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degrees of freedom for error. That is, if the additive two factor 

model is assmed, then the above arrangement yields no linear inde­

pendent functions of the observation which estimate zero lanbiasedly, 

and these generally correspond to individual degrees of freedom for 

error. 

Although no formal attempt has been made to identify the classes 

of situations to which the Wilkinson procedure applies, it is clear 

from Wilkinson's examples that the algorithm is useful for certain 

incomplete block designs. These classes of data situations are charac­

terized as having maximal rank in each of the factors of classification, 

thus avoiding the difficulties elucidated in the example. 

The algorithm, however, has additional disadvantages, from this 

author's point of view. These are; 

1) The results of the analysis are dependent on the order of 

presentation of the factors. 

2) The algorithm does not provide information on degrees of free­

dom for situations of less than maximal rank. 

3) From the examples given by Wilkinson, and the description of the 

algorithmj it would seem to be applicable to two factor arrangements only. 

It is not clear, at least to this author, how the algorithm would proceed 

to analyse incomplete models containing three or more factors of classi­

fication. It is possible, however, that Wilkinson can describe the 

necessary modification required for an arbitrary number of factors, and 

this would certainly make the algorithm more valuable and generally 
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more useful. 

î. Contribution of Elston and Bush 

Elston and Bush (s) defined a set of hypotheiseâ testable v/hen there 

are interactions in an analysis of variance model. Their intent was to 

identify hypotheses' ' about the main effects and to provide a method 

of obtaining the sum of squares appropriate for testing any testable 

hypothesis. In particular, the authors considered the problem of deter­

mining what is testable vAienrone or more subclasses are empty. ' They 

explicitly dealt only with two-v;ay arrangements and concluded that 

"the principles for a higher-way classification are exactly the same". 

Because the work by Elston and Bush motivated the study contained in 

Chapter V, their results will be briefly presented here along with a 

few pertinent comments. It is desirable to point out that the fol-

lovdug is concerned only with the case of empty subclasses, and that the 

reference (s) contains additional results not covered in this section. 

The authors state that it is possible to "develop testable hypo­

theses that test for the main effects and interactions to the extent 

that the data allow...", even when one or more subclasses are empty. 

In the case of just one emoty subclass with meanlJ-' (i.e., the p-th J pq. 

and 6-th levels of the two factors correspond to the eng>ty class), after 

•imposing suitable restrictions, they suggest testing hypotheses of the 

type . • 

X ̂  X, X̂  1, 2, ..., p — 1, p 4" 1, ..., a. 
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where are arbitrary v/eî ts,/!.̂  ̂is the mean, of the (i,j) sub­

class, and a is the number of levels of the first factor. This cor­

responds to a test for the first factor, leaving out the p-th level 

of A. The hypothesis obtained has a - 2- degrees of freedom. Ad­

ditionally, they suggest testing 

a hypothesis with one degree of freedom which "can be interpreted as 

testing whether, v/hen w = 0, ̂  vf. y i . is equal to the weighted average 
Q. ^ 0^ Pj 

value of Z_ w./'\ ., for all i p. The preceding hypotheses, jointly, 
j J 3. 

yield a hypotlE sis with a -1 degrees of freedom. 

The authors extend the preceding to the case of arbitrary nimber of 

missing cells and conclude that "it is possible to derive a reasonable 

hypothesis ... whatever the pattern of empty subclasses, provided only 

that the filled subclasses form a connected design and at least one 

level .. (of the factor) .. has no empty subclasses in it". Further, 

if every level .. (of the factor) .. has at least nne empty subclass, 

then it is still possible to develop a test for the factor with (a-l) 

degrees of freedom provided the design is connected". 

The concept of connectedness is defined and eaiplored in the next 

chapter. That the .connectedness, criterion does not usefully generalize 

to multi-way classifications, as implied by the authors, is demonstrated 

in Section B of Chapter V. 
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V. SSTIMTIOK MD ITS ESLATIOUSHIP TO COMECTEDHESS, 
REDUCIBILITY, iM) GRAPHS 

A, Introduction 

Chapter IV exhibited the problemsthat arise in the analysis of 

classification data containing missing cells. Specifically, when the 

pattern of observed cells forms an arbitrary arrangement, it is desir­

able to ..identify the functions within factors of classification that 

can be estimated. 

Bose (2) gave a necessary and sufficient condition for the esti-

mability of every treatment contrast in a block-by-treatment additive 

model. This condition on the pattern of observed cells he called 

"connectedness". The literature (8 , 23) contains references to this 

concept as a criterion for estimability, testability, and maximality of 

rank. As discussed in Section P of Chapter IV, some authors (bO seem 

to feel that the concept of connectedness could be generalized to multi-

v/ay classification. 

In this chapter, the major result is a method, for identification of 

the functions that can be estimated within each factor of classification 

from an arbitrary set of data. The presentation of this algorithm is 

preceded, in Section B and C, by a series of arguments which represent, 

essentially, the logical process through which the algorithm v/as de­

rived. This form of presentation seems justified because of the uncom­

mon nature of the relationships and results employed. In particular, 

the chapter contains a counterexample that denies the possibility of 

generalizing Bose's theorem (Section B). Further, the equivalence 
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between three seemingly unrelated concepts is demonstrated (Section C), 

and the relevance of these equivalences to attain coiKputational simplicity 

is made manifest in the algorithm described (Section D). 

B. Bose*s Theorem and its Extension 

A statement of Bose's theorem is as follows. A treatment t. is said 
J 

to be associated with a block b̂  if there is at least one observation in 

the (i,j) subclass. Two treatments, two blocks, or a treatment and a block 

are said to be connected if it is possible to pass from one to another by 

a chain, such chain consisting alternately of levels of blocks and treat­

ments such that any two adjacent members of the chain are associated. The 

block-by-treatment arrangement is said to be connected if every block and 

treatment is connected to every other block and treatment. Then Bose (2) 

proved the following. 

Theorem 5.1 

With the model 

rijk = * + + t. + , 

every treatment difference is estimable if the arrangement is connected. 

The connectedness criterion is computationally much easier to verify 

than the maximality of the rank of the coefficient matrix. Of course, 

Bose's theorem establishes the equivalence of the two. At this point, we 

wish to consider the possibility of extending Bose's theorem to three-way 

additive models. Such extension would require modification of the pre­

ceding definitions. Ttie following definitions are therefore presented. 
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Definition 5.1 

The i-th level of a factor , and the j-th level of a factor a^ , 

data. 

Definition 5.2 

A chain is a sequence of levels of factors in which any pair of ad­

jacent elements of the chain is associated. 

Definition 5.2a 

Two levels of two distinct factors are said to he pairwise connected 

if it is possible to construct a chain containing the two levels and con­

sisting alternately of levels of the two factors. 

Definition 5«2b 

Two levels of the same factor are said to be pairwise connected with 

respect to a second factor, if it is possible to construct a chain con­

sisting exclusively of levels of the two factors, containing the two levels 

of the first factor as members. 

Definition 5.3 

A factorial arrangement will be said to be pairwise connected if for 

every two factors, every two levels of any of the factors are pairwise 

connected. 

To clarify these somewhat modified definitions, consider the three 

factor arrangement whose incidence is depicted by 

are said to be associated if the combination 
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j = 

â (i) 

i = 1 i = 2 

j = 1 2 3  1 2 3  

a (k) 1 

k = 2 

3 

1 0 0 0 1 0 

0 10 10 0 

0 0 1 0 0 1 

where I's correspond to observed subclasses, and O's to those not observed. 

A set of chains which depict all possible associations are: 

â (l)̂  BgCl); 8̂ (2), aĵ (l), 8̂ (3) 

Cg: 8̂ (l)̂  8,̂ (1); 8̂ (2); â Cs), ag(l), 

Cg: ag(l), â (l)̂  8,g(2), â Cs) 

C^: agCS), â (3) 

Note that in the arrangement ag(3) and 8̂ (1) are not pairwise connected 

since no chain consisting alternately of associated levels of the two fac­

tors can connect these two levels. The arrangement is not pairwise 

connected. 

It is possible to implement on a digital coinputer the verification of 

pairwise connectedness of an arrangement. Suppose that for any n-way class­

ification, the program has available the observed combinations for any two 

of the factors. For example, 

\(i) â (i) 

11 3 3 
1 2 4 \ 3 
2 4 5 2 
3 2 '5 4 

Beginning with any level of any of the two factors, say â (l), apply the 
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following rules. 

1) Form all sequences of pairs consisting Of the starting levels 

and all of its associates. We have, a) â (l), â (l) , b) â (l) , â (2). 

2) To the last entry of each sequence, reapply rule 1 subject to the 

restriction that a level of the same factor not appear twice in the same 

sequence. We now have, a) â (l), â (l), b) a (l), â (2), â (3), c) 

â (l), â (2), \(5). 

3) Apply rule 2 until every sequence terminates. This gives a) 

aĵ (l), â (l), h) â (l), â (2), â (3)f a,̂ (3)> c) aĵ (l), â (2), 

\(5), â (2). 

4) If the resulting sequences contain all the levels of each of the 

factors, as in the above example, then the factors are pairwise connected. 

Otherwise, they are not. 

We can immediately verify that these modified definitions do not 

affect the validity of Bose's theorem. The following.is a modified state­

ment and proof of Bose's theorem within the context of definitions $.1 

through 5.3. 

Theorem 5.2 

If every level of each factor is observed in a model 

îjk = ®ijk ' = 0 for all i,j,k, 

where i — 1,2, .... ,rj|̂ , j = 1,2, .•• ̂ 2̂ and k — 0,1,2, ... ,n̂ j , the 

pattern of observed cells forms a pairwise connected design if and only if 

every contrast. 
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fi 
 ̂X Ek(i), where  ̂̂. = 0 

i=l i=l 

is estimable. 

Proof; If the arrangement is connected, all r levels of are con­

nected, and therefore there exists a chain such that ' 

(5«l) C^î a^(î ) ,a2(•3.^(12) »3'2(^2^'***'^2^^p—1^ ' 

contains all the levels of â , and every pair of adjacent members is 

associated. But, 

fi 1̂ 
X â (i) = ̂ 4 i\i^) - ̂ (̂ 1)) 

= 2 (â (i) - â (r̂ )), 

because 

 ̂A 4.(̂ 1)= °' 
i=l 

Por each i = 1, 2, ..., r̂ -1, â (i) - â (r̂ ) can be estimated unbi-̂ -

asedly as follov/s. Let be that segment of the chain that connects 

â (i) to â (r̂ ). Then for each i 

(5.2). : â (i) = â (î ), "* ̂l̂ m̂-i-p̂  
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If y(i,i) denotes an observation in the (i,j) cell, defines an un­

biased estimator of â (i) - â (r̂ ) given by 

(5.3) y + + — 

Since exists for all i, it follov/s that all â (i) - â (r̂ ) are 

estimable, and therefore every contrast is estimable. 

Conversely, if ̂  A (i) is estimable for all ?. satisfying 
i=l  ̂  ̂

> = 0, it follows that a.(i') - a_(r_) is estimable for each i'. 
i=l  ̂

" ®[|p, yijk] =  ̂̂ijk = 

0 for each fixed value of j; ̂  ̂= 1; . . =-1; and 
% 1 3% j,k I'J'* 

A. .. = 0 for i i* A The observations in the estimator ̂  
j,k  ̂ ijk 

îjk ̂ijk coefficients distinct from zero can be arranged in 

the form of expression 5.3, thereby defining a chain, as in 5.2. The 

existence of partial chains for i' =1,-2, ..., implies the exist­

ence of the chain 5.1 and therefore the connectedness of the design* 

We now turn our attention to the possibility of extending Theorem 

5.2 to a three-way additive classificatory arrangement. That pairvri.se 

connectedness does not imply estimability of all contrasts within a 

factor of classification is immediately obvious from the follovring 

counterexample. 
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Consider the three-way classification model 

+ a;(k) f «ijkH ' = ° 

with i,j,k = 1, 2, 5 and jl= 0, 1, 2, ..., 

Suppose six of the 27 cells were observed, and these are given 

by indices 

Cell Wo 1 k 

(1) 1 • 1 1 

(2) 1 2 2 

(3) 1 3 3 

U) 2 1 2 

(5) 2 2 3 

(6) 3 1 3 

The following chains show respectively that (â (i), agCj)), (agCj), 

aj(k)),and (â (i), â (k)) are pairwise connected. 

0]_ : â (l), agCl), â (2), 8.̂ (2), â (l), â Cs), â (l), â Cl), â (3) 

Og : agCl), â (l), s.2̂ 1), â (2), ag(2), a„(3), â Cs), 

: â (l), â (l), â (l), â (2), â (2), â (3), â (3). 

Therefore, the existence of the above chains shows that the arrange­

ment is pairv/ise connected. However, no simple contrasts |̂ (̂i) -

â (i03 are estimable for any value of m, i and i', i i'. Hence, 

for the given model pairwise connectedness is not a sufficient con­

dition for esti,inability of all linear main effect contrasts. 
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While the covuaterexample shows that Bose's theorem does 

not generalise, the following theorem states that pair̂ 'dse connect­

edness is a necessary condition for estimability of all main effect 

contrasts in any additive model. 

Theorem 5.3 

With the model 

n 
î 2L Gsfig) ®i' Ĝ ®i) = ig = 1, 2, ..., 

estimability of all contrasts of the form, 

& ̂
 L a (i) with > jL = 0 for every s 

3=1̂  ® i=l̂  

implies the arrangement forms a pairwise connected design. 

Proof If the arrangement is not pairwise connected,' by Definition 

5.3, there exists a pair of factors â , â , p not necessarily different 

from q, and two levels of these factors, â (i), â (j), such that the 

chain of Definition 5.2 cannot be constructed. Without loss of gener­

ality, assume there exists a chain connecting every level of â (i* ), 

1 V J to every level â Cj')» j ̂  j'. Then â (i) - ap(i') is non-

estimable since the set of levels of â (i) associated with â Ci) are 

disjoint from that set of levels of â Ci) associated v/ith â (i' ). 

Having observed the impossibility of generalizing Bose's theorem, 

the author's attention was drawn to the relationship between the con­

cept of connectedness and the mathematical concepts of irreducibility 
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of matrices and graphs associated with matrices. 

C. The Equivalence Between Connectedness, Irreducibility 

of the Incidence Î atrix, and a Property of its Graph 

We first demonstrate the equivalence between connectedness and 

irreducibility. The following definitions are useful. 

Definition 5.4 

#or any given arrangement of observed cells on tvro factors of 

classification â , with r̂  ̂and levels respectively, the r̂  % 

matrix defined by 

ISrĵ ĵ (i,j)=l if the i-th level of â  is associated vâth the 

3-th level of â , 

= 0 otherwise, 

v/ill be called the association matrix of the two factors. 

Definition 5.5 

A square matrix A of order n is called reducible if the index set 

= ̂ 1, 2, ..., nj- can be split into two complementary disjoint sets 

li = (il, ig, and lĵ  = k̂ , . .., k̂ j., such that 

A(iô , k̂ ) = 0 for all pairs (ix, k̂ ) such that 

î  e and kg é 

Before giving the equivalence betv/een irreducibility of a matrix 

and connectedness of a two-v/ay additive arrangement, we give the fol-

lov/ing lemmas which follow directly from the preceding Definitions 5.4 
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and 5.5* 

Lecinn 5.1 

If ÎTj. ̂  is the association matrix of factors â  and â  respective-

ly, then 

lemma 5.2 

The association matrix of a factor with itself  ̂is diagonal 

and the i-th diagonal element is equal to one if the i-th level of the 

factor was observed, equal to zero othervn.se. 

lemma 5.3 

" «k = &̂,k' 

(i,i) = the number of levels of factor ajg associated with the 

i-th level of â . 

13̂  (i,j) = , the number of levels of factor a£ associated v/ith both 

the i-th level and j-th levels of â . 

lemma 5.4 

A square matrix A is reducible if there exists a permutation matrix 

P such that 

PAP» = B C 

0 DJ 
where B and D are 

square matrices and 0 is a zero matrix. 

Theorem 5.4 

For the model 
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îjk îjk' ® ~ ° 

v/iiilx i = 1) 2 J * # # ; ̂ 1' Î — 1) 2j •••9 3̂ 2 ; k = Oy Xy ***9 

irreducibility of ^̂ 21 and. is implied by estimability of 

all contrasts â (i) - â (i')* 

Proof Any off-diagonal of such as 'Bf̂ (i,i*)> is greater than zero 

if and only if â (i) - â (i') is estimable. This follows directly from 

Lemma 5.3> because iT̂ Ciji') >0 implies that there are one or more lev­

els of that are associated v/ith both â (i) and â (i*). If is 

reducible, then by Lemma 5.4, there exists a permutation of rows and 

columns of such that 

Pil̂ P' = 
A .0 

LO BJ 
v/ith A and B square matrices of order r̂ -p and p̂  re­

spectively. The dimensions of A and B partition the index set I in 

accordance v/ith Definition 5.5. Then the functions ̂ â (i) - â (i*)J 

are estimable if and only if i and i' belong to the same index set. 

Therefore, estimability of all contrasts |̂ (i) - â (i')] implies the 

irreducibility of . 

Conversely, if Eg is irreducible, then any contrast ĵ (i) - â (i!)] 

can be estimated as follows. 

If N&i,i' ) > 0, the contrast is estimable. If lt(i,i') = 0, 

• ^ 

2̂  

then the irreducibility of ' guarantees that for some i""" such that 

î  / i','̂ (i,i®)> 0. Hence, [̂ â (i) - is estimable. If 

 ̂0, then |̂ aĝ (î  ) - â (±̂ )J is estimable and,therefore, so is 

l̂ â (i) - â (i*)3* If ̂ (̂i',î ) = 0, the irreducibility of guarantees 
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that for some such that  ̂i', 0, and so on. Hence, 

irreducibility of implies estimability of all treatment contrasts. 

The equivalence between connectedness and irreducibility of the 

incidence matrix gives us alternative computational methods of veri­

fying the maximality of the rank of the coefficient matrix vâthout ac­

tually finding the rank. The desire to verify irreducibility in the • 

simplest possible way led the author to a further equivalence that has 

interesting ramifications for computational simplicity. This equival­

ence between irreducibility of a matrix and the stron̂ y connected prop-

perty of the graph associated with the matrix is now presented. 

The follo'wing definitions and a known theorem will be useful. The 

proof of the theorem is this author's. 

Definition ̂ .6 
To any square matrix A of order n there correî onds a directed 

graph &(A) defined as a set of points : i = 1, 2, ..., njr and a 

set of broken directed lines connecting to whenever A(ô,k) ̂  0. 

Definition 5.7 

The directed graph G(A) of a matrix A is said to be strongly con­

nected if it is possible to pass from any one point of the graph to 

another along the direction lines. 

Theorem 5.5 

A matrix A is irreducible if and only if its directed graph G(A) 

is stron̂ y connected. 
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Proof It is convenient to prove, first, the contrapositive, namely, 

that if A is reducible then G-(A) is not strongly connected. By Leana 

5.4, if A is reducible this iirg>lies that there exists a permutation 

matrix P such that 

B C 
rxr rxn-r 

0 D 
n-rxr n-rxn-r 

We may assume the least favorable situation, namely, that B, C, and D 

are positive matrices. It is sufficient to prove that G(PAP') is not 

strongly connected. Consider the points P̂  ̂and P̂ . Since P̂  ̂is 

connected only to points P̂ ^̂ , i > 1, and any such point P̂  ̂is in 

turn connected only to points P̂ ^̂ , it follov/s that there is no 

directed path from P^  ̂to say. Therefore. G-(PAP* ) is not strongly 

connected. Since P is a permutation matrix, A is not strongly con­

nected. Thereforê  if the graph of a matrix is strongly connected the 

matrix is irreducible. 

Next, it is proved that if G-(A) is not strongly connected, A is 

reducible. Since G(A) is not stron̂ y connected, there exist tv/o 

points P̂ , P̂  such that no directed path exists from P̂  to Py V/ithout 

loss of generality we may permute the points by interchanging rows and 

columns of the matrix so that i > j and 0=1. Call the resulting 

matrix P̂  A Pjĵ  = B. Clearly B(i,l) = 0. Now, it must be the case 

that for every k such that B (i,k) ̂ 0, B(k,l) = 0. Further, if B(k,̂ ) 

 ̂0, then B(X,i) = 0. The last tv/o implications must hold, for otherwise 

P "A P' = 
nxn nxn nxn 
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it would be possible to connect with via P̂  and P. Per the 

first k such that B(i,k) 0, permute the k and n-th rows and k-th 

and n-th columns. In general, if the r-th k is such that B(i,k) ̂  

o, then permute the row and column with the n-r+l rô f and column. 

The resulting matrix is in reducible form. 

Corollary 5.1 

V/ith the model 

îjk = ®i3k' ^̂ îjk̂  ̂  

with i — 1 ) 2, r̂ ŷ j " ly 2, *•., ̂2' ̂  ~ 1$ •••j n̂ ,̂ 

the following conditions are equivalent in that any one implies the 

other three: 

(i) 

(ii) 

(iii) 

(iv) 

The preceding yields various alternative computational methods of 

determining if the coefficient matrix of a two-way additive arrange­

ment has maximal rank. Of these, when the number of levels of each 

factor is large, it is especially convenient to verify that the directed 

graph of or is strongly connected. Since and 5̂  are symmetric, 
...2 _ 1  ̂ J-

it is possible to graph only the upper triangular part of the matrix 

using non-directed broken lines. The resulting graph is strongly con­

nected provided there exists a path (non-directed) from every 

All main effect contrasts are estimable. 

The arrangement of observed cells forms a pairwise con­

nected design. 

The'association matrices I!]22̂ 21 '̂̂ 21 ̂ 12 irreducible. 

The graph associated with or is strongly con­

nected. 
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point to every other point. This is the case if the matrix does not 

contain a row or column of zeroes above the diagonal. 

Suppose now, that the arrangement is not of maximal, rank. We 

need to identify what functions v/ithin each factor of classification 

can be estimated with the given data. The following Corollaries to 

Theorem 5.2 yield the functions that are estimable with any given-ar­

rangement of the observed data. 

Corollary 5.2 

With the model of Theorem 5.2, if the design is not connected, 

there exists aminimal set of chains 0̂  of alternately associated 

levels of the factors, such that if â ( j) € Ĉ  and â  (j*) 6 Ĉ  then 

â (i) is not connected to (j')« 

Corollary 5.3 

â (j) and 8̂ ( j' ) are elements of the same chain if and only if 

j) - j' )] is estimable, and in this case, an estimator is given 

by the same estimator as given in (5.5) based on the connecting chain 

betvraen the two levels of the factor. 

The last tv/o Corollaries to theorem 5.2 and the directed graph 

associated with the incidence matrix play a central role in the 

following. 

D. The Three Way Additive Classification 

This section contains an algorithm that exhibits systematically 

the functions that can be estimated within each factor of classifica­

tion when the data available present an arbitrary incidence pattern. 
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Consider the situation presented by the model 

(5-4) Yijkt =/-+ + y 3) + B(Gijkt) = 0 

where i = 1, 2g # # » ̂  r̂ 5 3 — 1 y 2, #* # ̂  r̂ 5 Ic — Ij —j #* #, r̂  ̂

and  ̂= 0, 1 y " # # ̂ îjk* 

An important simplification in the two way model results from the 

knowledge that estimability of all contrasts of one factor implies 

and is implied by estimability of all contracts in the other factor. 

In the case under consideration,it is worth considering if estima­

bility of all contrasts in â Ĉi) and all contrasts in agCj) implies 

the estimability of all contrasts in â fk). 

Theorem 5.6 

In a three way additive classification model, estimability of all 

linear contrasts within the parameters of any tv/o of the factors im­

plies estimability of all contrasts v/ithin the parameters of the third. 

1̂ r 
Proof: Without loss of generality, suppose 2_ iL- (i) and m. 

i=l  ̂  ̂J 

â Cj) are estimable for all sets of real number and such that 

^ fl ^ x. L = 0 and ̂  n- = 0. 

- r, 

Consider  ̂a_(k) where ̂  n. = 0. 
k=l  ̂ k=l 

Since > n, a,(k) =  ̂n, (a_(k) - a_(r_)), it is necessary only 
k=l  ̂  ̂  ̂

to verify the estimability of each difference â (k) - â (r̂ ). Por a 

fixed k, consider any observation containing â (k) in its eẑ ectation. 
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say y. . , . and an observation containing a_(r_) in its expectation, 
1' 1' 

Then E (̂ î) " +̂ (31) " + 

(â (k) - â (r̂ )). 

If â (î ) ̂  â Cig), then by the assTJinptions of the theorem, there exists 

a vector ̂2. such that ECA2_y) = â (i2̂ ) - â (ig) where y is the vector of 

observed values. Similarly, if ag(then there exists a 

2̂ ̂ 2(\̂ y) = agCî ) - agfig). 

Consider the estimator 

This estimation has a-(k) - a_(r. ) as its e3̂ >ectation. Since k was 

arbitrary it exists for all k <r_ and hence, ̂  n a_(k) is estimable 
> 3̂. k p 

for all sets of real numbers satisfying  ̂„ = 0. 

k=l 

Consequently, i± is necessary and sufficient to verify the estima-

bility of all contrasts of only two of the three factors. For compu­

tational simplicity the algorithm to be discussed will arrange the fac­

tors in ascending order according to the number of levels of each fac­

tor, and vd.ll verify the estimability of all linear contrasts v/ithin each 

of the first two factors. It is without loss of generality that one can 

assume r̂  < ̂2 — ̂ 3 ̂  model 5.̂ . 
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Before proceeding to the development of the algorithm,v/e malce the 

following general remarks. V/ith the â (i), r̂  levels of factor â , 

there exist at most r̂ -1 independent estimable functions. It is clear 

that it is necessary and sufficient that a_(i) - à-(r,) be estimable 

for all i "<• r̂ , in order that all functions ̂  â (i) be estimable. 
:'.=r 

Purtheimore, no function can be estimable that is not a linear combina­

tion of the r̂ -1 functions in the set A = |(â (i) - â (r̂ ))j-. It is, 

however, entirely possible that a linear combination of parametric 

functions in A is estimable, when the functions in A that make up that 

combination are not themselves estimable. Thus, for example, 

â̂ (l) - 3â (2) + â (3) + â (4) =(â (l) - â (2)) + (â (3) - â (2)) 

+,(â (4) - â (2)) 

may be estimable even though the components to the right of the equal 

sign, each of which is a combination of two functions in A, are them­

selves individually non-estimable. 

Consider an arbitrary parametric function in the set A represented 

by â (i) - â (r̂ ). Suppose a chain exists between â (i) and 8̂ (1̂ ) 

consisting alternately of levels of the factors â , â  such that 

every two adjacent members are associated. Then we have seen in the 

preceding section how such a chain can be used to d.efine an • estimate of 

â (i) - aĝ (r̂ ) v/ith the tv/o factor model. However, there is a dif­

ficulty in three factors, important enough to be singled out, namely 
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that in three factors every estimate does not have a corresponding 

chain. 3?or example, consider the §- replicate of the 2̂  experiment 

given by observations vd.th indices corresponding to 

Sequence 
number i 1 k 

(1) 1 1 1 

(2) 1 2 2 

(3) 2 1 2 

(4) 2 2 1 

It is clear that \̂ (l) + (2) - (3) - (4)j is the only unbiased esti­

mate of â (l) - 3̂ (2). This, in the chain notation of the preceding 

section, would require weighing the estimates defined by the tv/o chains'. 

: 8̂ (1), â Cl), â {2) 

and 

Og : 2̂ (1), 82(2), 8̂ (2). 

For the above reason̂  an extension of connectedness to the multifacto­

rial additive model in terms of the existence of chains seems futile 

to the author. Such definitions for connectedness of tv/o levels of two 

factors are possible, but the best of these seem artificial. These will 

not be deliberated upon here,and instead the related concepts of irre-

ducibility and graphs will be exploited in.what follows. 

Consider as an example a realization of the model 5.4, where r̂ =5j 

r̂  = 4, and r̂  = 5 are the respective levels of the three factors and 

the observed cells correspond to indices given by: 
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Cell Sequence Number _i k 

1  •  1 1 1  

2  1 2  2  

5  1 3  3  

4  1 4  5  

5 2 12 

6 2 2 3 

7  2  4  4  

8  3  1 3  

9  3  2  4  

1 0  3  3  5  .  

The pertinent question is v/hat can be estimated v/ithin parameters cor­

responding to single factors. The following procedure vd.ll make use of 

ordered pairs, in which the elements may at times be levels of factors, 

and at times, be sequence numbers of cells. To distinguish, we use the 

notation (£, j) when the elements in the pair are levels of fac­

tors, and î,D) when the elements of the pair are sequence numbers of 

observed cells. Uote that as a general step in the procedure the in­

dices of observed cells (i,3,k) are always arranged lexicographically 

ignoring repetitions, and then sequentially numbered. 

An association matrix can be obtained by starting with a zero 

matrix of order r̂  x r̂ t̂hen adding 1 to its (i,j) position for each 

observed cell having the levels of factors 1 and 2 corresponding to i 

and 3 respectively. For example, for the preceding data some incidence 

matrices would appear as 
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r 

1̂2 -

1 1 1 1  

1 1 Q 1 

1 1 1 Q 

; i 

1 1 1 0  1  

0  1 1 1 0  

0  0  1 1 1  
; ̂ 23 

1 1 1 0  0  

0  1 1 1 0  

0  0  1 0  1  

0 0 0 1 1 

Clearly, the incidence matrices are always non-negative, and îT! . = H... 

Corresponding to each incidence matrix one can produce a table storing 
/ 

the sequence number of cells corresponding to each positive entry. 

Thus, in the case of the example, we have 

%12 = 

0 O) <W 

<7> 

<8) <9) 

Î»Ï13 = 

<2> <4> 
/ 

<8; 

0 

/ 

<6> <9> 

FI 

/ 

(3> 

1 
<7> <4> 

The transpose of the incidence matrix multiplied by the matrix will be 

denoted IT. . îl.. = and in. the case of the example;.. 
0̂ j 

2̂ = 

4 3 3 4 2 2 3 2 1 0" 
1 2 

- 3 2 ; 1̂ 3:̂  

CV
J 1 II 0
0
 -  3 . 2 0  

- - 3 
; 1̂ 3:̂  

- - 3 - - 2 1 

- - - 2 

The matrices are symmetric and only the upper triangular part need 

be computed. They are obviously irreducible which is a necessary con­

dition for estimability of all main effect contrasts. Hov/ever, this 

is not a sufficient condition as was observed in the preceding sec­

tion, The tables H. . are multiplied symbolically to produce pairs 

equal in number to the entries in The rule is M. . 0 M.. = 
3 J 
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where 

(n,iii) = ((k,l), : k 6 .(iijp)and 1 6 M (p,m) for some p}: 
•<j  ̂ zj n X 

Some resulting tables for the preceding example are 

= 
2 ="̂ .2® "21 = 

1 <1,1> <3,3> 
<2,2) <4,4> 

<z,6> 
^k,i> 

<2,9> 
<3,lo> 

<6,5> 
47,7> 

<58> 
<6,9> 

— 

(8,8/ 
(9,9) 
fL0,10> 

= 1̂ 3 © i«31 = 

\(1,1> <3,3> 
<2)2) 

<&,5> 
(5,6) 

<3,8> 
(4,iq> 

— 

<5,5> 
<6,6) 
<7,7> 

<6,8̂  
(7,9> 

— 

<8,8> 
<9,9) 
<10,10) 
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<!,!> 
<5,5> 
<8,8> 

<5,2) 
<8,6) 

<8,3> 

~ 

<2,a> 
<6,6) 
<9,9> <9,7) 

<3,3/ 
<10,10> 

<10,4) 

. . . . . . ,  

<4,4>: 
<7,7> : 

The resulting tables are sjnraaetric and the lower triangular part 

would contain the same ordered pairs v/ith the elements of each pair 

reversed. 

It is convenient, nov/, to digress on the motivation for the above 

constructions. The off-diagonal entry in the incidence matrix in 

the k row and k' column, (k <. k' ), is the nimber of simple differences 

of two cells which have in their expectation a.(k) - a.(k'); and do not 

contain any parameters of â . Such cell contrasts are implicitly given 

by any pair in (k,k'). For example, (1,3) =5, so three simple 
j 

differences between means of two cells have in their expectations 

- â (3), :and do not contain â  parameters. Prom 11̂ (1,3) one ob­

tains that<l,8> is one such difference,so that if y{p) is the mean 

of the observations in the cell vdth sequence number p, then 

. (yd) - 5(8)) = [a,(i) - a,(3)]. n. 
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We proceed to examine some uses of this information. 

Consider estiiaability of â (l) - â (3). Prom 11̂ (1,3) and 

it is clear that if there exist real constants ĉ  such that 

E(ĉ (y(l) - y(8)) + Cg(y(2) - y(9)) + ĉ (y(3) - y(lO))l ' 

= E{cî (y(3) - y(8)) + ĉ (y(4) - y(lO))} , 

then each expectation is equal to â (l) - . Every estimator 

of â (l) - â (3) need not be of such form. Graphically, if each cell 

is represented by a point and each tv/o points corresponding to a pair 

in M̂ (l,3) are connected by a line of one color, v/hile each tv/o points 

corresponding to a pair in Ii!̂ (l,3) are connected by a line of a dif­

ferent color, the resulting graph is 

<1> 

«1 (1'3) 

<6) 

Then â (l) - â (3) has an estimator of the above form, iff the graph 

contains a closed loop consisting of an even number of lines alter­

nately chosen from each color. One can obtain similar graphs using 

the other cells of and These are 

r̂ <4> 
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<ï> 

&l(2,5): 

Examination of the graphs reveals no simple estimable functions of 

the type â (i) - â (i'). If the graphs Ĝ (l,3), Ĝ (l,2). and Ĝ (2,3) 

are added, then 

(6) 

A number of loops can be located of the type described above. 

For examplê  some are 

I'l : <2>,<6),<8>,<5).<2> 
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%2 : <5>, 0-0), CO, (2̂  (5) 

: (3), <L(% <J), 4,9), <6), 4̂ >. 

Then from the loops, one obtains: that the expectations of 

y(2) - y(6) + y(8) _ y(5), 

'' y(5) - y(8) + K3) - y(lo) + jU) - y(7) + y(9) - y(2), 

and y(3) - KLO) + K4-) - KT) + KS) - Y(6) 

yield estimable functions in â (i) parameters, estimating 

â (l) - 2â (2) + â (3), â (l) - â (3) 

and 2â  (l) - 2ag(2). Clearly, the functions are not independent,but 

do span all estimable functions in â (i) parameters. 

Similarly, in factor â  the composite graph is given by: 

... 

So tlB closed loops defining estimable functions in agCj) parameters 

are 

1:1 : (5), (2), (6> 

1-2 : <8>, <9>, (.?>, <5), <2>, (3), (8> 

: 4>, 4%, <9-
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Then the expectations of 

y(6) - y(5) + y(2) - y(3) 

y(8) - y{9) + y<7) - y(5) + y<2) - ?<3), 

y(4) - y(3) + y(8) - y(lo) 

yield estimable functions in agCiX and-these estimate 

2â {2) - agCl) - agCs), 

and 

ag(l) + ag(4) - 2ag(3); respectively. 

Then, since these are independent, every contrast in agCj) is estimable. 

V/e have the estimable functions 

"^12 -1 0 

0  0 - 1 1  

1 0 - 2 1  
-

As previously stated, the tables of differences can be viewed in 

many interesting alternative ways. The following provides a highly 

efficient algorithm for identifying estimable functions vn.thin the param­

eters of any one factor. Suppose our interest is in the a_(kj 

eters, • saŷ  contains all simple differences of cell means whose 

expectation contain a contrast in a„(k) and no â (j) parameters. Eovf, 

agCl) 

8.2(2) 

agCs) 

8.2(4) 
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<1,1> <1,2> <1,5> <1,4> 

— <2,2> 
<5,5> 

<2,3> 
<5,6) 

<5,7> <2,4> 

—— 

<3,3> 
<6,6> 
<8,8> 

<6,7> 

<8,9> 

<3,4> 

<8,1Q> 

• <7,7> 
<9,9> <9,10> 

—— 
<%,4> 
<10,10> 

Each entry, such as 1,2, defines a simple difference of two cell 

means y(l) - y(2), v/hich contains in its expectation a difference in 

2'2(d) parameters. Such differences can be tabled in an array called 

3 P̂ . Then,in the example. 

(1,2) ^ (1,3) ' (1,4) 

Kg 
(1,4) (2,4) 

— 
(3,4) 
(1,3) 

—— 

1 
(2,3) 

. — 1 

The graphs Ĝ (k,k') of the pair in each cell define estimable 

functions of â (k) parameters as follows. If the graph G-̂ (k,k' ) 

contains a closed loop,then â (k) - â (k') is estimable. Clearly, 

in the present example no such estimates are found. However, the 

same criterion can be applied to 
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Ĝ (l,2) + 0̂ (1,3) + Ĝ (l,4) + &̂ (l,5) + Ĝ (2,3) + 05(2,4) + 

+ 5̂ (2,5) + Ĝ (3,4) + Ĝ (3,5) + G|(4,5). 

In the example 

3̂-1 
2 2 Gj(k,k'): 
k=J. k' =k:+l 

'3 • 

A few of the closed loops readily foimd are 

1, 2, 1 

2, 4, 2 

1, 3, 1 

1, 4, 1 

2, 3, 2 

Corresponding functions of cell means from are 

y(l) - y(2) + K6) - y(5) 

?(2) - y(4) + y(7) - y(6) 

y(l) - 5(3) + yUo) - y(8) 
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y(l) - y<4) + y(7) - y(5) 

K2) -  y(3)  +  y( l0)  -  K9) .  

The. expectations are given by 

â (l) - 2â (2) + cu{3) 

a,(2) — â (5) + â (4) — 83(3) 

â (l) - 2â (3) + â (5) 

â (l) - â (5) + â (4) - 83(2) 

83(2) - 2̂ (3) + 3̂ (5) - =5(4) 

respectively. 

These are clearly not independent̂  but do generate all estimable 

functions in a_(k) parameters. 
J 
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VIII. APPENDIX 

COMPUTER PROGRAM FOR COUNTING THE NUMBER OF STRUCTURES, q = 3 

1 DIMENSION IRAY(14) 

2 COMMON N,IA,I,II,JPP,JPM1,J,IRAY 

3 DO 1 N=4,15 

C ZERO ACCUMULATORS 

4 DO 50 1=1,14 

5 50 IRAY(I)=0 

6 IA=0 

7 NN=N-3 

8 DO 2 1=1,NN 

C CLASS 1 STRUCTURES 

9 11=1+1 

10 NS0=aT-3-I 

11 N81=I 

12 DO 3 JP=1,II 

13 JPP=JP-1 

14 IF(NS0-JPP)3,5,5 

15 5 IF(NS1-I+JPP)3,6,5 

16 6 CALL SUM 

17 3 CONTINUE 

C CLASS 2 STRUCTURES 

18 EM2=JJ-2 

19 DO 7 J=II,NM2 
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20 JM1=J+1 

21 DO 8 JP=L,JML 

22 JPM1=JP-1 

23 IF(1TS0-JTM1)8,10,10 

24 10 IF(ITS1-J+JI>M1)8,11,11 

25 11 GAIL SUBB 

26 8 CONTINUE 

C CLASS 3 STRUCTURES 

27 DO 9 JP1=1,JM1 

28 JPM1=JT1-1 

29 IP(J-I-JPM1)9,12,12 

30 12 IP(J-I-JTM1-1)9,13,9 

31 13 CAII. SUBC 

32 9 CONTINUE 

33 7 CONTINUE 

34 2 CONTINUE 

35, PRINT 20,N,IRAY,IA 

36 20 FORMAT(IH ,1616) 

37 1 CONTINUE 

38 STOP 0 

39 EÎID 
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7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 
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SUBROUTIÏÏE SUBA 

DIMENSION IRAY(14) 

COMMON N,IA,I,II,JPP,JÎ>M1,J,IRAY 

C DEFINES NUMBER OP ELEMENTS IN EACH SET 

NS02=N-3-I-JÎP 

NSIN2 =JPP 

NSINI =JPP 

NS2= I-JPP 

C CLASS 1 STRUCTURES 

C CLASS 1.1 

DO 100 KP=1,II 

KPM1=KP-1 

iMKP= II- mo. 

DO 100 KPP=l,IIiiKP 

KPPM1=̂ P-1 

IP(JPP-]KPM1)100,2,2 

2 IP(NSO2-KPMl)100,102,102 

102 IP(JPP+JPP-KPPM1)100,103,103 

103 I5'(KS2-I+KPMl+ia?Pia)l00,104,104 

104 IA+IA+1 

IRAY( 1)=IRAY( 1)+1 

100 CONTINUE 

0 CLASS 1.2 

NMiar-1 

DO 111 K=II ,NM1 
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22 KML=K+1 

23 DO 110 KP=1,KM1 

24 KPMl = KP-1 

25 KMKP=K-KPM1+1 

25 DO 110 KPP=1,KMKP 

27 KPPMl = KPP-1 

28 IP(NS02-KPM1)110,112,112 

29 112 IF( JTP+JPP-KPPMl)110,113,113 

30 113 IP(lTS2-K+KPMl+BEPMl)ll0,114,114 

31 114 IA= IA+1 

32 IRAY( 2)IRAY( 2)+1 

33 110 coNTBrcrE 

34 KT=£ - NS2 - IS1N2 

C CLASS 1.3 

35 DO 130 KP=1,KT 

36 KPM1= KP-1 

37 IP(NS02-ICPMl)l30,132,132 

38 132 IP(lISllSri-K+KTS2+irSlN2+l+KPMl)l30,131,131 

39 131 IA=IA+1 

40 IRAY( 3)=IEAY( 3)+1 

41 130 CONTBrUE 

C CLASS 1.4 

42 IP(K-îîS2-ÎÎSm) -IfSlS2-2) 140,142,142 

43 142 IP(NS02-K+]SfS2+irSlNl+HSItI2+2)l40,141,141 

44 141 IA=J[A+1 
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G 

45 

G 

46 140 

47 111 

48 

49 

IRAY( 4)=IRAY( 4)+1 

CONTINUE 

CONTINUE 

RETUEN 

END 
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SUBROUTINE SUBB 

DIMENSION IRAY(14) 

COMMON N,IA,I,II,JPP,JPM1,J,IRAY 

C DEFINES THE NUMBER OF ELEMENTS IN EACH SET 

NS02 ar-3-i-JPia. 

Nsm2=j:-j+jTMi 

NSUJl = JPMl 

NS2 =J-JPM1 

IF(N81N2) 2,1,1 

2 N8m2= 0 

1 IF(J-I-JTM1)3,3,4 

4 N82=NS2-1 

0 CIASS 2 STRUCTURES 

C CLASS 2.1 

3 JIO.=J+l 

DO 100 KP=1,JM1 

KPM1=£P-1 

JMKPl=J-KP+2 

DO 100 KP2=l,JIiIKPl 

KP2M1=KP2-1 

JI!lK12=J-KPMl-KP2+2 

DO 100 KP3=1,J11K12 

KP3M1=EŒ>3-1 

IF(KPM1-NS02)10,10,100 
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22 10 rP(KP2Ml-IISlN2)l2,12,100 

23 12. I]?(KP3Ml-îrSm)l3,13,100 

24 13 IP(J-KPM1-KP2M1-KP3M1-IÎS2)14,14,100 

25 14 IP(KPM1-JPM1+KP3M1)502,502,100 

26 502 IA=IA+1 

27 IEAY( 5)=IEAY( 5)+l 

28 100 COiraiïïUE 

G CLASS 2.2 

29 US1IT2=I-Jr+JPM1 

30 JMI1= J-1 

31 DO 110 KP=1,JMI1 

32 KPM1=£P-1 

33 IP(KPMl-îrS02)l5,15,110 

34 15 IP(J-I-l-KPMl-ÎÎSliSri)l6,16,110 

35 15 IA=IA+1 

36 IRAY( 6)=JHAY( 6)+1 

37 110 COUTIITOE 

G CLASS 2.3 

mi=tî-i 

jia=j+i 

DO 130 K=JMl,mi 

DO 131 KP=1,KMI 

KPM1=KP-1 

IP(KPM1-US02)17,17,131 

38 

39 

40 

41 

42 

43 

44 
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45 17 I5'(K-KPMl-l-irS2-NSm-NSItI2)l8,18,131 

46 18 IA=IA+1 

47 IEAY( 7)=IRAY( 7)+1 

48 131 CONTINUE 

C GLASS 2.4 

49 KMJsK—1 

50 DO 132 KP=a,KMJ 

51 KPM1=EŒ>-1 

52 IP(KPM1-KS02)19,19,132 

53 19 IP(K-1-NS2-]JS1W1-NSIK2-KPM1)20,20,132 

54 20 IRAY( 8)=IRAY( 8)+1 

56 132 CONTINUE 

C CLASS 2.5 

57 m&jC+l 

58 DO 133 KP=1,EM1 

59 KPMl=iKP-l 

60 KMP=K-KP+2 

61 DO 133 KP2=1,KMP 

62 KP2m=KP2-l 

63 iaiPMP=iC-KP-KP2+3 

64 DO 133 KP3=1, KMPIiEP 

55 KP3M1=KP3-1 

66 IF(KPM1-NS02) 21,21,133 

67 21 IP(EP2Da-N8m2)22,22,133 

68 22 IP(KP3Ea-NSm)23,23,133 
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69 23 IF(K-KPMI-KP 2M1-KP8M1-N82)24,24,133 

70 24 IA=IA+1 

71 IEAY( 9)=IRAY( 9)+1 

72 153 CONTINUE 

73 130 CONTINUE 

C CLASS 2.6 

74 IA=JA+N-I-JPMl-2 

75 lEAY ( 10 ) =IRAY( 10 ) +N-1-JPMl-2 

76 EETUEN 

77 END • 


