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Figures and Tables

Figure 4.1. TBCA model design and aggregate capooportions. The box and arrow
model represents the TBCA model inputs and outpesgsribed in Eq. 1-3. The dotted arrow
represents an implicit input in the model, wheweitfitial C-stock may affect the ability to
accrue C. The grey arrow represents an outputhibagh calculated not included, as it was
a minor flux that had no quantitative effect on twerall model. The stacked bar plots
represent the mean proportion of total C withiraggregate fraction among all aggregate

fractions.
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of a particular parameter contains 0.
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credible interval. The dotted line representsiiiee, where intersections between the
dotted line and 95% credible interval indicate tihat distribution of a particular parameter
contains 0. The shapes represent either the aggrewethod, where all aggregate fractions
are considered, or the whole soil method, wherea€ only measured among whole soil

samples.
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CHAPTER 5. BAYESIAN ESTIMATION OF STATIC CHAMBER RUXES
ADDRESSES UNCERTAINTY IN GREENHOUSE GAS EMISSIONS
A paper in preparation for Global Change Biologya3echnical Advance
Ryan J. Williams, Kirsten S. Hofmockel, Thomas Benhart
RJW, KSH, and TMI designed the study. RJW perfatitihe analysis and wrote the
manuscript with contributions from KSH.
Abstract
Measuring greenhouse gas emissions from soils @satig-chambers is a common
method in climate change science, though much amtbigxists regarding how to
accurately calculate fluxes from measurementsdtiatoe exceptionally variable. Here, we
propose that explicit consideration of uncertaertyund flux estimates is necessary for
accurate scaling of greenhouse gas emissions fiatio-shambers to landscape-scale
estimates. We compared a Bayesian hierarchicaéhtoahon-linear and linear methods
across simulated and empirical greenhouse gaslfitex Our analysis demonstrates that
methods used in the literature are inherently liaadile the use of a Bayesian linear model
provides conservative yet less biased estimatgseginhouse gas fluxes. We argue that the
sensitivity of the non-Bayesian methods may leaf@lse confirmations of biogeochemical
'hot spots’ and ‘hot moments’ or negative fluxeladating consumption of greenhouse gases,

while the Bayesian method we introduce providesreservative estimate of fluxes.
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Introduction

Measurement of greenhouse gases (GHGSs) is commeatyin ecosystem science to
estimate the influence of land-use change, aguallitnanagement, disturbance, and other
ecosystem processes on radiative forcing of clim@tee use of closed chambers to measure
the passive diffusion of gases either into or ftbesoil surface is common method when
attempting to estimate GHG fluxes. Though theafsgatic chambers for measuring GHGs
is rather straightforward, many factors affectdlceuracy of these measurements. Rochette
and Eriksen-Hammel (2008) reviewed 356 studies oreassoil nitrous oxide (pD) using
chamber measurements and suggest that 60% containglthble data due to incomplete
reporting or poor methodology. To address methmglodl issues inherent in static chamber
measurements, researchers have developed techhicquse Hutchinson/Mosier (HMR)
model that provide non-linear estimates of GHG flBederson et al., 2010) as an alternative
to simple linear regressions (LR) that estimatexdbex flux based on GHG concentrations
sampled over time. Several of these methods hese teviewed by Parkin and Venterea
(2010) where it was found that the degree of datei-dinearity along with magnitude of
flux and analytical precision can inflate errorscanm flux estimates. Non-linear methods like
HMR have also been found to be sensitive to a tsaakfactors that contribute to biased
flux measurements (Venterea et al., 2009), whitelpcing flux estimates that can be
exceedingly unrealistic (Parkin et al., 2012). tRermore, several methods only produce
point estimates of fluxes and few produce eithelange estimates or confidence intervals
surrounding an estimated flux. Because flux meaments from soil chambers are often
scaled to compare ecosystems or inform land managgestrategies, it is imperative that

GHG flux measurements explicitly address estimatertainty.
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Understanding the uncertainty around GHG flux estes generated utilizing static
chambers is important for scaling from chambersiwiti plot to landscape, regional, and
global scale greenhouse gas budgets. For exammmegent Technical Bulletin by the United
States Department of Agriculture (USDA) devotedhapter towards quantifying uncertainty
across multiple statistical and process-based rmadeled at estimating greenhouse gas flux
(USDA, 2014). This effort used Monte Carlo simidas to incorporate variability in flux
prediction models; however this variability does necessarily consider error occurring at
previous stages of data collection (e.g., statader measurements, flux calculations) or
particular biases in flux estimation methods. Bage Markov Chain Monte Carlo (MCMC)
methods have also been used to account for unugrtaiboth process-based models (Wang
and Chen, 2013) and statistical models that relfiionestimates rather than variability of
the measurements taken within the chamber (Huaah, &013). For example, Nishina et al.
(2009), used a Bayesian hierarchical model to edérepatio-temporal changes isONflux
where the actual fluxes were calculated using thHRHnethod and assumed to come from a
non-informative prior distribution. However, tordtnowledge, no methodology has
suggested quantifying uncertainty of flux estimdiased on uncertainty surrounding gas
concentrations measured within the headspacetatia-shamber.

Determination of an appropriate flux calculationthoel has been debated, with both
linear and non-linear models having unique biasasdan affect interpretation of
greenhouse gas emissions (Venterea et al., 208@nReand Venterea, 2010; Parkin et al.,
2012). Arguments supporting a non-linear versuseal model when considering highly
variable measurements may not be supported dine temdall number of samples (3 or 4;

Parkin and Venterea, 2010) commonly taken in statamber-based estimates of
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greenhouse gas flux (Forbich et al., 2010). Funtioee, no methods provide an explicit
method for scaling uncertainties from static-chanmrbeasurement to the experimental plot,
landscape, or region. Methods like the HMR moéeldersen et al., 2010) provide a
standard error that can be incorporated into laausscale flux estimates through a Monte
Carlo methodgensuJSDA, 2014) to better estimate uncertainty arouregtghouse gas
estimates; however this approach ignores any pilitlyatistributions around additional
parameters needed to produce a non-linear insfeamtireear model. Multiple studies have
also attempted to identify spatially or temporaligcrete moments of strong biogeochemical
cycling known as 'hot spots' or 'hot moments' (MaCkt al., 2003). Several studies have
addressed these phenomena in GHG emissions wgilize'HMR method applied to static-
chamber data (Audet et al., 2013; Audet et al.420Delineating biases a given method like
HMR may have on the detection of a hot spot or ndrsetherefore important for our
understanding of biogeochemical fluxes.

In this study, we propose the use of a Bayesiamatakical model that utilizes
measurements taken over time within a static $@hwer rather than a flux estimate per
chamber. The Bayesian philosophy applied herenassthat fluxes are derived from the
data given a level of uncertainty in the actual gascentration taken, rather than a single
point estimate of flux. This framework allows fxplicit consideration of multiple sources
of error that may bias a particular measurememever we present here a simple model for
comparison with commonly used models in the litm@(HMR and LR). Previous work
utilizing a Bayesian hierarchical framework to miogieeenhouse gas flux imparted a prior
distribution to flux measurements (Nishina et 2009; Huang et al., 2013). The linear

model proposed here adds an additional level wivereonsider the prior distributions of
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measurements taken within a chamber. We then cengouat Bayesian formulation (from
herein referred to as a Bayesian linear model dviBio flux estimation methods common in
the literature: linear regression (LR) and the Hirtson-Mosier (HMR) non-linear model.
We simulated data across multiple fluxes and psxgvely added variance in order to test
for sensitivity to variability within a static chdrar. We then applied these methods to data
collected from a landscape-scale experiment airhddtarmining interactions between
topography and land-use (i.e., specific agronomapging systems) on greenhouse gas
emissions. We hypothesized that the BLM would mlevlux estimates with greater
uncertainty than LR or HMR, but would ultimatelyptare the true flux more often than LR
or HMR under simulated conditions; thus providimgestimate of fluxes less biased by
methodology when applied to a landscape-scale enpaet.
Materials and Methods

Simulating Gas Fluxesfor Deter mination of M ethodological Biases

All data simulation was conducted using base fumstin R v. 3.0.2. (R Core Team,
2013). First we determined how different methddBIR, LR, and BLM) performed with
simulated greenhouse gas flux data. We used radaws from a normal distribution with
mean 0 and standard deviation ofskhsuParkin et al., (2012) to simulate fluxes across fo
time points (0, 15, 30, 45 minutes), effectivelgating a simulated flux of O if based on
normal variance in pO atmospheric concentrations. Therefore, any ptiedi of a flux
different than 0 would be considered an apparent fbr flux that did not exist. Simulation
of data was performed using the 'rnorm’' functioRinFurthermore, we were interested in
methodological biases that may occur with changdlsix (i.e., slope of the line between all

measurements) and differences in random noisertAgtoccur with measurements. We
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simulated data across slopes ranging from 0 tard0@its of gas per minute, while random
noise was added to each measurement by addingla sadue drawn from a uniform
distribution using the 'runif' function in R. Thaeise value could take positive or negative
values and ranged from 0 to 100 so that at any piongt, the statistical noise could
completely mask the underlying slope. These sitirda produced a matrix of values of
progressively increasing slopes and noise levelngnflox measurements to evaluate
methodological biases across the HMR, LR, and BL&ihads.
Model Implementation for Simulated Fluxes

To implement methods that used point estimat®éRrand LR), that is methods that
would normally only use a single flux estimate wwitlh explicit consideration of uncertainty,
we utilized the “HMR” package (Pederson, 2012) in.RB.0.2. (R Core Team, 2013), with
the option to calculate fluxes using both the Ima@thod and the HMR method for each
series of simulated measurements. Therefore, bR and LR methods were calculated
concurrently in the R environment. Also, when iR method recommended the LR
calculation over HMR, the LR flux was used. Theref HMR fluxes are both a
combination of linear and non-linear regressiorseldaon analyses inherent in the ‘HMR’
package. The Bayesian linear model (BLM) used hve® designed as such:

Vi=Bot BiX X+ Z; 1)

In the equation,w represents the predicted gas concentratior i ndpresents the elapsed

time for a given measureme I The parametelBo and B represent the intercept and

slope of the linear model respectively, with theps! being a parameter of interest as it

represents the flux. The parame % rrepresents a random term for each measuremedit, as

measurements are taken from the same chamberretiteaefore not independent (e.g a
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within-chamber random effect). The addition ostharameter represents a small but
important deviation from general descriptions o€lr models that are prescribed for this
type of analysis (e.g., Holland et al., 1999). cbosider potential biases that choices of a

prior distribution may have on our analyses, weeghthe variance of the prior distribution

for P and found no gualitative differences (Supplemelftgilire 1). This lack of difference
based on prior distributions was likely due to sheall amount of samples considered within
each flux estimate (four), and thus may be greatemn considering longer chamber
deployment times with more headspace measuremé&htxefore we used an un-informative
prior distribution that may be modified dependingtbe user. Our BLM was written in
JAGS (Plummer, 2013) and implemented using thg&jaackage in R (Plummer, 2014),
which allows for the simulation of Bayesian hietdaoal models using a Markov Chain
Monte Carlo (MCMC) approach. When applying our BLive used 10 chains with 400,000
iterations thinned every 200 iterations. Additibyave sacrificed the first 1000 observations
to remove any potential biases generated fromttrérgy point of the MCMC simulation.
Figures were made using the “ggplot2” package énRrenvironment (Wickham, 2009).
Empirical Data Collection

For the comparison of the BLM to fluxes calculatesthg LR or HMR, we utilized a
GHG sampling dataset collected from the Landscapm8ss Project in Boone County,
lowa, USA. A full site description is availableWilson et al. (2014). This experiment
utilizes a topographic gradient ranging from the o6 a hill slope to floodplain to test
interactions among landscape position and cropgystem on a suite of biogeochemical and
agronomic factors (Ontl et al., 2013; Hargreaves tldofmockel, 2014). For the

experimental design, five landscape positions (sitpsimoulder, toe-slope, back-slope,
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floodplain) and three cropping systems (continuoars (Zea mayd..), sorghum-triticale
(Triticosecalex Whit. andSorghum bicoloL.), switchgrassRanicum virgatuni.) were
sampled across 3 blocks, yielding 9 total setsusf fneasurements per each cropping system
at each landscape position. Sampling occurredeggular intervals across the growing
seasons of 2010, 2011, and 2012 in order to cafitiees correlated with weather events

and agronomic management. In 2011 and 2012, brég tandscape positions (summit,
back-slope, toe-slope) were sampled.

Greenhouse gas flux from soil surfaces was estionaang a static chamber method
outlined in Parkin and Venterea (2010) that is usetieasure changes in headspace
concentrations of particular gases over time. t Hoslyvinyl chloride (PVC) rings (30.48 cm
diameter with 15 cm height) with a beveled edgeewandomly placed within sampled plots
and hammered into the soil 5-10 cm at least 24sbefore sampling. A second ring of the
same size but sealed at one end was placed orf tiep first ring, producing a headspace for
the passive diffusion of gas from the soil surfaEeur measurements were taken for each
flux at 15-minute intervals. The inner-temperatofehambers was taken at the time of
sampling to correct gas concentrations based old#da Gas Law. Samples were collected
with a polypropylene syringe and stored in pre-eased glass vials fitted with butyl-rubber
stoppers. Concentrations within vials were analyzging an SRI 8000 gas chromatograph
equipped with a flame ionization detector (FID) ahelctron capture detector (ECD) in order
to measure both Gand CH along with NO.

For statistical analysis of fluxes calculated by Rnd LR, we used linear mixed
effects models implemented using the Ime4 package (Bates et al., 2014). Models

contained main effects and interactions betweerpbagidate, cropping system, and
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landscape position with random effects for the mpldtrings within each plot and block.
Predicted values from the models were used to ceempadel output between BLM and LR
or HMR methods. We also calculated coefficientgasfation (CV) for flux estimates within
a plot in order to determine the occurrence ofogé&bchemical ‘hot-spot’ or ‘hot-moment’.
A high CV would indicate that a particular flux iesate within a given spatial or temporal
context was notably different than other relatedrestes. For ‘hot-spots’ we calculated CVs
within plots at each sampling date and for ‘hot-neos’ we calculated CVs within plots
across dates. Therefor a high CV indicating a-8pmit’ would be defined by one chamber
within a plot having a much larger flux than theet, while a CV indicating a ‘hot-
moment’ would indicate that a particular plot afigen date was exceedingly different from
itself at all other dates.
Results and Discussion

HMR, LR and BLM produce estimates that differ ordersof magnitude

In our simulations, the HMR method potentially freachuch higher error rate than
both the LR and the BLM methods (Figure 5.1) whenstdering whether a particular
method contained 0 in its 95% interval surroundlmgmean flux. In approximately 10% of
the simulated datasets, the HMR method producadalistribution that did not contain 0
based on its native statistical test (a T-test @lirer0.05 is considered significant). Error was
lower with the LR method, which failed to contaiera within its flux distribution in 5.5% of
the simulated datasets. In contrast, only 1.2%heftatasets failed to contain zero within its
flux distribution with the BLM method. These difénces in failure to contain zero within a
flux estimate distribution represent 3.6 to 7.3lfmicreases in errors when comparing LR

and HMR to BLM, respectively. BLM fluxes were mucloser to zero, while LR and HMR
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were often hundreds or thousands of units away frensimulated flux. These results imply
that the HMR and LR methods have a greater chahiodlating error rates in any gas flux
field data, consistent with findings of Parkin et(2012).

When HMR and LR methods were run in conjunctiorhwiite BLM model on
simulated data that should produce zero flux, eggsfrom the HMR and LR method were
often orders of magnitude larger than those froemBbM method. For example in Figure 2,
BLM flux estimates were compared with fluxes detieed by the HMR and LR methods.
Due to sensitivity of the HMR method to statistinaise, 2.4% of the estimates produced by
HMR were removed from further analyses, as theyewoétien more than f@imes different
than estimates produced by BLM. The HMR estimafgseared to have a curvilinear
relationship with BLM estimates (Figure 5.2A), whBLM and LR estimates appeared to
have a linear relationship (Figure 5.2B). Thisiknty in bias is logical as both LR and
BLM are linear models while BLM contains an additab curvilinear function parameter. As
HMR estimates became more extreme (between 50Q@nahits of gas per hour), BLM
estimates began to plateau, that is, they did @cbime increasingly different from the zero
line. This may indicate HMR was sensitive to narseur simulated data that did not drive
bias in our BLM model. Therefore based on thesaikitions, it appears that the BLM
method produced much more reasonable than the HEtRa.

A similar trend was observed when simulating a eaoigfluxes with varying levels
of added noise (Figure 5.3 A & B). When considgfiaxes of increasing value with no
additional noise (Figure 5.3A), there was a smalldonsistent under-estimation of fluxes
with the BLM method. The HMR method reflected thigder-estimation as well but also

had several extreme over/under estimations of §uxEhe LR method also reflected
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over/under estimation of fluxes that increasedawiaktion from the true flux as the simulated
flux increased. On average, the HMR and LR mefiroduced estimates that could vary
orders of magnitude, while the BLM method was modre consistent (Figure 5.3B). Since
the process of generating flux estimates througtBibM produces a distribution of fluxes,
other descriptive statistics like the median vahsy be used instead of the mean. In the
case of our simulated data, the median value viedtar estimator of flux than the mean
value, though the generality of this claim warrdntsher investigation across multiple
simulated and empirically collected datasets. @\jeanalyses performed on simulated data
indicate that though all methods are inherentlgdia the BLM has the potential to reduce
error and increase accuracy of estimates of GHGsams when compared to HMR and LR
methodologies (Figure 5.3A & B).

The HMR and LR method had greater error rates tih@mBLM method with hugely
inaccurate fluxes based on simulated static-chamMa: Previous simulations of apparent
fluxes have also demonstrated a high error ratenwiseng the HMR method (Parkin et al.,
2012), where it was noted that the applicatiorhefrmethod should be used in conjunction
with manual verification of all fluxes so that tappropriate estimate may be chosen (e.g.,
choosing LR versus HMR calculation). These recomaa@ons mirror other suggestions of
manually censoring data points that fall outsideficence bounds after evaluation of
linearity (Holland et al., 1999). Manual editinfdata can potentially limit our
understanding of biogeochemical fluxes, as thig typdata handling may limit the amount
of negative NO fluxes reported in the literature that are ofteglated to consumption of this
greenhouse gas (Chapuis-Lardy et al., 2007; Scigiesi2013). Reliance on a method that

prescribes manual removal of data points at asudestretion prior to flux calculations could
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also introduce errors and biases into GHG emissstimates that are not currently
considered in biogeochemical models. This typesei-based error would also be difficult
to quantify across studies, even when using a atdrslite of methods. Quantifying
potential bias that this methodology has had omipus research is difficult, yet it is
important to note that extreme gas fluxes coulthkeeresult of methodological bias.

HMR, LR, and BLM produce different ecological inter pretations of flux

Differences in the magnitude and direction of GHi&és that result solely from

choice of methodology of flux calculation could kamportant implications regarding our
working knowledge of biogeochemical cycles. We pamed flux estimates obtained from
the HMR, LR, and BLM methods applied to our emg@iridata in order to assess whether
method bias could affect ecological interpretatiohthe results when considering & QH,,
and NO. As an example, multiple studies have reported ftix using the LR method from
soils and related trends to land use or other enmental differences. While many studies
have reported zero net flux, upland soils have Is&ermvn to maintain a level of GH
consumption due to methanotrophic communities withe soil that are inhibited by N-
fertilizer (Aronson and Helliker, 2010; Levine &t 2011). Across our dataset, roughly half
of the CH, fluxes were negative with the LR method (Figu®) 5which has been used
previously to link methanotrophic activity and €hux (Levine et al., 2011). These
negative fluxes were not corroborated by eitheB®hB! or HMR method, suggesting that
the application of the LR method to this set of gl data may lead to incorrect assertions
regarding the fate of CHvithin the context of this experiment. Alternafiehe HMR and
BLM methods may be incorrect. Since LR and BLM laoéh linear methods, there should

be similar biases among these methods, so disagreemthe direction of flux between LR
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and BLM warrants further investigation. Noneths|dke lack of corroboration between
methods regarding the direction of flux highligthe necessity for a critical view when
choosing an appropriate flux calculation methodidifionally, the prevalence of negative
N,O fluxes when using the HMR and LR method acrosk B611 and 2012 may suggest
consumption of BO (Chapuis-Lardy et al., 2007) that is not supgblige the BLM method.
Furthermore, differences in calculated flux aresgtonally apparent when comparing £0
fluxes from 2012 (Figure 5.4). Estimates for {l0x generated by the HMR and LR
method appear to have an exponential increase wdrmapared to BLM estimates,
supporting the observation of a high level of ldad disagreement between estimate
methods with increasing fluxes (Parkin and Vente2€4.0; Parkin et al., 2012urrent
study. Interpretations drawn between BLM and eitherdtRHMR for these data highlight
the potential for misinterpretation of hot-spothot-moments of biogeochemical activity.
We further investigated the potential for spurithug-spots’ or ‘hot-moments’ under
each method by comparing the coefficient of vasia(iCV) among MO flux estimates
across space and time. We assumed that a higlc@gsasamples within the same plot on
the same sampling date (i.e., measurements taenrrultiple chambers randomly
distributed within a plot) could represent a ‘hptt while a high CV from the same plot
across all sampling dates may represent the ocmeref a ‘hot-moment’. We then
compared the distributions of CVs produced by dhchestimate method to describe the
probability of interpretation of a hot spot or mamhé=igure 5.5). When considering ‘hot-
moments’, there was much less temporal variahbitityuxes estimated from samples
originating from the same plot with the LR methoghresented by the range of the CV

distribution, while the HMR and BLM method perforchsimilarly based on the location of
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the 95% quantile. Therefore, analyses that useRhmethod may distinguish ‘hot-
moments’ based on smaller differences in fluxes ththe BLM or HMR method were used.
In other words, samples observed over time frons#imee plots and analyzed with the LR
method are more consistent than the HMR and BLVhoas. When considering ‘hot-
spots’, the BLM had the greatest range of CV’s, mmegathat analyses using this method
would be conservative when designating spatiabyimict biogeochemical activity.
Conversely, the HMR and LR method may allow usermdetect a ‘hot-spot’ more readily,
potentially inflating their occurrence across adgtd landscape. The combination of greater
sensitivity to spatio-temporally distinct fluxesdatine appearance of apparent fluxes among
simulated the data warrants greater caution whienpreting fluxes generated by the HMR
and LR methods unless care is taken in considermegrtainty across space (eNishina et
al., 2009).

In the analysis of our empirically collected datsults using the HMR and LR
methods differed from the BLM model, though all hwts were able to detect ecologically
relevant fluxes that are well known in agricultusgbtems. For example® fluxes
increase following fertilization in corn systemsiaare defined by a temporally discrete pulse
that is the major contributor to cumulative fluxeo\a growing season (Hoben et al., 2011).
We observed significant interactions inQNemissions between sampling date and cropping
system for the HMR method that was not capturethbyL R method in 2011, and both
methods detected this interaction in 2012 (Taklg. 5Though there is not an analogous
statistical test for the BLM method, changes ixdési over time that differed across crops
were visible (Figure 5.6 A & B). For example, i612 we observed high,® fluxes under

switchgrass and corn that were 19% and 64% hidifaer those from sorghum, respectively.
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This follows the fertilization regime at the sitehere sorghum is not fertilized until July.
This fertilizer pulse was also observed at the @ntuly when sorghum had approximately
35% greater PD than the other cropping systems. It should iechthat all of these fluxes
determined by the BLM method had 95% credible wraksrthat slightly overlapped with
zero, indicating a large amount of uncertaintylux forediction.

Greater NO fluxes following N-fertilization were also obsexvin 2012, though no
fertilization peak was seen in sorghum, as fediliwas not applied due to drought
conditions. Across both years, the HMR method peced highly variable estimates of flux
that could be either negative or positive and wtecorroborated by any other method.
These events could potentially be recognized ageoichemically active periods or ‘hot-
moments’ where either large quantities gON\are emitting from the soil surface or is being
consumed by microorganisms within the soil mati®ther potentially spurious *hot-
moments’ or ‘hot-spots’ could have been interpretden using the LR method in 2012
based on the significant interaction between datelandscape position that was not
detected by the HMR method. Given the potentialihreliable fluxes generated by both
the LR and HMR method, these ‘hot-moments’ are miaally a methodological error rather
than ecological phenomena.

Understanding biogeochemical fluxes at multipldescavithin ecosystems is
important for land management and to improve fas®eg of radiative forcing driven by the
emission of GHGs like CCH,;, and NO. However, disagreement among methods of
deriving flux estimates as illustrated here potdhtimask our ability to understand drivers
of flux; especially those that occur at the micadlsicale (Chapuis-Lardy et al., 2007; Levine

et al., 2011). The use of methods that do notiedglmodel uncertainty around GHG
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fluxes make estimates of within-ecosystem or aceassystem budgets difficult, particularly
were assumptions regarding errors and the scalbiah they occur are not consistent across
datasets (USDA, 2014). Furthermore, these mettibigs in their ability to detect
ecologically relevant ‘hot-spots’ or ‘hot-momentisat are considered important to overall
biogeochemical flux budgets (Savage et al., 20W4& suggest that application of Bayesian
MCMC (BLM) models would allow for better modeling encertainty in measuring
greenhouse gas fluxes. It should be noted thaltihé could be modified to model non-
linear fluxes with explicit modeling of parametastdbutions using either an exponential or
power function. Following the logic behind the HNtiethod, there is some expectation of a
non-linear relationship between gas concentrati@hteme as the diffusion of gas into a
chamber may slow over the course of chamber de@ay®ederson et al., 2010). Though
our model demonstrated here is inherently lingas, difficult to assume non-linearity with

so few measured concentrations over time. Thexe&pplication of a non-linear Bayesian
model and comparison to BLM should be under coogtithat allow for greater sampling
over time rather than just three or four pointsirtiker exploration of prior distributions of
chamber measurements, including differences irr pased on particular gases being
measured (e.q., different prior distributions fa@£{and NO) should be applied during the
use of the BLM method along with various methodmoftiel validation (e.g., posterior
predictive checks, Bayesian P-values, model corapayietc.). Such explicit modeling of
uncertainty around a biogeochemical rate (i.e. flga$ can be applied to any
biogeochemical rates that rely on the interpretatiba slope between discrete measurements
taken over time, and could potentially improve ability to model biogeochemistry at

multiple scales.
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Figures and Tables

Table 5.1. Mixed-effects model statistics fofONfluxes.

Tested Effects HMR LR

2011 F-value P-value F-value P-value
Date 1.03 0.411 1.31 0.246
Landscape 0.94 0.390 1.52 0.220

Crop 0.89 0.413 0.11 0.898
Date:Landscape 0.74 0.732 0.98 0.467
Date:Crop 191 0.023 * 1.39 0.154
Landscape:Crop 0.93 0.449 1.43 0.224
Date:Landscape:Crop0.78 0.790 0.68 0.895

2012

Date 2.74 0.004 ** 5.78 <0.001 ***
Landscape 2.69 0.069 6.93 0.001 *x
Crop 0.09 0.910 1.24 0.290
Date:Landscape 1.36 0.145 2.13 0.004 *x
Date:Crop 2.05 0.006 **2.82 <0.001 ***
Landscape:Crop 0.73 0.573 0.37 0.829
Date:Landscape:Cropl.21 0.195 1.18 0.231

Stars represent significance levels where a “.fespnts P-values between 0.1 and 0.05, “*”
represents P-values < 0.05, “**” represents vaki@01, and “***” represents values <

0.0001.
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Figure 5.1. Histograms of fluxes that represerdremates. These histograms show the
distributions of fluxes that correctly identify flax based on their confidence intervals

(HMR, LR) or credible intervals (BLM). Fluxes regzent the mean flux estimate calculated

by each method.
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Figure 5.2. Comparison of fluxes calculation mehacross flux simulations. Plots show
the comparison between BLM and either HMR (A) or (B3 flux estimates in units of gas m
. The black line represents the mean flux of lmoé&thods while grey shading represents the
95% credible interval around the mean flux produsgdthe BLM method. The red dashed
line represents the true flux that simulated deda eentered around, thus deviation from this

line represents model sensitivity to noise that mflyence error rates.
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Figure 5.3. Comparison of flux estimation methadsoss multiple fluxes with added
statistical noise. Differences between slope egtsand the actual slope with no added
statistical noise are visualized in (A). Heatmagftecting differences in simulated and
estimated fluxes are shown in (B). These heatrshp® the difference between simulated
flux and estimates calculated through each metiiitferences are calculated as the;lpg

transformation of the absolute difference betweasgtnal and estimated flux.
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Figure 5.5. Comparison of coefficient of variatifmn detection probabilities of hot spots and
hot moments. Distributions represent the absalakee of coefficients of variation
(abs(CV)) of plots through time (Hot Moment) orindlividual measurements from rings
within a plot (Hot Spot). The absolute value of thV was used here to visually compare
both negative and positive fluxes. Full and dadhress represent quantiles of each

distribution, which designate possible values thay indicate a ‘hot spot’ or ‘hot moment’.
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Supplemental Figures

Supplemental Figure 5.1 Comparison of differenvipdistributions with BLM and HMR.
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The figure shows the comparison between differeiot glistributions for the BLM method
and with comparisons to the HMR method. The défeivariances are reflected as
precisions (1d°). The black line represents the mean flux esgno&both the HMR and
BLM method, while the grey shaded area repres@et95% credible interval surrounding

the mean flux for the BLM method.
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CHAPTER 6

GENERAL CONCLUSION

A theme central to both microbial ecology and bagemistry is understanding how
biological interactions between microorganisms gommunity context generate elemental
fluxes. However elucidating these interactions lsamlifficult given the inherent diversity
among microbial communities and the complexitynaf €nvironments that they reside
within. Measuring biogeochemical fluxes in a marthat is scalable between microbial
communities and ecosystems is also difficult asnoethods often rely on avoiding important
ecological heterogeneity (i.e., topography of &sldpe or aggregates in a soil) or ignoring
variance in a measurement (i.e., uncertainty ar@ufhak estimate). For my dissertation, |
focused on gaining a better understanding of miaf@@mmunities among soil aggregates
and biogeochemical fluxes of carbon and nitroge éine important factors when
understanding agricultural land-use effects onatexchange. Though I did not aim to find
direct linkages between microorganisms and speaifigeochemical fluxes with this work,
the conclusions reported here can help in the dewetnt of models that predict both
microbial and ecosystem-scale function.

| began my dissertation with trying to understandrabial interactions within a
community using network analyses that are now @@vreaacross multiple fields of
ecological research. | found that environmenttdring, the selection of particular
organisms from a regional species pool based aremh abiotic conditions, plays a strong
role in driving microbial community composition, W fluctuations among microbial
populations are generally independent of one anotHewever, further examination of

microbial populations that are uncorrelated withimsystems is necessary, as the absence of
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co-occurrences demonstrated here might not becaybdi in other environments.
Furthermore, the scale at which samples were d¢etlemay not be relevant for microbial
community interactions. If we can apply our resbitsadly to ecosystems not examined in
this study, the majority of co-occurrences betwescrobial taxa may be ecosystem
dependent and consistent relationships betweeroarganisms may be a special case rather
than the norm when considering communities sumradrat high taxonomic levels. The
finding from this chapter can inform microbial aacblogical models by demonstrating that
the pool of potential microbial interactions thatutd drive a particular process may be
ecosystem specific, and choices made during alysisalvhether it is the phylogenetic level
or cut-offs for particular parameters (e.g.,, clatten strength or p-values), can have drastic
effects on model outcome. Understanding the plepletic distribution of traits related to
biogeochemical cycling so that microbial commusitian be simplified into functional
groups remains a necessary step in order to irteegrgroorganisms into ecosystem models
(Tresedeket al, 2012); special consideration should be giveméoghylogenetic scale

necessary for understanding ecological interactions

In chapter three, | focused on microhabitats ihtbait may be important for
understanding microbial interactions that influebemEyeochemical cycling. Soil aggregates
are distinct agglomerations of soil particles anghaic matter than can differ in resource
availability and may foster different microbial comanities. When considering their role in
biogeochemical cycling, aggregates are key medidtetween soil C storage and
atmospheric C@release, affecting global climate change overwesg (Jastrow, 1996;
Paustiaret al, 1999). Studies aimed at characterizing differencesoil microbial

communities across biomes (e.g (Fiexeal, 2012), can have large impacts on the field of



156

ecology despite an implicit mischaracterizatiorsof microbial communities based on bulk
soil sampling. As | have shown here, care neeti® taken to sample aggregate fractions
specifically in order to truly understand the legéHiversity in soils. Global surveys of
microbial communities may poorly represent teriasicosystems as a whole by ignoring
soil aggregates as their distribution in a soil eary depending on abiotic (Set al,, 2000;
Sarah, 2005) and biotic factors (Grandy & Robert@®®7). Scaling down to an aggregate-
centric view of soil microbial communities is a Besary step towards integrating physical
and biochemical approaches that link biodiversitg aoil microenvironmen{¥oung &
Crawford, 2004) while revealing important infornzatinecessary for scaling between
ecosystem level nutrient cycling and microbial camities that drive biogeochemistry

(Falkowskiet al.,2008).

When focusing on ecosystem functions in chapter, ioiound that taking an
aggregate-centric view can be important for un@esiC-allocation belowground. While
standard protocols in measuring soil C pools waslel whole soil TC measurements despite
the difficulty in detecting differences within ths®il C pool (Kravchenko & Robertson,
2011), | found specific differences among aggrefaietions that are important for our
interpretation of agricultural land-use on biogeaircal fluxes. Notably, our whole soil
analysis demonstrated an average increase in smb€r switchgrass while our aggregate
analysis suggested an average decrease. Thoggtutly does not necessarily confirm
which method is the best for measuring soil Cugports the logic that whole soil sampling
ignores important processes occurring in the $dyond the comparison of soil aggregates
to whole solil, | found that switchgrass is a lessegative cropping system than corn (~1.25

Mg-C ha® yr'), and these relationships between corn and swiasgliffer depending on
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the topographic position at which they were growmhese findings suggest that in order to
optimize yield and ecosystem services garnered &gncultural products, it is necessary to
implement strategic planning of crop placement sxtbe landscape. Thus when modeling
microbes and ecosystems together, understandingtaphic shifts in productivity that also
may drive differences in microbial communities (bf@aves & Hofmockel, 2014) may be
necessary for accurate prediction of biogeochenflicaés.

In the last chapter of my dissertation, | focusedanother microbially mediated
biogeochemical flux, greenhouse gas emissionsatieaimportant to understand at multiple
scales within an ecosystem. Despite previous waakhas characterized greenhouse gas
emissions with a variety of methods, we demonsttaespecific ways of calculating flux
rates can bias researchers findings in regardeeengouse gas consumption by soil
microorganisms (e.g., Chapuis-Larelyal, 2007; Levineet al, 2011). Additionally, these
methods do not explicitly model uncertainty arogmeenhouse gas fluxes, making estimates
of within-ecosystem or across-ecosystem budgefisulif(USDA, 2014). We therefore
proposed the application of Bayesian MCMC modeds élow for greater flexibility and
modeling of uncertainty to measuring greenhousdlgass. This explicit modeling of
uncertainty around a biogeochemical rate (i.e. flga$ can be applied to any
biogeochemical rates that rely on the interpretatiba slope between discrete measurements
taken over time, and potentially improve our apitt model biogeochemistry at multiple
scales.

Overall, the chapters in this dissertation explaination that occurs across in
biogeochemical processes (e.g., C-storage andlgyasa gas emissions) and the

microorganisms that are responsible for them. Refom these chapters also point to the
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potential gains garnered from perennial bioenerggiction; though the benefits from
fertilized monocultures like switchgrass may notlsegreat when compared to fertilized
mixed-species systems. The conclusions presemtinése chapters are not limited to
agricultural systems alone; the interplay betweshagygregation, microbial communities, C-
balance, and greenhouse gas emissions are an anppairt of all terrestrial ecosystems.
The work in these chapters demonstrates methoa®dgr understanding microbially driven
biogeochemical processes that are scalable betwmeobial habitats and ecosystems. By
taking a more informed look at appropriate scalgliwsoil to quantify microbial
communities and biogeochemical processes, we maihfibegin linking microbes and
ecosystems in a modeling framework with explichsideration of model uncertainty around
our measurements.
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