Point-Focusing Electromagnetic-Acoustic Transducer for Crack Inspection

Thumbnail Image
Date
2016-01-01
Authors
Nakamura, Nobutomo
Ashida, Kazuhiro
Takishita, Takashi
Ogi, Hirotsugu
Hirao, Masahiko
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Stress corrosion cracking in stainless-steel pipes is a critical failure in atomic power plants and chemical plants. In ultrasonic testing, piezoelectric transducers are generally used, in which reproducibility of amplitude measurements is not necessarily high because of effects of coupling materials and contacting conditions between the transducers and specimens. Comparing to the transducers, an electromagnetic acoustic transducer (EMAT) requires no coupling materials and is less sensitive to the contacting conditions, making the reproducibility higher. However, lower signal to noise (S/N) ratio has been a disadvantage. For increasing the S/N ratio, we developed a point-focusing EMAT (PF-EMAT) [1]. It generated shear-vertical (SV) waves from concentric line sources on a top surface of a specimen. Coil configuration of the EMAT was designed so that the SV waves were accumulated in phase at a focal point on the bottom surface, which increased the S/N ratio and improved the spatial resolution. We have designed PF-EMATs operated at different frequencies, and applied to artificially fabricated defects on stainless steel specimens. In this presentation, we show the results, and discuss availability of the PF-EMAT to crack inspection.

Comments
Description
Keywords
Citation
DOI
Source
Copyright