION FUNCTION SH(U> 
DOUBLE PRECISION DEXP 
DOUBLE PRECISION U 
SH=(DEXP(U)-DEXP(-U)) /2-0D0 
RETURN 
END 

C 
C 
C 
C HYPERBOLIC COSINE FUNCTION SUBROUTINE 
C 

DOUBLE PRECISION FUNCTION CH(U) 
DOUBLE PRECISION DEXP 
DOUBLE PRECISION U 
CH=(DEXP{U)+DEXP( -Un /2.0D0 
RETURN 
END 

C 
C 
c 
c SIMULTANEOUS EQUATION SOLUTION SUBROUTINE 
C 

SUBROUTINE DSIME(R,A,M,MM,N,EPS,IER) 
DIMENSION A( 1),R( 1) 
DOUBLE PRECISION R,A,PIV,TB,TOL,PIVI 
DOUBLE PRECISION DABS 
IFtM)23,23,l 

C 
C SEARCH FOR GREATEST ELEMENT IN MATRIX A 
C 

1 IER=0 
PIV=0.  
M2=(M-1)*MM+M 
NM=N*MM 
DO 3 L1=1,M 
DO 3 L2=1,M 
L=MM*(L1-1) + L2 
TB=DABS(A(L)) 
IF(TB-PIV)3,3,2 

2 PIV=TB 
I=L 

3 CONTINUE 
TOL=EPS*PI V 

C 
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C START ELIMINATION LOOP 
C 

LST=I 
DO 17 K=1,M 

C 
C TEST ON SINGULARITY 
C 

IF(PIV)23, 23,4 
4 IF(IER)7,5,7 
5 IF(PIV-TOL)6,6,7 
6 IER=K-l 
7 PIVI=1./A(I) 

J=(I-1)/MM 
I=I-J*MM-K 
J=J+1~K 
DO 8 L=K,NM,MM 
LL=L+I 
TB=PIVI*R(LL) 
R(LL»=RCL) 

8 R(L»=TB 
IF(K-M)9,18,18 

C 
C COLUMN INTERCHANGE IN I 

C 
9 LEND=LST+M-K 

IF(J)12,12,10 
10 II=J*MM 

DO 11 L=LST,LEND 
TB=A(L) 
LL=L+II 
A(L;=A(LL) 

11 A(LL)=TB 
C 
C ROW INTERCHANGE AND 
C 

12 DO 13 L=LST,M2,MM 
LL=L+I 
TB=PI VI*A( LL) 
A(LL)=ACL) 

13 A(L)=TB 
A(LSTI=J 

C 
C ELEMENT REDUCTION AND NEXT 
C 

PIV=0. 
LST=LST+1 
J=0 
DO 16 II=LST,LEND 
PIVI=-A(II) 
IST=II+MM 

RIX A 

PIVOT ROW REDUCTION IN MATRIX A 

PIVOT SEARCH 
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J=J+1 
DO 15 L=TST,M2,MM 
LL=L-J 
ACL)=A(L>+PIVI*ACLL) 
TB=DABS(A(L » ) 
IF(TB-PIV)15,15,14 

14 PIV=TB 
I = L 

15 CONTINUE 
DO 16 L=K,NM,MM 
LL=L+J 

16 R(LL)=R(LL)+PIVI*R(LI 
17 LST-LST+MM 

C 
C BACK SUBSTITUTION AND BACK INTERCHANGE 
C 

18 IF(M-1123,22,19 
19 IST=M2+MM 

LST=M+1 
LST2=MM+1 
DO 21 1=2,M 
II=LST-I 
1ST=IST-LST2 
L=IST-MM 
L=A(L)+.5 
DO 21 J=II,NM,MM 
TB=R(J) 
LL=J 
DO 20 K=IST,M2,MM 
LL=LL+1 

20 TB=TB-A(K;*R(LL) 
K=J+L 
R«J)-R{K> 

21 R(K»=TB 
22 RETURN 

C 
C ERROR RETURN 
C 

23 TFR=-1 
RETURN 
END 
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APPENDIX B: COMPUTER PROGRAM FOR THE DETERMINATION OF 
LONGITUDINAL MOMENTS AND DEFLECTIONS IN ORTHOTROPIC PLATES 
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C ORTHOTROPIC PLATE SOLUTION FOR MOMENTS AND DEFLECTIONS 
C 

DIMENSION XM(17),DEF( 17) ,DC0F(17) ,EBRAT( IC) 
1 F0RMAT(3FI0.2) 
2 FORMATS 21101 
3 FORMAT (8F10.21 

200 FORMAT*'1 ',47X,'** GRTHOTROPIC PLATE **') 
201 FORMAT*'0',40X,'STIFFNESS PARAMETER =',1PE20.4) 
202 FORMATCO* ,40X,'WIDTH = ',F20.2) 
203 FORMAT*•0',40X,'SPAN = ',F20.2) 
204 FORMAT* •0»,40X,'NO. OF SERIES TERMS =',1201 
205 FORMAT *'0' ,40X,'LOAD POSITION',12," E/B=',F10.31 
207 FORMAT*'0',67X,'** Y/B **') 
208 FORMAT t'OQUANT ITY '  > 
214 FORMAT*'ODEFL. COEF. • ,17F7.3) 
218 FORMAT*'OMOM. COEFF,', 17F7. 3» 
998 READ*1,1* ALF,WIC,CLEN 

IF*ALF) 999,999,5 
5 READ* 1,2) NTERM, NEB 

READ(1,3) (EBRAT(LL),LL-1,NEB} 
C 
C INITIAL CALCULATIONS 
C 

PI=3.14159 
THET=WID/(2.*CLEN) 
RTl=SQRT*(l.+ALF)/2.) 
RT2=SQRT((l.-ALF)/2.) 
RT3=SQRT(*1.+ALF)/(1.-ALF3) 
RT4=SQRT< 1 .-ALF**2 ) 
RT5=SQRT*2.*(1.+ALF)) 
RT6=2.*ALF/SQRT*2.**1.-ALF)) 
SIG=THET*PI 
PH=SIG*RT1 
GAM=THET*RT1 
DEL=THET*RT2 
ET=SIG*RT2 
C0NK=SIG/RT5 

C 
C LOAD LOOP 
C 

DO 30 JJJ=1,NEB 
DEND=0. 
DENM=0. 
DO 7 L=l,17 
XM*L)=0. 
DEF*L)=0. 

7 DC0F*L)=0. 
PS=PI*EBRAT(JJJ) 

C 
C PRIMARY SERIES LOOP 
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HNEG=-1.0 
00 25 L=1,NTERM,2 
HNEG=-HNEG 
OR=L 
SICR=SIN(0R*PI/2-» 
SIOR=HNEG*SIOR 
DENM=DENM+SI0R/0R**2 
0END=DEN0+SI0R/0R*»4 
SE=$IN(OR*ET) 
CE=COS(OR»ET) 
SHPH=SH(OR*PH) 
CHPH=CH(OR*PH) 
CHC1=CHPH«CF 
SHS2=SHPH*SE 
SHC3=SHPH*CE 
CHS4=CHPH*SE 
PAR1=RT1*SE-RT2*CE 
PAR2=RT1*CE+RT2*SE 
PAR 3=A LF*SE+RT4*CE 
P AR4= AL F»C E-RT 4*S E 
PAR5=CHPH-SHPH 
BRAK3=-SHC3+RT3*CHS4 
BR AK4= -CHCl +RT 3*SHS2 
BRAK5=SH S2+ RT3*CHC1 
BRAK6=CHS4+RT3*SHC3 
BRAK9=RT5*CHC1+RT6*SHS2 
BRAK10=RT5*SHC3+RT6*CHS4 
BRAK11=RT6*SHC3-RT5*CHS4 
BRAK12=RT6*CHC1-RT5*SHS2 
CONG=(2.*ALF+l.)*RT2*SHPH*rHPH 
C0NH=(2.*AL F-1.;*RT1*SE*CE 
CONM=CONG-CONH 
CONN=CONG+CONH 
SHGPS=SH(OR*GAM*PS) 
CHGPS=CH(OR*GAM*PS; 
SDPS=SIN(OR*DEL*PS) 
CD PS=C OS(OR*DEL* PS) 
CHS5=CHGPS*SDPS 
SHS6=SHGPS*SDPS 
CHC7=CHGPS*CDPS 
SHC8=SHGPS*CDPS 
BRAKl=CHC7*PARl-SHS6*eAR2 
BR A K 2=SHC 8* PARl-CHS5*PAR2 
BRAK7=CHC7*PAR3-SHS6*PAR4 
BRAK8=SHC8*PAR3-CHS5*PAR4 
CONA =PAR5*(BRAK1*BRAK3+BRAK7*BRAK9) 
C0NB=PAR5*(BRAK 2*BRAK4+BRAK8*BRAK10) 
C0NC=PAR5* < BRAK2*PRAK5 +BRAK8*BRAK11 J 
CONF=PAR5»(BRAK1*BRAK6+BRAK7*BRAK12I 
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C 
C TRANSVERSE LOOP 
C 

BET=-1,125 
D O  2 0  J = l ,  1 7  

BET=8ET+,125 
GAB=BET *GAM*PI 
DEB=BET *DEL*PI 
EP=ABS(BET *PI-PS; 
GAEP=GAM*EP 
DEEP=DEL*EP 
CHMGB=CH(0R*GA8) 
SHMGB = SH(0R*GAB) 
CMOB=COS(OR*DEB) 
SMDB=SIN(OR*DEB) 
C0NK1=(CH(0R*GAEP)-SH(0R*GAEP))*(C0S(0R*DEEP)+RT3* 

1SIN(0R*DEEP;) 
BRAKK=CONA*CHMGB*CMDB/CONM+CONB*SHMGB*CMDB/CONN-CONC* 

1CHMGB*SMDB/C0NN-C0NF*SHMGB*SMDB/C0NM+C0NK1 
XM ( J ) =X M( J ) -s-S I  OR*BRAKK/ OR 
DEF( J)=DEF(J) + ST CR*BRAKK/0R**3 

20 CONTINUE 
WRITE(3,200) 
WRITE (3, 201» ALF 
WRITEC3,202» WIO 
WRITE(3,2031 CLEN 
WRITE(3,204) L 
WRITE(3,205) JJJ,EBRAT(JJJ) 
WRITE (3,207» 
WRITE(3, 208» 
DO 21 LL=1,17 

21 DCOF(LL»=CONK#XM(LL»/OENM 
WRITE(3,218) (DC0F(LL»,LL=1,17) 
DO 22 LL=ltl7 

22 DCOFILL»=CONK*OEF(LL)/DENO 
WRITE(3,214» (DC0F(LL),LL=1,17) 

25 CONTINUE 
30 CONTINUE 

GO TO 998 
999 STOP 

END 
C 
c 
c 
c HYPERBOLIC SINE FUNCTION SUBROUTINE 
C 

FUNCTION SH(U» 
5H=(EXP(U»-EXP(-U»»/2. 
RETURN 
END 
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C 
C 
C 
C HYPERBOLIC COSINE FUNCTION SUBROUTINE 
C 

FUNCTION CH(UI  
CH=(EXP(U) +  EXP(-U)  ) /2 .  
RETURN 
END 


