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The orthogonal decomposition of the observation vector is given .
by
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The corresponding amalysis of variance table would have entries

for sums of squares and degrees of freedom, given by

Tota1=/w+ a.l + a2
SeSe 38 = 32 + 1+ 0O + 5

DF. 8= X+ 3 + 3 4 1

We now comment critically on the value and validity of the preced-
:Lng enalysis, as well as ;)n the aigdrithm in general. On the positive
side, 't:he algorithm does aceomplish an orthogonal additive decomposition
of the observational vector. However, it is clear from an inspection of
the arrangement, that the design does not have three degreés in freedon
for each of the main effects. There are, in fact, only two linearly
independent estimable functions within each factor of classification, and
therefore, only 2:degrees of freedom for ‘each factor. Further, without

special assumptions, the situation represented by the arrangement has no
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degrees of freedom for error. That is, if the additive two factor
model is assumed, then the ebove arrangement yields no linear inde-
pendent functions of the observation which estimate zero unbiasedly,
and these generally correspond to individual degrees of freedom for
error.

Although no formal attempt has been made to identify the .classeé
of situations to which the Wilkinson procedure applies, it is clear
from Wilkinson's examples that the algorithm is useful for certain
incomplete block designs. These classes of data situations are charac-
terized as having maximal rank in each of the factors of classification,
thus avoiding the difficulties elucidated in the example.

The algorithm, however, has additional disadvantages, from this
author's point of ﬁew. These are:

1) The results of the analysis are dependent on the order of
presentation of the factors.

2) The algorithm does not provide information on degrees of free-
dom for situations of less than maximal rank,

3) From the examples given by Wilkinson, and the description of the
algorithm, it would seem to be applicable 1;0 two factor arrangements only.
It is not clear, at ;Least to this author, how the algorithm would proceed
to analyse incomplete models containing three or more factors of classi-
- fication. It is possible, however, that Wilkinson can describe the
necessary modification req_uired for an arbitrary number of factors, and

this would certainly meke the algorithm more valuable and generally
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more useful.

¥. Contribution of Blston and Bush

Elston and Bush (8) defined a set of hypotheses testable when there
are interactions in an analysis of variance model. Their intent was to

identify hypotheses "about +the main effects and to provide a method

of obtaining the sum of squares appropriate for testing any testable
hypothesis. In particular, the authors considered the problem of deter-
mining what is testable whencone or more subclasses are empty. They
explicitly dealt only with twé-way arrangements and concluded that
"the principles for a higher-way classification are exactly the same".
Because the work by Elston and Bush motivated the study contained in
Chapter V, their results will be briefly presented here along with a
few pertinent comments, It is desirable to point out that the fol-
lowing is concerned only with tﬁe case of empty subclasses, and that the
reference (8) contains additional results not covered in this section.
The authors slta‘ce that it is possible to "develop testable hypo-
theses that test for the main effects and interactions to the extent
that the data alloWw...", even when one or more subclasses are empiy.
In tﬁe case of just one empty subclass with mean fi (i.e., the p-th
and g=th levels of tlie two factors correspond to the emp‘cj class), after

imposing suitable restrictions, they suggest testing hypotheses of the
type . o

Ho : 25 Wj)‘tij = %-Wj Mi'j’

i,éi'; i’ i' =1, 2, .ooo,p—l,p'i'l, ecoy a,
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vhere w; are arbitrary weights,,"iij is the mean of the (i,j) sub-
class, and a is the number of levels of the first factor. This cor-
responds to a test for the first factor, leaving out the p~th level
of A. The hypothesis obtained has a - 2. degrees of freedom. Ad-
ditionally, they suggest testing

Ho: & A < W, . = (Z_v)zw/,(, .

. idp %3- 1] i)épliiéqua

a hypothesis with one degree of freedom which "can be interpreted as
testing whether, when wq. = 0, ,Z wj P ij is equal to the weighted average
value of Z W ’Kij s for all i 4 p. The preceding hypotheses, jointly,
yield a hy;othe sis‘wi'bh a =~ 1 degrees of freedom.

The authors extend the preceding to :the ca.se‘ of arbitrary number of
missing cells and conclude that "it is possible to derive a reasonable
hypothesis ... whatever the pattern of empty subclasses, provided only
that the filled subclasses fom a connec*beé design and at least one
level .. (of the factor) .. has no empty subclasses in StM, Further,
.. if every level .. (of the fac’cor) «. has at least one empty subclass,
then it is still possible to develop a test for the factor with (a;l)
degrees of freedom provided the design is connected".

The concept of comnectedness is defined and emplored in the next
chapier. That the nonneétedness critérion does not usefully generalize
to multi-way classifications, as implied bx the authors, is demonstrated

in Section B of Chapter V.
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V. ESTIVMATION AND ITS RELATIONSHIP TO CONNECTEDNESS,
REDUCIBILITY, AND GRAPHS

A. Introduction

Chapter IV exhibited the problemsthat arise in the analysis of
classification data containing missing cells, Specifically, when.'bhe
pattern of observed cells forms an arbitrary arrangement, it is desix-
able to -'.identify the functions within factors of classification that
can be estimated.

" Bose (2) gave a necessary and sufficient condition for the esti~
mability ;of every treatment contrast in a block-by-treatment additive
h.model. Thls conditio‘n on the pattern of observed cells he called
"connectedness”. The literature (8 , 23) contains references to this
concept as a criterion for estimability, testability, and ma.x:i.mality of
renk. As discussed in Section F of Chapter IV, some authors (87) seem
to feel that the concept of connectedness,cdu.ld be generalized to multi-
way classification.

In this chapter, the major result j.s & method_fo_r identification of
the functions that can be estimated within each factor of classifica;cion
from an arbitrary set of data. The presentation of this aigori‘.:hm is
preceded, in Section B and C, by a series of arguments which represent,
essentially, the logical process through which the algorithm was de-
rived. This form of presentation seems justified because of the uncom-
mon nature of the relationships and resﬁlts employed. In particular,
the éhap‘ber contains a counterexamplle that denies the possibility of

generalizing Bose's theorem (Section B). Further, the equivalehce
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between three seemingly unrelated concepts is demonstrated (Section C),
and the relevance of these equivalences to attain computational simplicity

is made manifest in the algorithm described (Section D).

B. Bose's Theorem and its Extension

A statement of Bose's theorem is as follows. A treatment tJ. is said
to be associated with a block bi if there is at least one observatioﬁ in
the (i,j) subclass. Two treatments, two blocks, or a .treatment and a block
are said to be comected if it is possible to pass from one to another by
a chain, such ‘chain consisting alternately of levels of blocks and treat-
ments such that any two adjacent members of the chain are associated. The
block-by-treatment arrangement is sald to be connected if every block and
treatment is comnected to every other block and treatment. Then Bose (2)

proved the following.

Theorem 5,1

With the model

yijk = + bi + 'bj + eijk R

every treatment difference is estimsble if the arrangement is comnected.
The commectedness criterion is computationally much ea.siér to verify
than the maximality of the rank of the coefficient matrix. Of course,
Bose's theorem establishes the equivaler_lce of the two. At this point, we
wish to consider the possibility of extending Bose's theorem to three-way
additiye models. Such extension would require modification of the pre-

ceding definitions. The following definitions are therefore presented.
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Definition 5.1

The i-th level of a factor & and the j-th level of a factor & s

are said to be associated if the combination (ak(i) ,a&(j)) occurs in the

data.

Definition 5.2

A chain is a sequence of levels of factors in which any pair of ad-
jacent elements of the chain is associated.

Definition 5.2a

Two levels of two distinet factors are said to be pairwise connected

if it is possible to construct a chain containing the two levels and con-
sisting alternately of levels of the two factors.

Definition 5.2b

Two levels of the same factor are said to be pairwise connected with

respect to a second factor, if it is possible to construet a chain con-
sisting exclusively of levels of the two fe_,ctors , containing the two levels
of the first factor as members.

Definition 5.3

A factorial arrangement will be said to be pairwise connected if for

every two factors, every two levels of any of the factors are pairwise
connected.
To clarify these somewhat modified definitions, consider the three

factor arrangement whose incidepce is depicted by
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aq (1)
a.z(j) i=1 i=2
j= 123 123
a3(k) 1100 010
k=2] 010 100
31001 0 01

where 1l's correspond to observed subclasses, and O's to those not observed.
A set of chains which depict all possible associations a.ré:
0yt oy (1), a,(1), a)(2), ay(2), a (1), a,(3)
2t 81(2), 85(1), a)(2), ag(2), ag(1), a5(3)
Gyt 8,(1), ag(1), 8,(2), ag(2)
Cy: a'2(3), a3(3)
Note that in the arrangement a.3(3) and a.z(l) are not pairwise connected
since no chain consisting alternately of associated levels of the two fac-
tors can connect these two levels, The arrangement is not pairwise
connected,

It is possible to implement on a digital computer the verification of
pairwise connectedness of an arrangement. Suppose that for any n-way class-
ification, the program has availsble the observed combinations for any two

of the factors. For example,

a (1) () a (i) a(3)
1 1 3 3
1l 2 L \ 3
2 L 5 2
3 2 "5 L

Beginning with any level of any of the two factors, say e.k(l), apply the
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following rules.
1) Form all sequences of pairs consisting of ﬁhe starting levels
and all of its associates. We have, a) a.k(l), a.L(l) , b) ak(l) s a&(z).
2) To the last entry of each sequence, reapply rule 1 subject to the
restriction that a level of the same factor not appear twice in the same -
sequence, We now have, a) a.k(l), a.&(l), b) ak(l), aL(z), a.k(3), c) - |
2, (1), 2,(2), & (5).
3) Apply rule 2 until every sequence terminates. This gives a)
& (1), 2,(1), B) &(1), &,(2), & (3), 2,(3), a,®), ¢) & (1), a,(2),
2, (5), 8, (1), = (2). |
4) If the resulting sequences contain all the levels of each of the
factors,-as in the above example, thén the factors are pa.irwise connected.,

Otherwise, they are not.

We can -immediately verify that these modified definitions do not
affect the validity of Bose's theorem. The fo]_'l.owihg.is a modified state=-
ment and proof of Bose's theorem within the context of definitions 5.1
through 5.3. .

Theorem 5.2
If «’avery. level of each factor is observed in a model

Vigg =M+ a.l(l) + a.z(j) LT E(eijk) =0 for all i,3,k,

Where i = 1’2, oo e ,rl, j = 1,2, eoe ,1'2 and.‘ k = 0’1’2, eee ,nij ) the
pattern of observed cells forms a pairwise comnected design if and only if

every contrast,
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T T
Z . (1) where > £ =0
ia A s, ézi *

is estimable.

Proof: If the arrangement is connected, all r levels of a, are con-

nected, and therefore there exists a chain C, such that !

(5.1) ¢

EEACHENCHRACHEACHRINCHCRR BNl

-contains a2ll the levels of 29 and every pair of adjacent members is

associated. But,

:;% 4. a (i) SE% (2, (1) (z,))
ZMat = 2k 5 - ainh

rl-l

S A @ - o),

H

because

‘gl_,el él(rl)= 0.

For each i = 1, 2, «usy 1y=1, 2,(1) - 2(z;) cen be estimated unbie-

asedly as follows. Let Ci be that segmen;b of the chain C, that connects

1
al(i) t0 al(rl). Then for each i

(5.2). ¢; % ay(a) = (4,); 2,(3)s 2 (s

1];17?_1)’ 32(3' ): "'.7 al(i )

m-1 m+p

= al(rl).
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If y(i,j) denotes an observation in the (i,j) cell, C; defines an un-

biased estimator of al(i) - al(rl) given by

(5.3)  ylipdy) = vy, 00 3p) + 3 403,,0) = ¥ 00 dpq) + oo

).

-y (im+p’ Impp-1

Since C, exists for all i, it follows that all al(i) - al(rl) are
estimable, and therefore every contrast is estimable.
i)

Couversely, if > ,Ql 21(1) is estimable for all 1.\. satisfying
i=1

1

Z ,?_ =0, i% £ollows that al(n.') - al(r ) is estimeble for each i',
i=1

- 38 | - B
t E[lak ijk yijk] - al(l ) al(ri)’ it follows that Z Al

ik ijk

0 for each fixed value of j; >\., . Z_ A -1; and
3 i Jk ,3,k

Z_/\\ e = O for i £ it £ r,. The observations in the estimator _S_
. ijk

>‘ijk yijk having coefficients distinet from zero can be arranged in
the form of expression 5.3, thereby defining a chain, as in 5.2. The
existence of partial cheins for i' =1,-2, ..., :bl
ence of the chain 5.1 and therefore the connectedness of the dezsi..gn.-

implies the exist-

We now turn our attention to the possibility of extending Theorem
5.2 to a three-way additive classificatory arrangement. That pairwise
connectedness does not imply estimability of all contrasts within a
factoraf classification is immediately obvious from the following

counterexample.
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Consider the three-way classification model
Vigen = At 2 (2) + ay(3) + ag(k) # ey 0 Blegpeg) = 0

“’ith i’j,k = l’ 2’ 3 and R’—-‘ O’ l, 2, evey mijko

Suppose six of the 27 cells were observed, and these are given

by indices

Cell No

(1)
(2)
(3)
(4)
(5)
(6)

1+

(CTI LI SR I o o
H oo W H e
SR S oy

W W NN

The following chains show respectively that (al(i), a2(;j)), (a2(;j),

aB(k)):and (al(i), a3(k)) are pairwise connecied.

«Q
.

al(l)’ az(l)’ al(z)s a2(2)’ 31(1)’ a2(3)1 al(l)’ a2(l)’ 31(3)

Q
.

: a2(l), a3(1)7 32(1)3 a3(2), a2(2)7 a3(3): 32(3)3

Q

: al(l)y 33(1)1 al(l)’ 33(2)’ 31(2)1'a3(3)’ 31(3).

Therefore, the existence of the above chains shows that the arrange~
ment is pa:i.iwise connected. However, no simple contrasts [_am(i) -
am(:i.‘ )] are estimable for any value of m, n. and i', i £ i'. Hence,
for the given model pairwise connectedness is not a sufficient con-

dition for estimability of all linear main effect contrasts.
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While the cbunterexample shows that Bose's theorem does
not generalize, the following theorem states that pairwise connecte
edness is a necessary condition for estimability of all main effect
contrasts in any additive model.
Theorem 5.3

With the model

n .

estimability of all contrasts of the form,

T r

S
_._S_i, .oa (1) with > 4. =0 for every s
i:lsl S i:lﬂl

implies the arrangement forms a pairwise connected design.

?_1;0_0_@_ If the arrangement is not pairwise comnected, by Definition
5.3, there exists a Qair of factors ap, ?q’. p not necessarily di'.fferent
from q, and two levels of these factors, ap(i), aq(‘j), such that the
chain of Definition 5.2 camnot be constructed. Without loss of gener-
ality, assume there exists a chain éonnecting every level of ap(i'),
iZi', to every level aq(j'), j 4 3. Then ap(i) - ap(i') is non-
estimable sin«f:e the set of levels of aq(i) associated with ap(i) are
disjoint from that set of levels of aq(i) associated with ap(i').
Having observed the impossibility of generalizing Bose's theorem,
the author's attention was drawn to the rela’hionship between the con-

cept of connectedness and the mathematical concepts of irreducibility



178

of matrices and graphs associated with matrices.
C. The Equivalence Beiween Connectedness, Irreducibility
of the Incidence Matrix,and a Property of its Graph

We first demonstrate the equivalence between connectedness and

irreducibility. The following definitions are useful.

Definition 5.4

For any given arrangement of observed cells on two factors of

classification &, ay, with r and 1, levels respectively, the . X

Ije matrix Nk, 9 defined by

i

Nk 2 (i,3) =1 if the i-th level of a is associated with the
? .

j=th level of ai,

=0 otherwise,

will be .called the associztion matrix of the two factors.

Definition 5.5

A square matrix A of order n is called reducible if the index set

I, = {l, 2, «oey n}can be split into two complementary disjoint sets
Ii = {il, 12, sevey iq‘; aIldIk = %EL’ k2’ coey kr}’ such that

A(doe, k)g) =0 for 211 pairs (e, kg) such that

iy € Ii and k@ 4 Ik'
Before giving the equivalence beiween irreducibility of a matrix
and connectedness of a two-way additive arrangement, we give the fol-

lowing lemmas vhich follow directly from the preceding Definitions 5.4



179

and .5

Lemma 5.1

If Nk,1 is the association matfix of factors a, and ag respective=
ly, then Nk,ﬂ = N},k'
Lemma 5.2

The association matrix of a factor with itself Nk,k is diagonal
and the i=-th diagonal element is equal to one if the i-th level of the

factor was observed, equal to zero otherwise.
Lemma 5.3

3 =N \
Iz Mk = \k,i H;‘.,k’ tThen

NJ} (i,i) = the number of levels of factor ag associated with the

i=-th level of ak.

Nf; (i,j) _the number of levels of factor ag associated with both

the i-th level and j=-th levels of e

Lemnz 5.4
A squere matrix 4 is reducible if there exists a permutationmairix
P such that

PA]?"-.: {B C] where B and D are
0 D

‘square matrices and 0 is a zero matrix.

Theorem 5.4

Por the model
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Vi g =M al(:.) + a (3) + £, i’ E (Y.le) =0
Vfith i = l, 2, ooo! 1‘1, j - l, 2, evey 1‘2, k = O, l, ssey n.:l.3
irreducibility of L\T1 N,. implies and is implied by estimability of

12 21
all contrasts 31(1) - a.l(i').

Proof Any off-diagonal of N;, such as "NJB'(i,i'), is greater than zero
if and only if al(i) - ai(i') is estimable. This follows directly from
Lemma 5.3, because N:;(i,i') >0 implies thet there are one or more lev-
els of 2, that are associated with both al(:.) and a._L(:.' If Nl is
reducible, then by Lemma 5.4, 'there ex:.sts a permutation of rows and
columns of N:,; such that
A O | '
PMlP' =l: } with A and B square mairices of order T -p and p, re-

0 B
spectively. The dimensions of A and B pariition the index set Ir in

accordance with Definition 5.5. Then the functions {al(l) - 31(13'-)]
are estimable if and only if i and i' belong to the same index set.
Therefore, estimability of a1l contrasts Lal(:.) - al(i')J implies the
irreducibility of NJZ'

Conversely, if NJZ‘ is irreducible, then any contrast [al(n.) - al(if'))
can be éstima‘bed as follows.

Ir 1_\T32'(i,i') >0, the contrast is estimsble. If N]é(i,i') =
then the irreducibility of 'N;:guarantees that for some i* such that
i L i','m%.(i,if)> 0. Hence, f_al(i) - al(iE)] is estimeble. If
N%(i' ,i¥) > 0, then [al(i‘) - al(_ii)] is estimable and,therefore, so is

[21(1) - al(i' )]. It N%(i',ii) = 0, the irreducibility of N-'é guarantees
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that for some i > such that i*® £ if, Nléiii,ii) >0, and so on. Hence,
irreducibility of IN;' implies estimabilify of all treatment contrasts.
The equivalence between comnectedness and irreducibility of the
incidence matrix gives us alternative computational methods of w.reri-
fying the maximality of the rank of the coefficient matrix without ac-
tually finding the rank. The desire to verify irreducibili’cy 1n the
simplest possible way led the author to a fur-bher.equiva‘lence that has
interesting ramifications for computational simplicity. This equivale
ence between irreducibili‘ty of a matrix and the strongly connected prop-

perty of the graph associated with the matrix is now presented.
The following definitions and a known theorem will be useful. The

proof of the theorem is this author's.

Definition 5.6
To any square matrix A of order n there corresponds a directed

graph G(A) defined as a set of points {Pi ti=1, 2y eees n} and a

set of broken directed lines commecting Pj 10 Pk whenever A(j,k) £ 0.

Definition 5.7

The directed graph G(A) of a2 matrix A is said to be strongly con-

nected if it is possible to pass from any one point of the graph to

another along the direction lines.

Theorem 5.5
A matrix A is irreducible if and only if its directed graph G(A)

is strongly connected.
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Proof It is convenient to prove, first,; the contrapositive, namely,
that if A is reducible then G(A) is not strongly connected. By Lemma
5.4, if" A 1is reducible this implies that there exists a permutation

matrix P such that

B c
P A P o | TXr TEOL-T
nxn nm nx 0 D .

N=-YXY N-rXa-r
. . -

We may assume the least favorable situation, namely, tha*.l: B, Cy and D
are positive matrices. It is sufficient to prove thet G(PAP') is not
strongly commected. Considexr the points P el and Pl. Since Pi\i-l is
connected only to points Pr+5.’ 12> 1, and any such point Pm—j is in
turn connected oaly to points P i ? 1> 1; it follows that there is no
directed path from P .. to P , say. Therefore..G(PAPl‘) is not strongly
connected, Since P is a permtation matrix, A is not strongly con-
nected. Therefore,if the graph of a matrix is stroqgly connected the
matrix is irreducible.

Kext, it is proved that if G(A) is no} strongly comnected, 4 is
reducible. Since G(A) is not strongly connected, there exist two
points Pi, Pj such that no directed path exists from Pi 1o Pj' Without
loss of generality we may permute the poinis by interchanging rows and
columms of the matrix so that 1> j and j = 1. Call the resulting

1
that for every k such that B (i,k) 4 0, B(k,1) = 0. PFurther, if B(k,})

matrix Pl 4 P! = B. Clearly B(i,1) = O. l\fow, 1t must be the case

# 0, then B(R,l) = 0. The last two implications must hold, for otherwise
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-1t would be possible to conmect Pi with Pl via Pk and P. Tor the
first k such that B(i,k) % 0, permute the k and n-th rows and k-th
and n-th columms, In general, if the r-th k is such that B(i,k) ,é
0, then permute the row and column with the nfx\+l row and column.

The resulting matrix is in reducible form.

Corollary 5.1

With the model

V. —u+al(1)+a(3)+e E(e ) = 0,

131{ ijk? ijk

\Vith i= l, 2, coey I3 j= l, 2, eo ey 1‘2; k= O’ l, coey nla

the following conditions are equivaleat in that any one implies the
other three: |
(1) 411 main effect contrasts are estimable.
(ii) The arrangement of observed cells forms & pairwise con-
nected design.

(iii) The 'association matrices leN o OF 1\T21 N12 are irreducible.

(iv) The graph associated with N 12 N2l or N,, N, is strongly con-

nected.,

The preceding yields various alternative computational methods of
determining if the coefficient matrix of a two-way additive arrange-
ment has meximal rank. OFf these, when the number of levels of each
Pactor is large, it is especially convenient to. verify that the directed
graph of 1\11 or Nl is strongly connected. Since Nl and N?_ are symmetric,
it is poss:.ble to graph only the upper triangular part of the matrix

using non=directed broken lines. The resulting graph is strongly con-

nected provided there exists a path (non—directed) from every
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point to every other point. This is the case if the matrix does not
contain a row or column of zeroes above the diagonal.

Suppose now, that the arrangement is not of meximal rank. We
-need to identify what functions within each factor of classification
can be estimated with the given data. The following Corollaries to
Theorem 5.2 yield the functions tl.za‘t'are estimable with any given-ar-

rengement of the observed data.

Corollary 5.2

With the model of Theorem 5.2y if the design is not comnected,
there exists aminimal set of chains Ci of alternately associated
levels of the factors, such that if am(j) € C, and a_ (3') € c~j then

. - R st
am(g) is not connected to & (3*).

Corollary 5.3

am(j) and am(j') are elements of the same chain if and only if
La'm(j) - am(j')] is estimable, and in this case, an estimator is given
by the same estimator as given in (5.3) based on the comnecting chain
between the two levels of the factor.

The last two Corollaries to theorem 5.2 and the directed graph
associlated with the ineidence matrix play a central role in the

following.

D. The Three Way Additive Classification

This section conitains an algorithm that exhibits Systematically
the functions that can be estimated within each factor of classifica-

tion when the data available present an arbitrary incidence pattern.
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Consider the situation presented by the model
(5.4) Vigkt = M+ 2 (1) + a,(3) + a3(k) + 8y g E(eijk&) =0

~where i =1, 2, «o.y i"l; 3 =1, 2y eeey T3 k=l) =y ceoy r3;
end f=0, 1, cue, 23 g
An important simplification in the two way model results from the
knowledge that estimability of all contrasts of one factor implies
and is implied by estimability of all contracits in the other factor.
In the case under consideration, it is worth considering if estima-

bility of 211 contrasts in al(:.) and all contrasts in az(j) implies

the estimability of all contrasts in a3(k).

Theorem 5.6
In a three way additive classification model, estimability of all
linear contrasts within the parameters of any two of the factors im-

plies estimability of all contrasts within the pearameters of the third.
! r
Proof: Without loss of generality, suppose > SLl al(:.) and m.

= =

a2( j) are estimable for 21l sets of real number {,GI} and %13.} such that

¥ T
ZQi=0and n. = 0.’
izl =1 ¢
3 3
Consider > (k) where > n_= 0.
sinoe 3 n asli) = B my (6] - o) m
ince k}) = a. -a \T iV is necessaxry only
o x k3 5750

to verify the estimability of each difference a3(k) - a3(r3); For a

fixed k, consider any observation containing as(k) in its expectation,
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3 . . and b ti taini in i ” i
say, yll’al’k' and an observation containing a3(r3) in its expectation,
say. ¥. . .

? 12,32,1‘3
Then E [yil’jl’k - yig’jg’r3.{= (al(il) - al(l2)) +(a2( 31) - a2(32)) +

(ay(x) = ay(xy)).

If al(il) A al(i2), ‘then by the assumptions of the theorem, there exists
N 1

a vector A\q such that E(h y) = al(il) - ej_(iz) where y is the vector of

observed values. Similarly, if a2( jl) £ a2( j2), then there exists a

>\2 3 E()\éy) = a2( jl) - az(jz)'

Consider the estimator

T =Ny~ ALy,
yil',al,k y12,32,r3 1Y ¥

This estimation has as(k) - a3(rk) as its expectation. Since k was
T

"3
arbitrary it exists for all k <r, and hence, E__l n, a3(k) is estimable

for all sets of real numbers ink“ﬁ satisfying ; n = 0.

k=1

Consequently, i3 is necessary and sufficient fo verify the estima-
bility of all contrasts of only two of the three factors. For compu~
tational simplicity the algorithm to be discussed will arrange the fac-
tors in ascending order according to the number of levels of each facw
tox, and will verify the estimability of all linear contrasts within each
of the first two factors. I't;. is without ldss. of generality that one can

assume T; € T, £ Ty in model 5.4

2
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Before proceeding to the development of the algorithm,we make the
following genera:_!. remarks. With the al(i), Ty levels of factor 2
there exist at most rl-l independent estimable functions. It is clear.
that it is necessary and sufficient that al(i) - ‘al(rl) be estimable

T
. i . 1
for all i <ry, in order that all functions S 2 al(i) be estimable.

i=r
thermore, no function can be estimable that is not a linear combinae-
. i _ . e _ - 1. ;
tion of the ry -1 funclions in the set A = {(al(i) al(rl)),S’ It is,
however, entirely possible that a linear combination of parametric

functions in A is estimable, when the functions in A that make up that

combination are not themselves estimable. Thus, for example,

2,(1) - 32,(2) + 2.(3) + 2;(4) =(e;(1) = 2,(2)) + (a;(3) - a;(2))
+ (e (4) - 2,(2))

may be estimable even though the components o the right of the equal
sign, each of which is a combination of two functions in A, are them-
selves individually non-estimable.

Consider an arbitrary parametric function in the set A represented
by al(:.) - al(z'l). Suppose 2 chain exists between &_L(n.) end al(:c‘l)
consisting alternately of levels of the factors a1y 2, such that
every two adjacent members are associated. Then we have seen in the
preceding sectivon how such 2 chain can be used to define an-estimate of
al(i) - al(rl) with the two factor model. However, there is a dif-

ficulty in three factors, important enough to be singled out, namely
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that in three~ factors every estimate does not have a corresponding
3

chain., For example, consider the 3 replicate of the 27 experiment

given by observations with indices corresponding to

Sequence
number i J k
(1) 1 1 1
(2) 1 2 2
S (3) 2 1 2
(4) 2 2 1

It is clear that & [11) + (2) - (3) - (4)] is the only unbiased esti-
mate of al(l) - 21(2). This, in the chain notation of the preceding

section,would require weighing the estimates defined by the two chains,

¢, = a(1), a,(1), 2(2)

and
¢, : a (1), 2,(2), &(2).

For the above reason;an extension of connectedness to the muliifacto-
rial additive model in terms of the existence of chains seems futile
to the author. Such definitions for connectedness of {wo lévels of two
factors are possible, but the best of these seem artificizl. These will
not be deliberated upon here, and instead the related concepts of irre-
dueibility and graphs will be exploited in.what follows.

Consider as an example a realization of the ﬁodel 5.4, whexre r1=3,
T, = 4, and r3 = 5 are the respective level$ of the three factors and

the observed cells correspond to indices given bys
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Cell Sequence Number i A X
1 1 1 1
2 1 2 2

3 1 3 3
4 1 4 5
5 2 1 2
6 2 2 3
7 2 4 4
8 3 1 3
9 3 2 4
10 3 3 5 .

The pertinent question is what can be estimated within parameters cor-
responding to single factors. The following procedure will make use of
ordered pairs, in which the elements may at times be levels of factors;
and at times,;be sequence numbers of cells. To distinguish,we use the
notation - (i, j) .when +he eclements in the pair are levels of face
tors, and (i,j) when the elements of the pair are sequence numbers of
observed cells, Note that as a general step in the procedure the in-
dices of observed cells (i,j,k) are always arranged lexicographically
ignoring repetitions,and then sequentially numbered.
Anassociationmatrix N,, can be obtained by starting with a zero

12

matrix of order r, X I,,then adding 1 to its (i,3):position for each

or
observed cell having the levels of factors 1 and 2 corresponding to i
and j respectively. For example, for the preceding data some incidence

matrices would appear as
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F e
T
OO M
Lo r r

Clearly, the incidence matrices sre always non-negative, and N:;.j

Corresponding to each incidence matrix one can produce a table storin
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o O K-

o K

I S

H H o

2 o M

rOOO!—'"

o O ¥ H

o K P

H O K O

o

the sequence number of cells corresponding to each positive entry.

Thus, in the case of the example, we have

@

& @
RO

Y

{2

)

asp

18

€

¢

-e

e

&

a i

-

.%Br.

{2 O O

N..o
i

g

5

&)

K2

&

\+

3

(10)

<>

&

The transpose of the incidence matrix multiplied b;_y the matrix will be

»
denoted Nij ‘Iji

WD W

9

—

= l\Ij_- and in the case of the example: .
J

3

2 .

a

Nl—’OO‘

-

The matrices are symmetric and only the uioper triangular part need

be computed.

They are obviously irreducible which is a necessary con-

dition for estimability of all main effect contrasts. However, this

is not a sufficient condition as was observed in the preceding sec-

tion. The tables Mij are multiplied symbolically to produce pairs

equal in number to the entries in N;‘ The rule is M, 0 M,

i
J



where

i S |
M (nym) = {_(k,l) .tk (;-Mij(n;.p)and leg Mji(p,m) for some p}
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Some resulting tables for the preceding example are

F ,
ALYy 5,3 [$5727 féjgi
i X2,2) < Lo 7> | 3100
N e 58>
L =L,ol, = - 0,821 (829>
2 =0ty 5T (
8,8
— — | €9,9)
10,10}
11y <3,3> 1 @5 | (3,8
ey S | Gy | (i
5,5 | 6,8
M:|3_ Mo, = — $6,69 (7:9>)
T,
(8,8
— -— | €9,9
10,10}




192

<L, |G, 1 <83

5,5 | £8,6)
{&,8» .
— (6,6‘; N
2 _ M = 9,9 |<9,7
MB = 11132 o 11123. = ‘ ‘ ‘
. 10,47
— -— | £3,30
<10,10;
o _ (4yd> ]
S T <7:7>

The resulting tables are symmetric and the lower triangular part
would contain the same ordered pairs with the elements of each pair
reversed. |

It is convenient, now, to digress on the motivation for the above
constructions. The off-diagonal entry in the incidence matrix I‘Ig: in
the k row and k' colum, (k < k'), is the number of simple differences
of two cells which have in their expectation aj_(k) - aj(k' )y and do not
contain any parameters of a . Such cell contrasts are implicitly given
by any pair in Mz; (x,k'). Tor example, I\T:é (1,3) = 3, so three simple
differepces between means of +two cells have in _their expectations

al(l) - al(3), and do not contain a, parameters. From I\'T-;(l,B) one Ob=-

2
tains that<1,8> is one such difference,so that if ¥(p) is the mean

of the observations in the cell with sequence number p, then

2 (7(1) - #6)) = [,(2) - 0,(3)] + [ 2l ST

parameters in as(k
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We proceed to examine some uses of this information.
Consider estimability of al(l) - al(3). From 1\%(1,3) and m%(1,3),

it is clear that if there exist real constants c:.L such that

Bleg (F(1) - F(8)) + e,(F(2) = F(9)) + e5(F(3) - 7(10))}

= Ble, (5(3) - 7(8)) + 'es(¥() - ¥(ON},

then each expectation is equal to \a.l(l) - al(3) . EBvery estimator
of 9‘1(1) - 31(3) need not be of ;uch form. Graphicelly, if each cell -
is represented by a point and each two points corresponding to a pair
in Mé(l,S) are connected by a line of one color, while each two points
correspording to a pair in M%(I,B) are connected by a line of a di:?-

ferent color, the resulting graph is

1>

{6
Thea al(l) - a1(3) has an estimator of the above form iff the graph
contains a closed loop consisting of an even number of lines alter- -

nately chosen from each color. One can obtzin similar graphs using

the other cells of Mé and MJ3:. These are



Gl(l,2):

6, (2,3):

Examination of the graphs reveals no simple estimable functions -of
the type a)(i) - a)(i'). If the graphs ¢ (1,3), G (1,2). and G,(2,3)

are added, then

A number of loops can be located of the type described above.

For example, some are

L, <2) ’ (6) » &) 9{5}7 2y
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It Y € {5 G0, @) Ty (s 2 O
Lyt (3)y QO 4)s AT 25 6)s 3D
Then from the loops,one obtains:that the expectations of
7(2) - 5(6) + ¥(8) - ¥(5),

7 §(5) = 7(8) + F(3) - 710) + F(4) = F(7) + 79) - H2),
and  ¥(3) - §(10) + 7(4) - ¥(7) + 7(9) - F(6)
yield estimable functions in al(i) parameters, estimating

2, (1) = 22,(2) + 2,(3), 2, (1) - 2(3)

and 2a1 (1) - 2a2(2). Clearly, the functions are not independent, but
do span all estinable functions in a.l(i) parameters.

Similarly, in factor 2, the composite graph is given by:
{10y \
¢ ' §9>E?r\
2 OY S

So thectosed loops defining estimable functions in az(j) parsmeters

are

=

63y (5}, @25, 35 (60

et

®)s s Ty &5 {255 {3)s &)

[}

2 @)y 3y BYy A0y, 4.
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Then the expectations of

7(6) - 5(5) + 5(2) - ¥(3)
7(8) - 7(9) + (1) - 5(5) + ¥(2) - 5(3),
¥(4) - ¥(3) + 5(8) - ¥(10)
yield estimable functions in a2(j)., and. these estimate
22,(2) - a,(1) - a,(3),
2,(4) - a,(3), and
a2(1) + a2(4) - 2a2(3), respectively.

Then, since these are independent, every‘.contras‘c in a2(j) is estinable.

We have the estimable functions

-1°2 =1 0 a2(1)
-1 1 a2(2)

10 -2 1 a(3)
25(4)

As previously stated, the tables of differences can be viewed in
meny interesting altermative ways. The foilow:i.ng provides a highly
efficient algorithm for identifying es‘t:in;able. functions within the param-
eters of any one factor. Suppose our interest is in the aB(R:)
eters, 'M]3_, say, contains all simple differences of cell means whose

expectation contain a2 contrast in a3(k) and no 21(3) parameters. Now,
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<1,1> | <€1,2> | 1,351 {1,4>

2,25 | €2,3> | {5,T> | <2,4>
5,55 | <5,6>

3 (5,35 | £6,7> | <3,4>
M = —— — | 6,6}
48,8) | <8,9> | <8,10p

LT,7>
<9,9> | <9,10>
| <>
£10,10>

Zzch entry; such as 1,2, defines a simple difference of two cell
means y(1) = ¥(2), which contains in its expectation a difference in
ag(j) parameters. Such differences can be tabled in an array called

?i. Then,in the example,

-— 1 (2) }' (1,3) v (1,4)
— — (2,3) | (3,4 | (2,4)

(1,2)
3 — —_— . (2,9 (3,4)
B = @,2) | (1,3)
- - .= (213)

The grephs G2(i,k') of the pair in each cell define estimable
functions of a3(k) paréme’teré as follows. If the graph Gi(k,k')
contains a closed loop, then a3(k) - a.),(k') is estimable. Clea;'ly,
in the present example xo such estimates are found. However, the

szme criterion can be applied o
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6:(1,2) + 92(1,3) + Gi(l,of) + 67(1,5) + 63(2,3) + G§(2,4) +
+8(2,5) + G2(3,4) + G3(3,5) + 6(4,5).

In the example

-1 T

3 3 =
= %6 (k)
k=l k'sk+l

(3% (4)

A few of the closed loops readily found are

: 2,.3, 2

Corresponding functions of cell means from M?. are
y(1) - ¥(2) + ¥(6) - ¥(5)
y(2) - 7(4) + 3(7) - ¥(5)

¥(1) - ¥(3) + ¥(20) - ¥(8)
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¥(1) - 5(4) + §(7) - 5(5)
7(2) - 5(3) + §(20) - F(9).
The expectations are given 'by

a5(1) - 22,(2) + a5(3)
25(2) = 25(5) + a;(4) - a,(3)
25(1) - 22,(3) + a5(5)
a5(1) = a5(5) + 2,(4) - 25(2)
a5(2) - 25(3) + a5(5) - a5(4)

respectively.

These are clearly not independent,but do generate all estimable

functions in a3(k) parameters.
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VIII. APPENDIX
COMPUTER PROGRAM FOR COUNTING THE NUMBER OF STRUCTURES, q = 3

DIMENSION IRAY(14)
COMMON N,IA,I,IT,JPP,JPM1,J,IRAY
DO 1 N=4,15
C ZERO ACCUMULATORS
DO 50 I=1,14
50 TRAY(I)=0
TA=0
NN=N-3
DO 2 I=1,NN
.C CLASS 1 STRUCTURES
II=I+1
NSO=N-3-I
NS1=I
DO 3 JP=1,II
- JPP=JP-1 |
Iﬁ(Nso-JPP)B,S,S
5 IF(NS1-I+JPP)3,6,6
6 CALL SUBA
3 CONTINUE
C CLASS 2 STRUCTURES
NM2--2

DO 7 J=II,NM2
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JML=J+1

DO 8 JP=1,JML
JPM1=JP-1
IF(NSO-JPM1)8,10,10
IF(NS1-J+JPM1)8,11,11
CALL SUBB

CONTINUE

CLASS 3 STRUCTURES

12

13

20

DO 9 JP1l=1,JML
JPM1=JP1-1
IF(J-I-JPM1)9,12,12
IF(J-I-JPM1-1)9,13,9
CALL SUBC

CONTINUE

CONTINUE

CONTINUE

PRINT 20,N,IRAY,IA
PORMAT(1H ,1616)
commmE

STOP 0

END
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SUBROUTINE SUBA
DIMENSION IRAY(14)
COMMON N,IA,I,II,JPP,JPM1,J,IRAY
C DEFINES NUMBER OF ELEMENTS IN EACH SET
NS0 2=N-3-I-JPP |
NSIN2 =JPP
NSIN1 =JPP
NS2= I-JPP
C CILASS 1 STRUCTURES
C CIASS 1.1
DO 100 XP=1,II
KPM1=KP-1
IMKP= II- KPML
DO 100 KPP=1,INKP
KPPM1=XPP-1
IP(JPP-KPM1)100,2,2
2 IP(NSO2-KPM1)100,102,102
102 IF(JPP+JPP-KPPM1)100,103,103
103  IF(NS2-T+XPM1+KPPM1)100,104,104
104 IA+IA+L .
IRAY( 1)=IRAY( 1)+1
100 CONTINUE
C CLASS 1.2
NM1=N-1

DO 111 K=IT,NML
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KML=K+1

DO 110 KP=1,KML

KPM1 = KP-1

KMKP=K-KPM1+1

DO 110 KPP=1,KMKP

KPPM1 = KPP-1
IF(NS02-KPM1)110,112,112
IF(JPP+JPP-KPPM1)110,113,113
1P (NS 2-K+KPM1+KPPM1)110,114 ,114
IA= TA+1

IRAY( 2)IRAY( 2)+1

CONTINUE

KT=X - NS2 - NSIN2

CLASS 1.3

132

131

130

DO 130 KP=1,KT

KPMl= KP-1

IF(NS02-KPM1)130,132,132
IF(NSIN1-K+NS2+NS1N2+1+KPM1)130,131,131
TA=TA+1

IRAY( 3)=TRAY( 3)+1'

CONTINUE

CLASS 1.4

142

141

IP(K-NS2-NS1N1)~-NS1S2-2)140,142,142
IP(NSO2-K+NS 24+ NS IN1+NS1IN2+2) 140,141,141

JTA=TA+1



45 -

46
47
48

49

140

111

208

TRAY( 4)=IRAY( 4)+1

CONTINUE
CONTINUE
RETURN

END
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SUBROUTINE SUEB
DIMENSION IRAY(14)
COMMON N,IA,I,II,JPP,JPM1,d,IRAY
¢ DEFINES THE NUMBER OF ELEMENTS IN EACH SET
NS02 =N-3-I-JPML
NSIN2=I--J+JPML
NSIN1 = JPM1
NS2 =J-JPM1
IP(NSIN2) 2,1,1
2 NSIN2= 0
1 IR(J-I-JPM1)3,3,4
4 NS2=NS2-1
C CIASS 2 STRUCTURES
C CLASS 2.1

3 =J+1

13
14
15
16
17
18
19
20

2l

DO 100 KP=1,JdML
KPM1=KP-1
JMKP1=J-KP+2

DO 100 KP2=l,JMKP1
KP2AN=KP2-1
JMK12=J -KPM1-KP2+2
DO 100 KP3=1,JMK12
KP3M1=KP3-1

TP (KPM1-NS02)10,10,100



22
23
24
25
26
27

28

29
30
31
32
33
34
35
36

37

38

40
41
42
43
44

10

12

13
14

502

100
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IF(KPZMl-NSlN2)lZ,12,100
IF(XP3M1-NSIN1)13,13,100

IF( J-KPM1-KP2M1-KP3M1-NS2)14 ,14,100
IF(KPM1-JPM1+KP3M1)502,502,100
TA=TA+1

IRAY( 5)=IRAY( 5)+1

CONTINUE

C CLASS 2.2

15
16

110

NSIN2=I-J+JPM1

JMIl= J-1

DO 110 KP=1,JMI1

KPM1=KP-1
IF(XKPM1-NS02)15,15,110
IF(J~-I-1-KPM1-NSIN1)16,16,110
IA=TA+1

IRAY( 6)=IRAY( 6)+1

CONTINUE

C CILASS 2.3

NM1=N-1

© o IMl=d+1

DO 130 K=JMl,NM1

KNI =K~J

DO 131 KP=1,KMI
KPM1=KP-1

IF (KPM1-NS02)17,17,131



45
46
47

48

49
50
51

52

53

54

56

57
58
59
60
61
62
63
64
65
66
67

68

211

17 IF(K-KPM1-1-NS2-NSIN1-NS1N2)18,18,131
18 TA=TA+l
IRAY( 7)=IRAY( 7)+1
131 CONTINUE
C CIASS 2.4
KMI=K-1
DO 132 KP=1,KMJ
KPM1=KP-1
IF(XKPM1-NS02)19,19,132
19 IF(K-1-NS2-NS1N1-NSIN2-KPM1)20,20,13%2
20 IRAY( 8)=IRAY( 8)+1
132 CONTINUE
C CLASS 2.5
KM1=K+1
DO 133 KP=1,KMl
KPN1=KP-1
KMP=K-KP+2
DO 133 KP2=1,KMP
KP2M1=KP2-1
KMPMP=K-KP-KP2+3
DO 133 KP3=1, KMPMP
KP3M=KP3-1
IF(KPM1-NSO2) 21,21,133
21 IF(KP2M1-NSIN2)22,22,133

22 IF(XKP3M1-NSIN1)23,23,133



69
70
Tl

72

74
75
76

17

2lz

23  IF(X-KPML-KP2M1-KPSM1-NS2)24,24,133
24 TA=TA+L

IRAY( 9)=IRAY( 9)+1
153 CONTINUE

130 CONTINUE

C CLASS 2.6
IA=TA+N-I-JPM1-2
IRAY(10)=TRAY(10)+N~1~JPM1~2
RETURN

END



