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straightforward "but laborious exercise in algebra. The final result gives 

for the reflected pressure 

r̂ (Wb'k) = ̂  Kg 1 [U(\)+̂ V̂(\)] 

•where 

U(X) = I - e(\) Mg (X)] 

and V(\) = 1 - I [M̂ (\) + ̂ (\)] + M̂ {\) 

(118) 

(119) 

(120) 

In a similar manner, the reflected shear is obtained by combining 

Equations 108 and 100, Thus, 

 ̂ \S 
'̂ r = c I (121) 

Define the parameter 

T = 

Then, T = 1 J (1) 

(122) 

(12$) 

In the same manner as "was followed for the pressure, the integrals in 

Equation 123 can be reduced to moments of Ĥ ^̂ ((j.), and to the integral 

r(l) 

o 

d|i , This last integral is evaluated by means of the 

equation. Equation $4. Once again, the procedure is lengthy, and just 

the results Mill be stated. 

(124) 

"Where 

W(\) = ̂  [N̂ (x) - N2(\)] -1 (125) 
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and the moments of are defined by 

= J n"" afl) (;,X) d|i (n > O) (126) 

0 

From Equation 8o, with il/(|i) = ̂  (l-|î ), it is found that 

1 1 

^ J (^A) = 1 - [1-2 J I (i-n^)dn f 

so that the zeroth and second moments of are related hy 

N̂ (\) - Ng(\) = 4 [1 - {l-\/3)f A (127) 

Therefore, Equation 125 becomes 

W(X) = - (1 - \/3)2 (128) 

E. Comparison between Radiation Aerodynamics and 

Rarefied Gas Dynamics 

A comparison of the primary features of radiation aerodynamics and 

rarefied gas dynamics reveals some most interesting similarities and 

differences "bet'ween them. These will he brought out and discussed in 

this section. 

Rarefied gas dynamics is that area of gas dynamics in which the gas 

does not behave as a continuum, but rather exhibits some properties of its 

molecular structure (24). A rarefied gas is characterized by a mean free 

path of the order of some pertinent body dimension. Free molecule flow 

is the regime of rarefied gas dynamics of extreme rarefaction, wherein 

collisions between molecules are so infrequent as to be considered 

negligible, and the mean free path is very much greater than a body 

dimension. 
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The basic unknown in rarefied gas dynamics is the distribution 

function f(c, t), which gives the number density of molecules in phase 

space, i.e., the number of molecules per unit volume at time t having 

position vectors in the range (r, r + d?) and velocities in the range 

(?; ? + d?). Knowledge of the distribution function is requisite to the 

determination of the macroscopic gas dynamic parameters. The evolution 

of the distribution function in and t space is governed by the 

Boltzmann equation, given (9) in vector form as 

Ot v-f •/ (f:f{ - ff̂ )k̂ dm dĉ  (129) 
Ô? 3c v 

The Boltzmann equation represents the conservation of the distribution 

function in a unit voltime of phase space due to the effects of both 

molecular collisions and drift (continuous particle motion). Equation 

129 considers the effect of two-particle collisions on the distribution 

function. The subscript 1 denotes the distribution function of one of 

the species of molecules. The f without the subscript denotes the 

distribution function of the other. Primes denote values after a 
I 

collisions. Unprimed variables refer to values prior to a collision. 

Further, is a scalar factor, F is the external force per unit mass, • and 

dcD the element of solid angle, 

ôf 
The condition of equilibrium flow is •̂  = 0, If the distribution 

function does not vary with r, and there are no external forces, the 

equilibrium condition requires the right hand side of the Boltzmann 

equation to be zero, which leads to ff^ = f'f^. It is well known (9) 

that this last requirement is uniquely satisfied by the Maxwell distribution 

function 
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f(u,v,w) = n(23®T)"̂ '̂ êxp (-ĉ /2ET) (150) 

Mhere u,v, and w are the x,y, and z components of "c * n is the nttmber 

density of particles, R is the gas constant and T is the temperature. 

The method of determining the presstxre and shear for a stream that is 

characterized ty a distritution function f (?) will now "be given. In 

every range of molecular velocities (?,̂ dc), 

force _ momentum/time 
area ~ area 

number of molecules . „ _ ., _ , 
= volume component of velocity normal to area 

momentum 
molecule 

= f (c) d? X u X mc (151) 

where the x component of ? is taken to he normal to the element of area. 

Equation 151 has normal (pressure) and tangential (shear) components, and 

so 

P(c;c+dc) = mif f(c)d'c (152) 

Ty(c,G+dc') = muv f(c)d? (155) 

T (̂c,c+dc) = muw f(c)dc (l$4) 

The integrated pressure and shear components are then 

P = J mû  f(c) dc "(155) 

Ty = J muv f(c) d? (156) 

= J muw f(c) d'à (157) 

A similar analysis could he performed for the more general distribution 

function ' f(c,r̂ t). In free molecule flow, Eq.uations 135; 15̂ ; and 157 

are evaluated "by means of the Maxwell distribution function. 

With this brief sketch of the method of rarefied gas dynamic analysis 

now presented, similarities and differences with radiation aerodynamics 



54 

"Will now "be discussed, 

(1). In free molecule flo>!,, the basic assumption is that the incident 

flow is completely undisturbed by the presence of a body, so that the 

effect of reflected molecules on the incident stream is negligible (24). 

This is the free molecule counterpart of the "two independent stream" 

assumption of radiation aerodynamics. Therefore, the theories of free 

molecule flow and radiation aerodynamics are founded on the same assumption. 

This assumption is valid only for the free molecule regime of rarefied 

gas dynamics, and breaks do-wn as the fluid density increases, 

(2), The distribution function plays the same role in rarefied gas 

dynamics as the intensity does in radiation aerodynamics, as far as the 

deiierinination of macroscopic stream parameters is concerned. Equations 

135, 156, and 137 show that these parameters in rarefied gas dynamics are 

obtained as integral moments of the distribution function. In radiation 

aerodynamics, we have shown that these parameters are integral moments 

of the intensity. For this reason, f and I are regarded as the basic 

unknowns in their respective fields. 

(5), A comparison of Equations 1$5; 1$6, and 157 with Equations 26, 

27; and 28 reveals the striking similarity in the structure of the 

equations. The following lists the correspondence between rarefied gas 

dynamics and radiation aerodynamic factors in the integrands of the equations: 

m  ̂(a scalar factor) 

u. ~ cos 6 

V ~ sin 6 sin (j) 

w ~ sin 0 cos (j) 

f(c) ~ I(m) 
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de ~ dœ 

The transfonnation of the integrands in the corresponding equations can 

readily be accomplished. As an example, consider the integrands of 

Equations 155 and 26, which are the expressions for pressure. The 

transformation is as folio;) s : 

miff(c)dc = ̂  [mif f(c)dc] 

- i (5ê1_ X velocity X n̂ iber of mlecules, length 
c m̂olecule unit volume  ̂ time 

~ i X velocity) 
c ârea-time 

~ — (energy/area-time) 

= ̂  (l cos 8)dm 

(4) The distribution function is the solution of the Boltzmann 

equation. The intensity is the solution of the equation of transfer. 

Both are integro-differential equations, and both are derived from 

conservation principles. In the Boltzmann equation, collisions may be 

both the gas-gas and gas-body types. Since there are no photon-photon 

interactions, the equation of transfer accounts for collisions of the 

photon-body type, 

(5) In free molecule flow, the distribution function is Maxwellian, 

The incident flow parameters are calculated from Equations 155̂  156, and 

137 using the distribution function of Equation 150 corresponding to an 

incident stream temperature T̂ , The reflected flow parameters are 

similarly evaluated, but with a Maxwellian at a temperature characteristic 

of the reflected flow, T̂ , In general, T̂  lies between T̂  and the body 

temperature T̂ ,. Its value depends on the degree of interaction, or 

"accomodation", between the incident stream and the body. It is the 

practice in free molecule flow to treat the uacertainity in the value of 
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by introducing accomodation coefficients to represent the exchange of 

normal momentum and tangential momentum "between incident stream and tody 

as follows (25); 
T.-T 

-

"t = r?- ("5) 
1 w 

where the subscripts i and r refer to incident and reflected stream and 

w denotes the parameters evaluated by means of the Maxwell distribution at 

the temperature of the surface. In free molecule flow, parameters of the 

reflected stream are related to those of the incident stream by means of 

suitable accomodation coefficients. These coefficients are gross and 

incomplete descriptions of average effects (lO). Their introduction as 

constants in free molecule calculations avoids solution of the difficult 

Boltzmann equation, but the coefficients are responsible for the 

uncertainty that currently plagues free molecule calculations. In 

radiation aerodynamics, the incident pressure and shear are easily 

calculated from the assumption of a parallel field. The reflected intensity 

has been solved for in simple cases of diffuse reflection directly, by 

means of invariance principles, and no need to resort to "accomodation 

coefficients" exists in radiation aerodynamics, 

(6) Specular and diffuse are most important concepts in both 

radiation aerodynamics and rarefied gas dynamics, but slightly different 

interpretations are involved in each discipline. In free molecule flow, 

for example, a specular reflection process is one which there is no exchange 

of tangential momentum between the incident molecul.es and the body, and 
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the normal momentum is reversed in direction. This is described by the 

accomodation coefficients being zero. The other extreme, ff =5=1 

corresponds to "perfectly diffuse" reflection in -which the reflected 

molecules leave the surface of the body completely "accomodated" to it. 

This condition is characterized by the reflected stream being in Maxwellian 

eq.uilibrium ̂  the surface temperature, and the spatial distribution 

follows the Lambert cosine law with respect to the polar angles of the 

reflected molecules. In the general case(the accomodation coefficients 

having values between zero and one), the reflected stream is in Maxwellian 

equilibrium at some temperature between the body and the incident stream, 

and the diffuse spatial distribution is anisotropic. In radiation aero­

dynamics, the terms specular and diffuse refer only to the spatial 

orientation of the reflected intensity, while in free molecule flow more 

than spatial randomness is implied. The degree of equilibrium between the 

incident stream and the body is also included in the concept. There is 

a correspondence between the phase function in radiation aerodynamics and 

the accomodation coefficients of free molecule flow, for they both serve 

as an indication of the deviation of the reflected stream from an isotropic 

condition. 
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7. APPLICATIONS OF RADIATION AERODYKAMECS 

Everything required for the calculation of the differential lift 

and drag force on an element of surface area da has been determined. The 

pressure and shear for the incident parallel radiation field are kno\jn. 

The pressure and shear for diffusely reflected radiation fields have "been 

determined for isotropic and a type of anisotropic reflection. For both 

of these cases, the total pressure and shear can be obtained from Equations 

5 and k, and these total values are related to the differential lift and 

drag forces by Equations 1 and 2, Equations 1 and 2 may then be integrated 

over a given body to give the total lift and drag forces on the body due 

to light radiation. 

This procedure will be carried out in this section for four types 

of reflection processes: isotropic, Leimbert, anisotropic, and specular. 

The total lift and drag forces will be determined for three body shapes 

of particular aerodynamic importance: a flat plate, a sphere, and a 

cylinder. 

It is interesting to note that the velocity of the body is assumed to 

be small compared with the velocity of light, so that the body may be 

considered at rest with respect to the incident radiation. This is a 

most valid assumption for actual space travel situations. For example, a 

vehicle travelling from earth to Mars using a Hohmann, transfer ellipse for 

a 250 day trip, will approach Mars at a velocity of 25,52 kilometers/sec 

(21). For this case, 

V 2,552 X 10^ meters/sec  ̂
c " S / 

5 X 10 meters/sec 

and the point is illustrated. However, since electromagnetic radiation is 
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incident on.a "body with the velocity of light, the magnitude and direction 

of the hody velocity can al'ways he neglected, from relativistic eonsider-

ations. 

The expressions for the differential lift and drag forces -will now he 

I 

calculated for each of the four types of reflection processes that have "been 

mentioned. Figure shows an element of a slab, inclined at an angle of 

attack a with respect to the incident stream, and having a surface area do. 

Using the coordinate system of Figure 1, we take the azimuth angle of the 

incident stream to he it/s with respect to the positive z axis, so that the 

incident shear has no z-component. The pressure and shear for the incident 

radiation are, from Equations 29, , 52, and 35 with (j) = m:/2 
1 . 

P. = — coŝ  a (l4o) 
1 c  ̂
I 

and T. = — cos a sin a (l4l) 
1 c  ̂ ' 

acting in the negative y direction. In these equations, cos cc has "been 

substituted for 

For isotropic reflection, Eq.uations 'jQ and 85 give 
I 

(a,\) = — cos a [| H(a,x)M̂ (\) - k{a,K) cos a] 

= 0 

Therefore, since and 

p̂ (a,x) = ̂  cos a [cos a + |- ïï(a,x)M̂ (x) - A(a,x) cos a] (l42) 

I 
T (̂q:) = ̂  cos a sin a (1̂ 3) 

Substitution of these equations into Equations 1 and 2 gives 

fl I 
dF̂  = < ̂  cos a sin a [cos Q! + ̂  H(o:,\)]yî (\) -A(a,\)cos a)] - " X 

coŝ a sin a 2 da 

®L = Ic 

in a } 

J 
- cos a sin a [g H(a,\)M̂ (K)-A(Q;,\)cos a]| da (l44) 
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^̂  coŝ  a [coso: + ̂  H(o;,\)M̂ (x)-A(o!,\)cos a] + ̂  cos a sin̂ â  da 

or dP̂  = ̂  cos a ̂  1 + cos a H(o!,\)]yî (>,) -A(a,K) cos et]  ̂do 

(145) 

For the special case of Lambert reflection, Eq.-uation 85 gives 
X 

Pj, (o,̂ ) = I ̂  \ cos a 

I 
Thus, (a,Xj = cos a (cos a + j \) (l46) 

I 
(a) = — cos a sin a (l̂ T) 

lo • 2 I 
d̂ T = [ — cos a sin a (cos a + 5- \) coŝ a sin a] da 

il c  ̂ 5 c 

•• I 
or dF̂  = (̂  ̂  A. cos a sin a) da (lA8) 

I 2 0̂ 
dP̂  = [— coŝ a (cos a + 5" \) + — cos a sin̂ a] da 

i) c 5 c 

I 
or dF̂  = cos a (1 + J \cos a) ] da (1̂ 9) 

For the anisotropic case. Equations II8 and 124 give 

I_ ( 7 
P (Q:,\) = — cos a j H(a,\) [U(\) + V(\) cos a] - cos a, \ 

I c J 

TJ,(o:,k) = ~ cos a sin a [1 + vî{x) H (a,̂ .)] 

I 
Therefore, PJ(Q:,\) = — cos a ïï(a,\) [U(\) + cos a V(\)] • (150) 

I 
T̂ (a,\) = - ̂  cos a sin a W(x) Ĥ ^̂ (a,\) (151) 

The function ¥(\) is negative for all \ from 0 to 1, so that the total 

shear in Equation I5I has a positive sign, and acts in the negative y 

direction. The differential lift and drag forces are 

DF^ ~{C^  ̂H(Q:,\) [U(\)+V(\)COS A]+ ̂ (COS^ASINO!)¥(\)H^^^ (A,\) I 

or dF_= ̂  cos asin a ̂ H(a,\) [U(\)+V(\)cos a]+cos aW(\)Ĥ ^̂  (a,\) l da 

(152) 
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fl 
a H(a,\) [U(x)+V(\)cos a] - ̂ os a sin̂ Q;¥(x)H''̂  ̂ dcr =i-̂ oŝ  

D /c 
I 

or dFp= ̂ 0̂8 a (cos aB(o:,x) [U(x)+V(x)cos a] - sln̂ aW(\)Ĥ ^̂  (a,\)̂  da 

(155) 

Finally, the specular case -will be treated. Allowing for possible 

absorption of some of the incident radiation, the following conditions 

define the case of specular reflection; 

4)].) = \ to) (15%) 

Sr = (155) 

I = LLQ (156) 

and the normal component of momentum reverses direction. The reflected 

pressure and shear are found as follows: 

I'r = ̂  Ir coŝ ê , =*| \ Iq coŝ ê  

Therefore, 

\ (157) 

also. 

?r = i If «r ®r = ? 0̂ '0 ®o 

and so = X (158) 

The total values of pressure and shear are, in terms of a, 

P̂ ('̂ ;)̂ ) = (l + \) 'g" COŜ Q; (159) 

and Tj(a,\) = (l - \) ̂  cos a sin a (160) 

For the specular case, then, 
I I 

dF̂  = [(1 + \) ̂  cos% sin a - (l-x) y-coŝ o: sin a] da 

or dF̂  = (2x coŝ a sin Oi) da (161) 

/ 
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I I 
dl*̂  = [(l+\) — coŝ a + (l-\) — cos a sin̂ a] da 

I 
or df̂  = [ ̂  cos a (l +\ cos 2a)] dcr (162) 

!Hie equations for the differential, lift and drag forces %ill nov "be 

integrated over the surfaces of a flat plate, a sphere, and a cylinder. 

Hie results will he expressed in terms of dimensionless lift and drag 

coefficients. These coefficients will he plotted for each case, and 

graphs comparing these coefficients for the same body shape hut different 

reflection laws will he given, 

A brief note will he given regarding the numerical solution of the 

lift and drag eq.uations. The H functions have been computed by Chandrasekhar" 

(8) as function of p, (=cos a)and These values are used in the numerical 

solutions. All moments of the H-functions that are required have been 

computed numerically from Equations 70 and 126, Numerical integrations 

are required for evaluating the moments of.the H functions, and also for 

other integrals involving the H-functions. In each numerical integra­

tion, the trapezoidal rule was used. All numerical calculations were 

performed by the IBM 707̂  Computer at the Iowa State Computation Center, 

A, Flat Plate 

One of the basic assumptions of the theory presented in this paper is 

that none of the radiation incident on the outer surface of a body emerges 

from the inner surface. The incident radiation is absorbed and reflected, 

but not transmitted clear through the body. In dealing with flat plates, 

this condition must be kept in mind, A very thin flat plate need not 

necessarily violate this condition, since the plate might be made of a 



6$ 

highly reflecting material. Thus, the reflectivity and the thickness 

determine the validity of the assumption in a particular case. 

Let the total surface area of the plate be a, so that f da = a. 

Integration of the differential lift and drag forces, which have the form 
T 
0 F 

dF = f(a,\)da gives F = f(a,\)(j. Further, since — and - have the same 

dimension, the ratio is dimensionless. In general, for any body 
o'̂  

of total surface area cr, radiation lift and drag forces can be defined by 

FT/ct F 

<y • F, 

The following results appear for the flat plate upon integration of the 

appropriate differential lift and drag equations for the appropriate case, 

1, Isotropic 

Ĉ (a,x) = sin a cos a [| M̂ (\)E(a,\)-A(o(,\)co8 a] (165) 

Ĉ (a,\) = cos a ̂ 1 + cos a [| M̂ (\)H(a,\)-A(a,\)cos a]̂  (166) 

These eq.uations are plotted in Figures 7 and 15, 

2, I Lambert 

0̂ (CK,\) = I Sin 2a (167) 

Cĵ (a,x) = cos a(l + | \ cos a) (168) 

These equations are plotted in Figures 8 and 1̂ . 

3, Anisotropic 

Ĉ (a,\) = cos a sin a ̂H(a,x) [U(x)+V(\)cos a] +cos (Q;,X) 

(169) 

Cĵ (a,X)= cos a \cos Q!H(a,x) [U(x)+V(x)cos a]-sin̂ oiW(x)H''̂  ̂(o:,x)j 

(170) 
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A 
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dcr 

R sin a de 

Rd 
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Figure 5e Construction of a sphere from an element of surface 
area da 
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2R 

Figure 6a, Cylinder at a right angle to the incident radiation 

Figure 6t), Construction of a cylinder from an element of surface 
area dcr 



Fig-ure 7, Lift coefficient vs. angle of attack for a flat plate with isotropic reflection 
for different degrees of reflection \ 



ANGLE OF ATTACK ( a ) 
90° 75° 60° 45° 30° 0° 

X = I.O 

0.3 
o 

ur 

o 
0.975 

z 0.2 
w 
o 
Ll 

W 0.90 

o 

0.80 u. 

0.50 

0.10 X=0 

0.3 0.4 0.5 0.6 0.7 
COSINE OF ANGLE OF ATTACK (/i ) 

0.9 0.2 0.8 0.1 



Figure 8. Lift coefficient vs. angle of attack for flat plate "with Lambert reflection 
for different degrees of reflection \ 
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Pigijre 9, Lift coefficient vs. angle of attack for a flat plate with anisotropic reflection 
for different degrees of reflection \ 



Figure 10. Lift coefficient vs. angle of attack for a flat plate with specular reflection 
for different degrees of reflection \ 
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Figure 11. Influence of the reflection process on the lift coefficient of a flat plate 
for \ = 1.0 
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FigTore 12, Influence of the reflection process on the lift coefficient of a flat plate 
\ = 0.50 
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Figure 13, Drag coefficient vs. angle of attack for a flat plate with isotropic 
reflection for different degrees of reflection \ 
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These equations are plotted in Figure 9 and 15, 

4. Specular 

\ sin 2a cos a, 

Cjj(a,\) = cos a (l + X cos 2.a) 

(171) 

(172) 

These equations are plotted in Figures 10 and l6. 

It is of great interest to compare the effect of the reflection laws 

on the aerodynamic coefficients. Figures 11 and 12 compare the lift 

coefficient vs. angle.of attack for \ = 1,0 and \ = 0,5 respectively, for 

the four.laws of reflection. Figures 17 and l8 do the same thing for the 

drag coefficient. 

In applying the theory of radiation aerodynamics to spheres, note 

must he taken of the assumption of plane-parallel media, so that the theory 

is strictly applicable only to a tody of sufficiently large radius of 

curvature. This condition is met for spherically shaped space vehicles. 

The sphere presents an example of the need to integrate the differ­

ential lift and drag equations vith respect to angle of attack. As shown 

in Figure 4b, the angle of attack of the slab element with respect to the 

incident stream is the angle between the direction of the incident stream 

and the normal to the surface. It is thus possible to "construct" a 

sphere from strips at constant angle of attack as shown in Figure 5. 

If the axis of the sphere is taken along the direction of the incident 

radiation, the angle of attack of a strip will be the angle between the 

axis and the radius drawn from the center of the sphere to any point on the 

surface of the strip. The method of finding the total lift and drag 

B, Sphere 
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forces on the sphere is the following, 

Eq.uations 1 and 2 have allowed the determination of the differential 

lift and drag forces on an element of area da. We regard the slab element 

of Figure 41) to he an element on a strip. Integration of Eofuations 1 and 

2 around the strip gives the lift and drag forces acting on the strip, 

and then integration of these forces over all strips give the total lift 

and drag forces on the sphere. Let the surface area of a strip he dS, 

Let 

dEj? = [P̂ (a) sin a. - COS a] da 

and dF̂  = [P̂ (a) cos a + T̂ (a) sin a] dcr 

he the forces on da, and 

dF̂  = [P̂ (a) sin a - T̂ (a) cos a] dE 

dFp = [P̂ (A) cos A + T (̂Q:) sin a] dS 

be the forces or a strip of surface area dZ, 

As shown in Figure 

da = (R sin a de)x (Rda) = sin a da de 

•where R is the radius of the sphere 

n 
Thus, dE = da = (' R̂  sin (X da de 

e=0 

so dE = 2jffî  sin a da (175) 

Therefore, 

dF̂  = 2i<R̂  [P̂ (a) sin a - T̂ (a) cos a] sin a da (17̂ ) 

and dFp = 23tR̂  [P̂ (a) cos a + 'r̂ (a) sin a] sin a da (175) 

The limits of integration on a are 0 to rt. However, only half of 

the sphere is "wetted" by radiation, the other half being entirely 
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unexposed. This is due to the fact that the incident field is parallel. 

This, in effect the limits of a are from 0 to a/s. 

From symmetry considerations it may te immediately concluded that 

the lift force on the sphere is zero. For, on any given strip, the lift 

acting at a point defined "by the angles (a, (j)) is "balanced by an equal 

but oppositely acting force at the point (a, ̂  + a). Therefore, the 

subsequent analysis will deal only vith drag. The task is to evaluate 

the equation 

= 2jtR̂  J* [P̂ (a)cos a + T̂ (a) sin a] sin a da (176) 

0 

for each of the four types of reflection considered. 

1. Isotropic 

Substitution of Equations 152 and lk3 into Equation I76 gives 

I 5 7 
F̂  = 2iiR̂  •— I cos a sin a jl + cos a H(a,\)]ŷ (\)-A(a,\)cos a]jda 

o 

It is convenient to introduce p, = cos a into this expression. Also, 

let the radiation drag coefficient be defined with respect to the projected 

area of the sphere itR̂ . Thus, for a sphere, 

F /jtR̂  

=D = -TTT 
0' 

and so 
1 

Cj) = 2 J n 1̂ 1 +ii[| H(|i,\)]y!̂ (x)-n A(|i,\) ]|d|j, 

0 

1 11 
[ )  p 

H(ij,,\)dn - \x A(|j,,\)d(j,] = 2[ J n du + I Mj_(x) 
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The first integral is equal to l/2. The second is the second moment of H, 

]ŷ (\). To evaluate the third integral, it is recalled from Equation 82 

that 

A(|i,\) = 1 - H(|J,,X) -il - \ 
1 1 1 

Thus, J |i® A(n,x) du = J M.® du - Jl - \ J n® H(n,\) d̂ i 

0 0 0 

- ̂  - Ji - \ (\) . 

Therefore, 

= 2 [i + I i + Ji - X ̂ W] 

and thus Ĉ (\) = & + \ M̂ (\) ]ŷ (\) +2 Jl̂  Î (x) (178) 

2. Lambert 

Substitution of Equation l46 and 1̂ 7 into Equation I76 gives 

I 
Fj, = £rti=  ̂

f-
2 

cos a {1  +  ~  \  cos a) sin a da 

Thus, Op = 2 J (̂  + I >, |j,̂ ) d|i 

= 2 [è + I X ] ; 

and so = 1 + g X (179) 

5, Anisotropic 

Substitution of Equations I50 and I5I into Equation I76 gives 
I 3t/2 r /- \ 

2îtR̂  ̂  J' cos a ̂cos Q!E(a,x)[U(x)+V(x)cos a]-sin̂ O! ¥(x)Ĥ  

o 

(a,X) j sin a da 

Thus, Op = 2 J |̂ |î n(n,x)[u(x)+n v(x)]-n(i-n̂ )w(x)s(̂ )(a,x)j du 
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aad 80 1 1 1 

Ĉ = 2 juW j n̂ H(̂ ,\)dn+ V(\) V̂ H(|iA)àH-W(X) J 

+W(\) f n® Ĥ ^̂ (n;,\)dn 
u 
o 

Each of the integrals is a moment of or (p,,\). Thiis, from 

Equations 70 and 126, 

CpCk) = 2 (l80) 

4. Specular 

Substitution of Equations 159 and l6o into Equation I76 gives 
T «/2 

Fp= 2]tR̂  ~ J cos a (1 + X cos 2a) sin a da 

0 

Thus,  ̂

= 2 J H [1 + \ (2p.̂  - 1)1 du 

= 2 [I + 2\(i) - \(i)] 

Therefore, 

Cp(\) = 1 (181) 

Equations I76, 177, 178, and 179 are plotted in Figure I9, 

C, Cylinder 

An aerodynamic "body of considerable importance is the right circular 

cylinder with longitudinal axis perpendicular to the direction of the 

incident stream, i.e., a cylinder transverse to the incident radiation, 

as .shoTO in Figure 6 (a). 
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The cylinder can te regarded as composed of circular discs, as shown 

in Figm-e 6 ("b). The slat element of Figure 4 can he considered as an 

element of the disc. As the element of area da travels around the disc, 

the angle of attack between the normal from da and the direction of 

incident radiation varies from 0 to 2jt, In the coordinate system of 

Figure 4, the z axis is parallel to the longitudinal axis of the cylinder. 

The element of area dcr is equal to (RdO!)(;dz), where R is the radius 

of the cylinder. The angle a varies from 0, where the normal is exactly 

parallel to the direction of the incident radiation, to 2rt, However, only 

half of the cylinder is exposed to the radiation. Thus, only that part 

of the cylinder in the range of Q! (O, Jt/2) and ($)t/2, 2rt) are effective in 

contributing to lift and drag. The effective limits are (-:n:/2, 3t/2). 

As in the case of the sphere, the lift on the cylinder is zero bya 

symmetry consideration. This is true only for the cylinder at an angle 

of attack of 90°. 

The total drag force is obtained from Equation 1, and is for the 

cylinder j. 

F_ = f I [P_(a)cos OH- Tm(a)sin a] Rdadz 

i -V 
where L is the total length of the cylinder. Integration over the length 

gives a/2 

Fp = EL J [P̂ (Q;) cos a + sin a ] da (l82) 

-It/2 

This will now be evaluated for each of thé four types of reflection 

considered, 

1, Isotropic 

Substitution of Equations 142 and l4$ into Equation 182 gives 
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](/2 

FJ /̂RL = •— r cos a + cos a [| H(a,\)M̂ (\)-A(a,\)cos a]̂ da 

-V2 

It is conventional to refer the drag coefficient of a cylinder to 

the projected area of the cylinder, 2RL, Then, using Equation l64, and 

also using the expression for albedo given in Equation 82, we can write 

3t/2 
 ̂ cos a ̂ 1 + cos a -cos cw-cos aH(a,\)Jl̂ ]|da 

a/2 (183) 

We have "been writing the H-function as H(a,x). • Strictly speaking, this 

should "be written H(COS A,X), because of the way H is defined in Equation 

68. Thus, the integrand of Equation l8l is an even function of a, and so 
Jt/2 Ti/2. a/2 

= 2 ) J cos ado: + ^ M^(\) J coŝ a H(Q:,\) da - J cos®a da 

^ o O 0 

+ -Jl - X 

ît/2 

cos®a H(a,\) da 

SO that rt/2 a/z 

Op (x) = J + I f CO8% H(a,x)da + Jl - \ P Gos®Qïï(a,x) da 

° ° (184) 

Note that the two integrals are not moments of H as defined by Equation 70. 

These integrals have to be evaluated numerically, 

2, Lambert 

Substitution of Equations lk6 and 14-7 into Equation l82 gives 

I -/2 
fh ::o 
EL " c 

= 2 

cos a (l + J X cos a) da 

iji t/2 

j cos a da + J X J cos^a da 

I- 0 
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Thus, Ĉ (\) = 1 + I \ (185) 

3. Anisotropic 

Substitution of Equation I50 and I5I into Equation 182 gives 

P I r 
 ̂̂  I cos a Tcos a E(dj\) [U(\)+cos a V(\) ] -sin̂ c:W(\)X 

3(1) {a,\) j da 

The integrand is an even function of a. Thus, 

rt/2 7i/2 rt/2 
= U(\) f coŝ a H(a,x)da +V(x) f coŝ o: H(a,\)da--W(\) J cos a H(a,\)da--W(\) J 

r(l) cos a sin̂ a da (186) 

Each integral in Equation I86 needs to "be evaluated numerically. 

4. Specular 

Substitution of Equations 159 and 160 into Equation' 182 gives 

EL " c 
1 cos a(l + \ cos 2a) da 

-rt/2 

J rt/2 «/2 

= 2 [J cos a da + \ J cos a cos 2a da] 

Therefore, 

= 1 + x/3 (187) 

Eq,uations l84, I85, I86, and I87 are plotted in Figure 20. 
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VI. DISCUSSION 

The results of the previous chapter are shown graphically in Figures 

7-20, The significant features brought out by the curves •will now be 

discussed. Since it is of particular aerodynamic interest to determine 

the Influence that the reflection process has on the values of the aero­

dynamic coefficients, the format of this chapter will be to compare, for 

each body shape considered, the effect of the following reflection processes: 

1, Isotropic and Specular 

2, Isotropic and Lambert 

5. Isotropic and Anisotropic 

The first of these comparisons vill determine the feasibility of approxi­

mating the aerodynamic coefficients of a diffuse reflector by assuming 

specular reflection, thereby greatly simplifying the calculations. If 

this is found not to be feasible, the second approximation will determine 

the effect of approximating isotropic reflection by Lambert reflection, 

which would simplify the diffuse calculations. Finally, the third approxi­

mation will serve to indicate the importance of precise knowledge of the 

diffuse phase function. 

I 

A, Flat Plate 

Figures 7-10 show the variation of the lift coefficient of a flat 

plate with angle of attack for isotropic, Lambert, anisotropic, and 

specular reflection respectively, with X as a parameter. For each type 

of reflection, the curves show that reduction in the value of K reduces 

the lift, so that maximum lift at a given angle of attack is achieved for 
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total reflection of the incident radiation, and Mnimum lift results for 

complete absorption. This is to be expected from Equation 1 

dF̂  = (P̂  sin a - cos a) dcr 

since the total pressure increases by the amount of the reflected pressure 

•which results when X > 0, while the total shear is reduced by the amount 

of the reflected shear which may result (for specular and anisotropic 

reflection) when \ > 0. The curves also show that there is no lift at 

angles of attack of 0° and 90°. This may also be deduced from Equation 1. 

At 0°, the first term on the right-hand side is zero due to sin d, and the 

second term is zero since there is no shear component of the force per 

unit area at 0°, At 90°, the first term is zero since there is no 

pressure component at 90°, and the second term is zero due to the cos a 

term. These results accord with those for a flat plate exposed to a 

conventional "fluid" (e.g., free molecule flow), with one significant 

difference. For a conventional fluid, both sides of the plate are exposed 

to the flow, while it is clear that only one side of the plate will 

experience incident radiation. If, for example, free molecule flow 

calculations were carried out assuming only one side exposed, it would 

be found that there would be lift at 90°. A further observation regarding 

the lift curves is that maximum lift for the diffuse curves occurs at an 

angle of attack of about 44° (cos a = 0.72), while for specixLar reflection 

this maximum occurs at an angle of attack of about $6° (cos a = 0.8l) 

It is seen from Equations 169 and 170 that, for specular reflection with 

\ = 1, lift is proportional to the square of the cosine of a, and to the 

sine of a, while drag is proportional to the cube of the cosine of a. 

This result has been reported by Cotter (ll). 
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Figures 11 and 12 compare the lift coefficients for the four types 

of reflection processes, with a \ of 1,0 (complete reflection) and 0.5 

(half reflection and half absorption) respectively. The results presented 

in these figures will he discussed according to the three categories 

listed at the "beginning of this chapter. 

1. Specular reflection gives a markedly higher lift coefficient 

than any diffuse reflection process for angles of attack in the 

range of 0° to about 66°. Specifically, between l8° and 4̂ ° 

specular reflection gives more than twice the lift. However, 

at large angles of attack in the range 72.5° to 90°, specular 

reflection results in less lift than isotropic or Lambert 

reflection for X = 0.5 and less lift than all three diffuse 

reflection processes for \ = 1.0. The important conclusion to 

be drawn is that for a wide range of angles of attack, specular 

reflection will not be an accurate approximation to an actual 

diffuse reflector in determining the lift coefficient of a flat 

plate, 

2. Thé Lambert approximation to exact isotropic reflection is an 

excellent one for large values of but deviates from the 

isotropic solution as \ decreases. At \ = 1.0, the results for 

the lift coefficient are practically identical. At smaller 

values of \, the.Lambert approximation gives values for the 

lift coefficient of a flat plate that are as much as three times 

larger than the isotropic values, 

3. The lift coefficients calculated for isotropic and anisotropic 

reflection are very close. Anisotropic reflection gives slightly 
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larger values of at large values of but the reverse is 

true at smaller values of It can he concluded that the type 

of anisotropic reflection considered is adequately approximated 

"by isotropic reflection. 

Figures 15-16 show the variation of the flat plate drag coefficient 

•with angle of attack for the four reflection processes. While the 

behavior of the diffuse reflection curves are essentially similar, a 

unique feature appears in the specular case in the nature of a "crossover" 

point at an angle of attack of 4̂ °. Below ̂ 5°, increasing \ increases 0̂ , 

as in the case of diffuse reflection. However, above 1+5° an increase in 

\ results in a decrease in drag. These conclusions may be reached 

directly from an analysis of Equation 172. This interesting result has 

not, to the author's knowledge, been previously reported, due perhaps to 

the frequently made assumption "with specular reflection that X = 1.0. 

For all cases, there is no drag at an angle of attack of 90°, and 

maximum drag occurs at 0°. Let us examine Equation 2, 

dF̂  = (P̂  cos a +Tji sin a) dcr. 

At 90°, the first term on the right-hand side is zero due to cos a, 

and the second term is also zero since the total shear is zero at an angle 

of attack of 90°. This latter result follows directly from Equations l4$, 

1̂ 7, 151, and 160, but there is unusual physical significance attached to 

it. For conventional fluids, shear is maximum at 90°, but the shear due 

to electromagnetic radiation is zero at 90°. This serves as an indication 

of the different mechanisms that produce shear. In conventional fluids, 

shear stress occurs as the result of an interchange of momentum between 



92 

the layer of fluid adjacent to the surface and the surface, the interchange 

being accomplished "by means of the molecules of the fluid. Since the 

fluid molecules undergo random motion, it is possible for the molecules 

to transfer momentum to the surface even though the stream direction is 

exactly parallel to the surface. However, it vias shown in Chapter III 

that for radiation to exert a force on an element of area, radiative 

energy has to pass through the area. Since no radiation incident on an 

area •with an angle of attack of 90° can pass through the area, there vill 

be no shear stress. Therefore, there is no drag at an angle of attack of 

90°. This is unique to radiation aerodynamics. For free molecule flow, 

for example, the drag coefficient of a flat plate at an angle of attack 

of 90° is related to the free stream IVlach Number the gas specific 

cheat ratio 7, and the tangential accomodation coefficient by (25) 

Cp = (8/7a)2 

for both sides exposed to the flow, and 

0̂  =<2/7̂ )2 

for one side exposed. These show that, for  ̂0, the drag coefficient 

is zero only for specular reflection (CT̂  = O). For diffuse reflection 

(0j_ = 1), there is drag at an angle of attack of 90°. There is also 

a drag effect for all values of \. 

Figures 17 and I8 compare the drag coefficients for the four types 

of reflection processes with \ = 1.0 and 0.5, respectively. The 

following conclusions are drawn: 

1, Specular reflection gives larger drag coefficients than diffuse 

reflection for angles of attack between 0° and 25°, but smaller 
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ones between 25° and 90°, for \ = 1.0, As X decreases, the 

specular drag coefficient becomes smaller than the diffuse drag 

coefficients at larger angles of attack. As in the lift case, 

the deviation between specular and diffuse values is appreciable. 

2. The Lambert results are identical with the isotropic results at 

\ = 1.0, but at X = 0.5 the Lambert approximation gives values of 

the drag coefficient that are. too high. However, the Lambert 

approximation to isotropic reflection is more accurate at all 

values of X for the drag coefficient than for the lift coefficient. 

3. The anisotropic results for drag remain reasonably close to the 

isotropic results at all values of X to conclude once again that 

isotropic reflection may adequately represent diffuse reflection 

under anisotropic phase functions, 

B. Sphere 

Figure I9 shows the drag coefficient of a sphere as a function of X 

for the four types of reflection processes. The importance of the body 

shape to the conclusions drawn so far from the flat plate become evident 

for the sphere and cylinder. 

1. The fact that the drag force on a sphere with specular reflection 

is a constant, independent of X, is a most significant result. 

The deviation of the diffuse drag coefficients from the specular 

drag coefficient at large values of X is apparent, 

2. Lambert's Law is not a bad engineering approximation to the 

isotropic diffuse case, despite the markedly different shapes 

of the curves. For practical numerical calculations, Lambert 
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reflection is still a satisfactory approximation, although not 

as good as for the flat plate, 

3. Similarly, isotropic reflection is an acceptable representation 

of anisotropic reflection. 

It is interesting to note that specular reflection gives the smallest 

drag coefficient at every value of 

C. Cylinder 

Figure 20 sho'ws the drag coefficient of a cylinder transverse to 

the incident radiation as a function of \ for the four types of reflection 

processes. Here, the anisotropic case gives the smallest drag for \ 

between 0 and 0.983; and specular reflection gives the smallest drag at 

X = 1.0, The same remarks apply as for the sphere. The drag coefficients 

for the sphere and the cylinder as functions of X are given in the Appendix 

for isotropic and anisotropic reflection. 

It is important to note that the result for the sphere and cylinder 

have wider aerodynamic generality than may be evident. Since the 

parallel radiation field "•wets" only half of each body, the shape of the 

body behind the wetted portion is immaterial, provided that the rear 

portion is unexposed to the radiation. Then the results would apply 

to a variety of shapes, such as sphere-cones, sphere-cylinder, cylinder-

plates, etc. 

To summarize then the results disclosed by the applications of 

radiation aerodynamics considered in this paper: 

1, Specular reflection is not, in general, a suitable approximation 

to a diffusely reflecting material. 
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Lambert reflection is a satisfactory approximation to toth kinds 

of diffuse reflection processes considered for large values of 

Isotropic reflection is an adequate representation of the 

anisotropic reflection process considered in this paper. 
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IX. APPEHDIK 

Table 1. Drag coefficients for a sphere and a transverse cylinder for 
isotropic and anisotropic reflection, as a function of the 
degree of reflection \ 

Sphere Cylinder 
\ Isotropic Anisotropic Isotropic Anisotropic 

0 1.0000 1.0000 1.0000 1.0000 
0.10 1.0095 1.0009 1.0089 1.0018 
0.20 1.0189 1.0025 1.0192 1.0044 
0.50 1.0299 1.0056 1.0515 1.0087 
o.4o 1.0428 1.0101 1.0456 1.0148 
0.50 . 1.0585 1.0175 1.0651 1.0240 
0.60 1.0780 1.0280 1.0850 1.0575 
0.70 1.1057 1.0450 1.1140' 1.0581 
0.80 1.1599 1.0750 1.1554 1.0919 
0.85 1.1652 1.0985 1.1848 1.1252 
0.90 1.1997 1.1274 1.2251 1.1575 
0.925 1.2250 1.1505 1.2525 1.1854 
0.95 1.2558 1.1825 1.2891 1.2241 
0.975 1.2999 1.2522 1.5445 1.2851 
1.000 1.4497 1.4078 1.5295 1.5054 


