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Figures and Tables 
 

 
Figure 4.1. TBCA model design and aggregate carbon proportions.  The box and arrow 

model represents the TBCA model inputs and outputs described in Eq. 1-3.  The dotted arrow 

represents an implicit input in the model, where the initial C-stock may affect the ability to 

accrue C.  The grey arrow represents an output that though calculated not included, as it was 

a minor flux that had no quantitative effect on the overall model.  The stacked bar plots 

represent the mean proportion of total C within an aggregate fraction among all aggregate 

fractions.    
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Figure 4.2.  Change in TC among aggregate fractions per year.The plots show changes in TC 

among individual aggregate fractions in Mg-C ha-1 yr-1.  Points represent the mean value 

while lines represent the 95% credible interval.  The dotted line represents the 0 line, where 

intersections between the dotted line and 95% credible interval indicate that the distribution 

of a particular parameter contains 0. 
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Figure 4.3. Root Biomass C per year.  The plots show root biomass in Mg-C ha-1 yr-1.  Points 

represent the mean value while lines represent the 95% credible interval.   
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Figure 4.4.  Predicted and measured relationships between root biomass and CO2.This plot 

shows the relationship between root biomass and CO2 expressed as Mg-C ha-1 yr-1.  The line 

represents the predicted slope for the model, and the shaded area represents the 95% credible 

interval around this slope.  Points represent the measured values used to generate the model. 
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Figure 4.5. Predicted net CO2 emissions per year. The plots show simulated CO2 emissions 

from the soil surface in Mg-C ha-1 yr-1.  Points represent the mean value while lines represent 

the 95% credible interval. 
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Figure 4.6. Change TBCA considering soil sampling method and crop biomass.    The top 

plot show changes in the TBCA model in Mg-C ha-1 across the length of the experiment (4 

years) when not considering biomass-C lost through bioenergy production and use (Soil 

Fluxes).  Points represent the mean value while lines represent the 95% credible interval. The 

bottom plot show changes in the TBCA model in Mg-C ha-1 across the length of the 

experiment (4 years) when considering biomass-C lost through bioenergy production and use 

(Soil and Biomass Fluxes).  Points represent the mean value while lines represent the 95% 
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credible interval.  The dotted line represents the 0 line, where intersections between the 

dotted line and 95% credible interval indicate that the distribution of a particular parameter 

contains 0.  The shapes represent either the aggregate method, where all aggregate fractions 

are considered, or the whole soil method, where C was only measured among whole soil 

samples. 
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CHAPTER 5. BAYESIAN ESTIMATION OF STATIC CHAMBER FLUXES 
ADDRESSES UNCERTAINTY IN GREENHOUSE GAS EMISSIONS 

 

A paper in preparation for Global Change Biology as a Technical Advance 

Ryan J. Williams, Kirsten S. Hofmockel, Thomas M. Isenhart 

RJW, KSH, and TMI designed the study.  RJW performed the analysis and wrote the 

manuscript with contributions from KSH. 

Abstract 

Measuring greenhouse gas emissions from soils using static-chambers is a common 

method in climate change science, though much ambiguity exists regarding how to 

accurately calculate fluxes from measurements that can be exceptionally variable.  Here, we 

propose that explicit consideration of uncertainty around flux estimates is necessary for 

accurate scaling of greenhouse gas emissions from static-chambers to landscape-scale 

estimates.  We compared a Bayesian hierarchical model to non-linear and linear methods 

across simulated and empirical greenhouse gas flux data.  Our analysis demonstrates that 

methods used in the literature are inherently biased, while the use of a Bayesian linear model 

provides conservative yet less biased estimates of greenhouse gas fluxes.  We argue that the 

sensitivity of the non-Bayesian methods may lead to false confirmations of biogeochemical 

'hot spots' and ‘hot moments’ or negative fluxes indicating consumption of greenhouse gases, 

while the Bayesian method we introduce provides a conservative estimate of fluxes.  
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Introduction 

Measurement of greenhouse gases (GHGs) is commonly used in ecosystem science to 

estimate the influence of land-use change, agricultural management, disturbance, and other 

ecosystem processes on radiative forcing of climate.  The use of closed chambers to measure 

the passive diffusion of gases either into or from the soil surface is common method when 

attempting to estimate GHG fluxes.  Though the use of static chambers for measuring GHGs 

is rather straightforward, many factors affect the accuracy of these measurements.  Rochette 

and Eriksen-Hammel (2008) reviewed 356 studies measuring soil nitrous oxide (N2O) using 

chamber measurements and suggest that 60% contained unreliable data due to incomplete 

reporting or poor methodology.  To address methodological issues inherent in static chamber 

measurements, researchers have developed techniques like the Hutchinson/Mosier (HMR) 

model that provide non-linear estimates of GHG flux (Pederson et al., 2010) as an alternative 

to simple linear regressions (LR) that estimate chamber flux based on GHG concentrations 

sampled over time.  Several of these methods have been reviewed by Parkin and Venterea 

(2010) where it was found that the degree of data curvi-linearity along with magnitude of 

flux and analytical precision can inflate errors among flux estimates. Non-linear methods like 

HMR have also been found to be sensitive to a variety of factors that contribute to biased 

flux measurements (Venterea et al., 2009), while producing flux estimates that can be 

exceedingly unrealistic (Parkin et al., 2012).  Furthermore, several methods only produce 

point estimates of fluxes and few produce either variance estimates or confidence intervals 

surrounding an estimated flux.  Because flux measurements from soil chambers are often 

scaled to compare ecosystems or inform land management strategies, it is imperative that 

GHG flux measurements explicitly address estimate uncertainty.  
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Understanding the uncertainty around GHG flux estimates generated utilizing static 

chambers is important for scaling from chambers within a plot to landscape, regional, and 

global scale greenhouse gas budgets.  For example, a recent Technical Bulletin by the United 

States Department of Agriculture (USDA) devoted a chapter towards quantifying uncertainty 

across multiple statistical and process-based models aimed at estimating greenhouse gas flux 

(USDA, 2014).  This effort used Monte Carlo simulations to incorporate variability in flux 

prediction models; however this variability does not necessarily consider error occurring at 

previous stages of data collection (e.g., static chamber measurements, flux calculations) or 

particular biases in flux estimation methods.  Bayesian Markov Chain Monte Carlo (MCMC) 

methods have also been used to account for uncertainty in both process-based models (Wang 

and Chen, 2013) and statistical models that rely on flux estimates rather than variability of 

the measurements taken within the chamber (Huang et al., 2013).  For example, Nishina et al. 

(2009), used a Bayesian hierarchical model to estimate spatio-temporal changes in N2O flux 

where the actual fluxes were calculated using the HMR method and assumed to come from a 

non-informative prior distribution.  However, to our knowledge, no methodology has 

suggested quantifying uncertainty of flux estimates based on uncertainty surrounding gas 

concentrations measured within the headspace of a static-chamber.     

Determination of an appropriate flux calculation method has been debated, with both 

linear and non-linear models having unique biases that can affect interpretation of 

greenhouse gas emissions (Venterea et al., 2009; Parkin and Venterea, 2010; Parkin et al., 

2012). Arguments supporting a non-linear versus a linear model when considering highly 

variable measurements may not be supported due to the small number of samples (3 or 4; 

Parkin and Venterea, 2010) commonly taken in static-chamber-based estimates of 
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greenhouse gas flux (Forbich et al., 2010).  Furthermore, no methods provide an explicit 

method for scaling uncertainties from static-chamber measurement to the experimental plot, 

landscape, or region.  Methods like the HMR model (Pedersen et al., 2010) provide a 

standard error that can be incorporated into landscape-scale flux estimates through a Monte 

Carlo method (sensu USDA, 2014) to better estimate uncertainty around greenhouse gas 

estimates; however this approach ignores any probability distributions around additional 

parameters needed to produce a non-linear instead of a linear model.  Multiple studies have 

also attempted to identify spatially or temporally discrete moments of strong biogeochemical 

cycling known as 'hot spots' or 'hot moments' (McClain et al., 2003).  Several studies have 

addressed these phenomena in GHG emissions utilizing the HMR method applied to static-

chamber data (Audet et al., 2013; Audet et al., 2014).  Delineating biases a given method like 

HMR may have on the detection of a hot spot or moment is therefore important for our 

understanding of biogeochemical fluxes.     

In this study, we propose the use of a Bayesian hierarchical model that utilizes 

measurements taken over time within a static soil chamber rather than a flux estimate per 

chamber.  The Bayesian philosophy applied here assumes that fluxes are derived from the 

data given a level of uncertainty in the actual gas concentration taken, rather than a single 

point estimate of flux.  This framework allows for explicit consideration of multiple sources 

of error that may bias a particular measurement; however we present here a simple model for 

comparison with commonly used models in the literature (HMR and LR).    Previous work 

utilizing a Bayesian hierarchical framework to model greenhouse gas flux imparted a prior 

distribution to flux measurements (Nishina et al., 2009; Huang et al., 2013).  The linear 

model proposed here adds an additional level where we consider the prior distributions of 
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measurements taken within a chamber.  We then compare our Bayesian formulation (from 

herein referred to as a Bayesian linear model or BLM) to flux estimation methods common in 

the literature: linear regression (LR) and the Hutchinson-Mosier (HMR) non-linear model.  

We simulated data across multiple fluxes and progressively added variance in order to test 

for sensitivity to variability within a static chamber.  We then applied these methods to data 

collected from a landscape-scale experiment aimed at determining interactions between 

topography and land-use (i.e., specific agronomic cropping systems) on greenhouse gas 

emissions.  We hypothesized that the BLM would provide flux estimates with greater 

uncertainty than LR or HMR, but would ultimately capture the true flux more often than LR 

or HMR under simulated conditions; thus providing an estimate of fluxes less biased by 

methodology when applied to a landscape-scale experiment.     

Materials and Methods 

 Simulating Gas Fluxes for Determination of Methodological Biases 

All data simulation was conducted using base functions in R v. 3.0.2. (R Core Team, 

2013).  First we determined how different methods (HMR, LR, and BLM) performed with 

simulated greenhouse gas flux data.  We used random draws from a normal distribution with 

mean 0 and standard deviation of 14 sensu Parkin et al., (2012) to simulate fluxes across four 

time points (0, 15, 30, 45 minutes), effectively creating a simulated flux of 0 if based on 

normal variance in N2O atmospheric concentrations.  Therefore, any prediction of a flux 

different than 0 would be considered an apparent flux, or flux that did not exist.  Simulation 

of data was performed using the 'rnorm' function in R.  Furthermore, we were interested in 

methodological biases that may occur with changes in flux (i.e., slope of the line between all 

measurements) and differences in random noise that may occur with measurements.  We 
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simulated data across slopes ranging from 0 to 100 in units of gas per minute, while random 

noise was added to each measurement by adding a single value drawn from a uniform 

distribution using the 'runif' function in R.  This noise value could take positive or negative 

values and ranged from 0 to 100 so that at any time point, the statistical noise could 

completely mask the underlying slope.  These simulations produced a matrix of values of 

progressively increasing slopes and noise level among flux measurements to evaluate 

methodological biases across the HMR, LR, and BLM methods. 

Model Implementation for Simulated Fluxes 

  To implement methods that used point estimates (HMR and LR), that is methods that 

would normally only use a single flux estimate without explicit consideration of uncertainty, 

we utilized the “HMR” package (Pederson, 2012) in R v. 3.0.2. (R Core Team, 2013), with 

the option to calculate fluxes using both the linear method and the HMR method for each 

series of simulated measurements.  Therefore, both HMR and LR methods were calculated 

concurrently in the R environment.  Also, when the HMR method recommended the LR 

calculation over HMR, the LR flux was used.  Therefore, HMR fluxes are both a 

combination of linear and non-linear regressions based on analyses inherent in the ‘HMR’ 

package.  The Bayesian linear model (BLM) used here was designed as such: 

�yi= β0+ β1× xi+ zi (1) 

In the equation, �yi represents the predicted gas concentration and xi represents the elapsed 

time for a given measurement, i .  The parameters β0 and β1 represent the intercept and 

slope of the linear model respectively, with the slope being a parameter of interest as it 

represents the flux.  The parameter zi  represents a random term for each measurement, as all 

measurements are taken from the same chamber, and are therefore not independent (e.g a 
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within-chamber random effect).  The addition of this parameter represents a small but 

important deviation from general descriptions of linear models that are prescribed for this 

type of analysis (e.g., Holland et al., 1999).  To consider potential biases that choices of a 

prior distribution may have on our analyses, we varied the variance of the prior distribution 

for β1 and found no qualitative differences (Supplemental Figure 1).  This lack of difference 

based on prior distributions was likely due to the small amount of samples considered within 

each flux estimate (four), and thus may be greater when considering longer chamber 

deployment times with more headspace measurements.  Therefore we used an un-informative 

prior distribution that may be modified depending on the user.  Our BLM was written in 

JAGS (Plummer, 2013) and implemented using the “rjags” package in R (Plummer, 2014), 

which allows for the simulation of Bayesian hierarchical models using a Markov Chain 

Monte Carlo (MCMC) approach.  When applying our BLM, we used 10 chains with 400,000 

iterations thinned every 200 iterations.  Additionally we sacrificed the first 1000 observations 

to remove any potential biases generated from the starting point of the MCMC simulation.  

Figures were made using the “ggplot2” package in the R environment (Wickham, 2009).         

Empirical Data Collection 

For the comparison of the BLM to fluxes calculated using LR or HMR, we utilized a 

GHG sampling dataset collected from the Landscape Biomass Project in Boone County, 

Iowa, USA.  A full site description is available in Wilson et al. (2014).  This experiment 

utilizes a topographic gradient ranging from the top of a hill slope to floodplain to test 

interactions among landscape position and cropping system on a suite of biogeochemical and 

agronomic factors (Ontl et al., 2013; Hargreaves and Hofmockel, 2014).  For the 

experimental design, five landscape positions (summit, shoulder, toe-slope, back-slope, 
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floodplain) and three cropping systems (continuous corn (Zea mays L.), sorghum-triticale 

(Triticosecale x Whit. and Sorghum bicolor L.), switchgrass (Panicum virgatum L.) were 

sampled across 3 blocks, yielding 9 total sets of flux measurements per each cropping system 

at each landscape position.  Sampling occurred at irregular intervals across the growing 

seasons of 2010, 2011, and 2012 in order to capture fluxes correlated with weather events 

and agronomic management.  In 2011 and 2012, only three landscape positions (summit, 

back-slope, toe-slope) were sampled. 

Greenhouse gas flux from soil surfaces was estimated using a static chamber method 

outlined in Parkin and Venterea (2010) that is used to measure changes in headspace 

concentrations of particular gases over time.  First, polyvinyl chloride (PVC) rings (30.48 cm 

diameter with 15 cm height) with a beveled edge were randomly placed within sampled plots 

and hammered into the soil 5-10 cm at least 24 hours before sampling.  A second ring of the 

same size but sealed at one end was placed on top of the first ring, producing a headspace for 

the passive diffusion of gas from the soil surface.  Four measurements were taken for each 

flux at 15-minute intervals.  The inner-temperature of chambers was taken at the time of 

sampling to correct gas concentrations based on the Ideal Gas Law.  Samples were collected 

with a polypropylene syringe and stored in pre-evacuated glass vials fitted with butyl-rubber 

stoppers.  Concentrations within vials were analyzed using an SRI 8000 gas chromatograph 

equipped with a flame ionization detector (FID) and electron capture detector (ECD) in order 

to measure both CO2 and CH4 along with N2O.           

For statistical analysis of fluxes calculated by HMR and LR, we used linear mixed 

effects models implemented using the lme4 package in R (Bates et al., 2014).  Models 

contained main effects and interactions between sampling date, cropping system, and 
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landscape position with random effects for the multiple rings within each plot and block.  

Predicted values from the models were used to compare model output between BLM and LR 

or HMR methods.  We also calculated coefficients of variation (CV) for flux estimates within 

a plot in order to determine the occurrence of a biogeochemical ‘hot-spot’ or ‘hot-moment’.  

A high CV would indicate that a particular flux estimate within a given spatial or temporal 

context was notably different than other related estimates.  For ‘hot-spots’ we calculated CVs 

within plots at each sampling date and for ‘hot-moments’ we calculated CVs within plots 

across dates.  Therefor a high CV indicating a ‘hot-spot’ would be defined by one chamber 

within a plot having a much larger flux than the others, while a CV indicating a ‘hot-

moment’ would indicate that a particular plot at a given date was exceedingly different from 

itself at all other dates. 

Results and Discussion 

HMR, LR and BLM produce estimates that differ orders of magnitude 

In our simulations, the HMR method potentially had a much higher error rate than 

both the LR and the BLM methods (Figure 5.1) when considering whether a particular 

method contained 0 in its 95% interval surrounding the mean flux.  In approximately 10% of 

the simulated datasets, the HMR method produced a flux distribution that did not contain 0 

based on its native statistical test (a T-test where P<0.05 is considered significant).  Error was 

lower with the LR method, which failed to contain zero within its flux distribution in 5.5% of 

the simulated datasets.  In contrast, only 1.2% of the datasets failed to contain zero within its 

flux distribution with the BLM method.  These differences in failure to contain zero within a 

flux estimate distribution represent 3.6 to 7.3 fold increases in errors when comparing LR 

and HMR to BLM, respectively.  BLM fluxes were much closer to zero, while LR and HMR 
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were often hundreds or thousands of units away from the simulated flux.  These results imply 

that the HMR and LR methods have a greater chance of inflating error rates in any gas flux 

field data, consistent with findings of Parkin et al. (2012).   

When HMR and LR methods were run in conjunction with the BLM model on 

simulated data that should produce zero flux, estimates from the HMR and LR method were 

often orders of magnitude larger than those from the BLM method. For example in Figure 2, 

BLM flux estimates were compared with fluxes determined by the HMR and LR methods.  

Due to sensitivity of the HMR method to statistical noise, 2.4% of the estimates produced by 

HMR were removed from further analyses, as they were often more than 104 times different 

than estimates produced by BLM.  The HMR estimates appeared to have a curvilinear 

relationship with BLM estimates (Figure 5.2A), while BLM and LR estimates appeared to 

have a linear relationship (Figure 5.2B).  This similarity in bias is logical as both LR and 

BLM are linear models while BLM contains an additional curvilinear function parameter.  As 

HMR estimates became more extreme (between 500 and 106 units of gas per hour), BLM 

estimates began to plateau, that is, they did not become increasingly different from the zero 

line.  This may indicate HMR was sensitive to noise in our simulated data that did not drive 

bias in our BLM model.  Therefore based on these simulations, it appears that the BLM 

method produced much more reasonable than the HMR method. 

A similar trend was observed when simulating a range of fluxes with varying levels 

of added noise (Figure 5.3 A & B).  When considering fluxes of increasing value with no 

additional noise (Figure 5.3A), there was a small but consistent under-estimation of fluxes 

with the BLM method.  The HMR method reflected this under-estimation as well but also 

had several extreme over/under estimations of fluxes.  The LR method also reflected 
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over/under estimation of fluxes that increased in deviation from the true flux as the simulated 

flux increased.  On average, the HMR and LR method produced estimates that could vary 

orders of magnitude, while the BLM method was much more consistent (Figure 5.3B).  Since 

the process of generating flux estimates through the BLM produces a distribution of fluxes, 

other descriptive statistics like the median value may be used instead of the mean.  In the 

case of our simulated data, the median value was a better estimator of flux than the mean 

value, though the generality of this claim warrants further investigation across multiple 

simulated and empirically collected datasets.  Overall, analyses performed on simulated data 

indicate that though all methods are inherently biased, the BLM has the potential to reduce 

error and increase accuracy of estimates of GHG emissions when compared to HMR and LR 

methodologies (Figure 5.3A & B).  

The HMR and LR method had greater error rates than the BLM method with hugely 

inaccurate fluxes based on simulated static-chamber data.  Previous simulations of apparent 

fluxes have also demonstrated a high error rate when using the HMR method (Parkin et al., 

2012), where it was noted that the application of the method should be used in conjunction 

with manual verification of all fluxes so that the appropriate estimate may be chosen (e.g., 

choosing LR versus HMR calculation).  These recommendations mirror other suggestions of 

manually censoring data points that fall outside confidence bounds after evaluation of 

linearity (Holland et al., 1999).  Manual editing of data can potentially limit our 

understanding of biogeochemical fluxes, as this type of data handling may limit the amount 

of negative N2O fluxes reported in the literature that are often related to consumption of this 

greenhouse gas (Chapuis-Lardy et al., 2007; Schlesinger, 2013).  Reliance on a method that 

prescribes manual removal of data points at a user's discretion prior to flux calculations could 
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also introduce errors and biases into GHG emission estimates that are not currently 

considered in biogeochemical models.  This type of user-based error would also be difficult 

to quantify across studies, even when using a standard suite of methods.  Quantifying 

potential bias that this methodology has had on previous research is difficult, yet it is 

important to note that extreme gas fluxes could be the result of methodological bias. 

  HMR, LR, and BLM produce different ecological interpretations of flux  

Differences in the magnitude and direction of GHG fluxes that result solely from 

choice of methodology of flux calculation could have important implications regarding our 

working knowledge of biogeochemical cycles.  We compared flux estimates obtained from 

the HMR, LR, and BLM methods applied to our empirical data in order to assess whether 

method bias could affect ecological interpretations of the results when considering CO2, CH4, 

and N2O.  As an example, multiple studies have reported CH4 flux using the LR method from 

soils and related trends to land use or other environmental differences.  While many studies 

have reported zero net flux, upland soils have been shown to maintain a level of CH4 

consumption due to methanotrophic communities within the soil that are inhibited by N-

fertilizer (Aronson and Helliker, 2010; Levine et al., 2011).  Across our dataset, roughly half 

of the CH4 fluxes were negative with the LR method (Figure 5.4), which has been used 

previously to link methanotrophic activity and CH4 flux (Levine et al., 2011).  These 

negative fluxes were not corroborated by either the BLM or HMR method, suggesting that 

the application of the LR method to this set of empirical data may lead to incorrect assertions 

regarding the fate of CH4 within the context of this experiment.  Alternatively, the HMR and 

BLM methods may be incorrect.  Since LR and BLM are both linear methods, there should 

be similar biases among these methods, so disagreement in the direction of flux between LR 
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and BLM warrants further investigation.  Nonetheless, the lack of corroboration between 

methods regarding the direction of flux highlights the necessity for a critical view when 

choosing an appropriate flux calculation method.  Additionally, the prevalence of negative 

N2O fluxes when using the HMR and LR method across both 2011 and 2012 may suggest 

consumption of N2O (Chapuis-Lardy et al., 2007) that is not supported by the BLM method.  

Furthermore, differences in calculated flux are exceptionally apparent when comparing CO2 

fluxes from 2012 (Figure 5.4).  Estimates for CO2 flux generated by the HMR and LR 

method appear to have an exponential increase when compared to BLM estimates, 

supporting the observation of a high level of bias and disagreement between estimate 

methods with increasing fluxes (Parkin and Venterea, 2010; Parkin et al., 2012; current 

study).  Interpretations drawn between BLM and either LR or HMR for these data highlight 

the potential for misinterpretation of hot-spots or hot-moments of biogeochemical activity.   

We further investigated the potential for spurious ‘hot-spots’ or ‘hot-moments’ under 

each method by comparing the coefficient of variation (CV) among N2O flux estimates 

across space and time.  We assumed that a high CV across samples within the same plot on 

the same sampling date (i.e., measurements taken from multiple chambers randomly 

distributed within a plot) could represent a ‘hot-spot’ while a high CV from the same plot 

across all sampling dates may represent the occurrence of a ‘hot-moment’.  We then 

compared the distributions of CVs produced by each flux estimate method to describe the 

probability of interpretation of a hot spot or moment (Figure 5.5).  When considering ‘hot-

moments’, there was much less temporal variability in fluxes estimated from samples 

originating from the same plot with the LR method, represented by the range of the CV 

distribution, while the HMR and BLM method performed similarly based on the location of 
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the 95% quantile.  Therefore, analyses that use the LR method may distinguish ‘hot-

moments’ based on smaller differences in fluxes than if the BLM or HMR method were used.  

In other words, samples observed over time from the same plots and analyzed with the LR 

method are more consistent than the HMR and BLM methods.   When considering ‘hot-

spots’, the BLM had the greatest range of CV’s, meaning that analyses using this method 

would be conservative when designating spatially distinct biogeochemical activity.  

Conversely, the HMR and LR method may allow users to detect a ‘hot-spot’ more readily, 

potentially inflating their occurrence across a studied landscape.  The combination of greater 

sensitivity to spatio-temporally distinct fluxes and the appearance of apparent fluxes among 

simulated the data warrants greater caution when interpreting fluxes generated by the HMR 

and LR methods unless care is taken in considering uncertainty across space (e.g., Nishina et 

al., 2009).  

In the analysis of our empirically collected data, results using the HMR and LR 

methods differed from the BLM model, though all methods were able to detect ecologically 

relevant fluxes that are well known in agricultural systems.  For example, N2O fluxes 

increase following fertilization in corn systems and are defined by a temporally discrete pulse 

that is the major contributor to cumulative flux over a growing season (Hoben et al., 2011).  

We observed significant interactions in N2O emissions between sampling date and cropping 

system for the HMR method that was not captured by the LR method in 2011, and both 

methods detected this interaction in 2012 (Table 5.1).  Though there is not an analogous 

statistical test for the BLM method, changes in fluxes over time that differed across crops 

were visible (Figure 5.6 A & B).  For example, in 2011 we observed high N2O fluxes under 

switchgrass and corn that were 19% and 64% higher than those from sorghum, respectively.  
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This follows the fertilization regime at the site, where sorghum is not fertilized until July.  

This fertilizer pulse was also observed at the end of July when sorghum had approximately 

35% greater N2O than the other cropping systems.  It should be noted that all of these fluxes 

determined by the BLM method had 95% credible intervals that slightly overlapped with 

zero, indicating a large amount of uncertainty in flux prediction.   

Greater N2O fluxes following N-fertilization were also observed in 2012, though no 

fertilization peak was seen in sorghum, as fertilizer was not applied due to drought 

conditions.  Across both years, the HMR method produced highly variable estimates of flux 

that could be either negative or positive and were not corroborated by any other method.  

These events could potentially be recognized as biogeochemically active periods or ‘hot-

moments’ where either large quantities of N2O are emitting from the soil surface or is being 

consumed by microorganisms within the soil matrix.  Other potentially spurious ‘hot-

moments’ or ‘hot-spots’ could have been interpreted when using the LR method in 2012 

based on the significant interaction between date and landscape position that was not 

detected by the HMR method.   Given the potential for unreliable fluxes generated by both 

the LR and HMR method, these ‘hot-moments’ are potentially a methodological error rather 

than ecological phenomena.  

Understanding biogeochemical fluxes at multiple scales within ecosystems is 

important for land management and to improve forecasting of radiative forcing driven by the 

emission of GHGs like CO2, CH4, and N2O.  However, disagreement among methods of 

deriving flux estimates as illustrated here potentially mask our ability to understand drivers 

of flux; especially those that occur at the microbial scale (Chapuis-Lardy et al., 2007; Levine 

et al., 2011).  The use of methods that do not explicitly model uncertainty around GHG 
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fluxes make estimates of within-ecosystem or across-ecosystem budgets difficult, particularly 

were assumptions regarding errors and the scale at which they occur are not consistent across 

datasets (USDA, 2014).  Furthermore, these methods differ in their ability to detect 

ecologically relevant ‘hot-spots’ or ‘hot-moments’ that are considered important to overall 

biogeochemical flux budgets (Savage et al., 2014).  We suggest that application of Bayesian 

MCMC (BLM) models would allow for better modeling of uncertainty in measuring 

greenhouse gas fluxes.  It should be noted that the BLM could be modified to model non-

linear fluxes with explicit modeling of parameter distributions using either an exponential or 

power function.  Following the logic behind the HMR method, there is some expectation of a 

non-linear relationship between gas concentration and time as the diffusion of gas into a 

chamber may slow over the course of chamber deployment (Pederson et al., 2010).  Though 

our model demonstrated here is inherently linear, it is difficult to assume non-linearity with 

so few measured concentrations over time.  Therefore, application of a non-linear Bayesian 

model and comparison to BLM should be under conditions that allow for greater sampling 

over time rather than just three or four points.  Further exploration of prior distributions of 

chamber measurements, including differences in prior based on particular gases being 

measured (e.g., different prior distributions for CO2 and N2O) should be applied during the 

use of the BLM method along with various methods of model validation (e.g., posterior 

predictive checks, Bayesian P-values, model comparison, etc.).  Such explicit modeling of 

uncertainty around a biogeochemical rate (i.e., gas flux) can be applied to any 

biogeochemical rates that rely on the interpretation of a slope between discrete measurements 

taken over time, and could potentially improve our ability to model biogeochemistry at 

multiple scales. 
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Figures and Tables 

Table 5.1. Mixed-effects model statistics for N2O fluxes. 

Tested Effects HMR LR 

2011 F-value P-value   F-value P-value   

Date 1.03 0.411 1.31 0.246 

Landscape 0.94 0.390 1.52 0.220 

Crop 0.89 0.413 0.11 0.898 

Date:Landscape 0.74 0.732 0.98 0.467 

Date:Crop 1.91 0.023 * 1.39 0.154 

Landscape:Crop 0.93 0.449 1.43 0.224 

Date:Landscape:Crop 0.78 0.790 0.68 0.895 

2012             

Date 2.74 0.004 ** 5.78 <0.001 *** 

Landscape 2.69 0.069 . 6.93 0.001 ** 

Crop 0.09 0.910 1.24 0.290 

Date:Landscape 1.36 0.145 2.13 0.004 ** 

Date:Crop 2.05 0.006 ** 2.82 <0.001 *** 

Landscape:Crop 0.73 0.573 0.37 0.829 

Date:Landscape:Crop 1.21 0.195   1.18 0.231   

Stars represent significance levels where a “.” represents P-values between 0.1 and 0.05, “*” 

represents P-values < 0.05, “**” represents values < 0.01, and “***” represents values < 

0.0001.  
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Figure 5.1.  Histograms of fluxes that represent error rates. These histograms show the 

distributions of fluxes that correctly identify no flux based on their confidence intervals 

(HMR, LR) or credible intervals (BLM).  Fluxes represent the mean flux estimate calculated 

by each method.  
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Figure 5.2.  Comparison of fluxes calculation methods across flux simulations.  Plots show 

the comparison between BLM and either HMR (A) or LR (B) flux estimates in units of gas m 

.  The black line represents the mean flux of both methods while grey shading represents the 

95% credible interval around the mean flux produced by the BLM method.  The red dashed 

line represents the true flux that simulated data was centered around, thus deviation from this 

line represents model sensitivity to noise that may influence error rates. 
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Figure 5.3.  Comparison of flux estimation methods across multiple fluxes with added 

statistical noise.  Differences between slope estimates and the actual slope with no added 

statistical noise are visualized in (A). Heatmaps reflecting differences in simulated and 

estimated fluxes are shown in (B).  These heatmaps show the difference between simulated 

flux and estimates calculated through each method.  Differences are calculated as the log10 

transformation of the absolute difference between actual and estimated flux.   

 

 

 



        

 

150

 

Figure 5.4.  Comparison of BLM, HMR, and LR flux estimates across emipirical data in 

units of gas (mg C-CO2, mg C-CH4, µg N-N2O in  m-2 hr-1).  Each plot represents the 

comparison between estimates from either BLM and HMR or BLM and LR.  The red dashed 

lines represent 0 lines to distinguish negative and positive fluxes. 
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Figure 5.5. Comparison of coefficient of variation for detection probabilities of hot spots and 

hot moments.  Distributions represent the absolute value of coefficients of variation 

(abs(CV)) of plots through time (Hot Moment) or of individual measurements from rings 

within a plot (Hot Spot).  The absolute value of the CV was used here to visually compare 

both negative and positive fluxes.  Full and dashed lines represent quantiles of each 

distribution, which designate possible values that may indicate a ‘hot spot’ or ‘hot moment’. 
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Figure 5.6. Mean flux estimates for BLM, HMR, and LR methods across cropping systems in 

2011 and 2012.  Points represent the mean estimate of each flux method for 2011 (A) and 

2012 (B). 
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Supplemental Figures 

Supplemental Figure 5.1 Comparison of different prior distributions with BLM and HMR. 

 

The figure shows the comparison between different prior distributions for the BLM method 

and with comparisons to the HMR method.  The different variances are reflected as 

precisions (1/σ2).  The black line represents the mean flux estimate of both the HMR and 

BLM method, while the grey shaded area represents the 95% credible interval surrounding 

the mean flux for the BLM method. 
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CHAPTER 6 

GENERAL CONCLUSION 

A theme central to both microbial ecology and biogeochemistry is understanding how 

biological interactions between microorganisms in a community context generate elemental 

fluxes.  However elucidating these interactions can be difficult given the inherent diversity 

among microbial communities and the complexity of the environments that they reside 

within.  Measuring biogeochemical fluxes in a manner that is scalable between microbial 

communities and ecosystems is also difficult as our methods often rely on avoiding important 

ecological heterogeneity (i.e., topography of a hill-slope or aggregates in a soil) or ignoring 

variance in a measurement (i.e., uncertainty around a flux estimate).  For my dissertation, I 

focused on gaining a better understanding of microbial communities among soil aggregates 

and biogeochemical fluxes of carbon and nitrogen that are important factors when 

understanding agricultural land-use effects on climate change.  Though I did not aim to find 

direct linkages between microorganisms and specific biogeochemical fluxes with this work, 

the conclusions reported here can help in the development of models that predict both 

microbial and ecosystem-scale function.          

I began my dissertation with trying to understand microbial interactions within a 

community using network analyses that are now pervasive across multiple fields of 

ecological research.  I found that environmental filtering, the selection of particular 

organisms from a regional species pool based on inherent abiotic conditions, plays a strong 

role in driving microbial community composition, while fluctuations among microbial 

populations are generally independent of one another.  However, further examination of 

microbial populations that are uncorrelated within ecosystems is necessary, as the absence of 
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co-occurrences demonstrated here might not be applicable in other environments.  

Furthermore, the scale at which samples were collected may not be relevant for microbial 

community interactions. If we can apply our results broadly to ecosystems not examined in 

this study, the majority of co-occurrences between microbial taxa may be ecosystem 

dependent and consistent relationships between microorganisms may be a special case rather 

than the norm when considering communities summarized at high taxonomic levels.  The 

finding from this chapter can inform microbial and ecological models by demonstrating that 

the pool of potential microbial interactions that could drive a particular process may be 

ecosystem specific, and choices made during an analysis, whether it is the phylogenetic level 

or cut-offs for particular parameters (e.g.,, correlation strength or p-values), can have drastic 

effects on model outcome.  Understanding the phylogenetic distribution of traits related to 

biogeochemical cycling so that microbial communities can be simplified into functional 

groups remains a necessary step in order to integrate microorganisms into ecosystem models 

(Treseder et al., 2012); special consideration should be given to the phylogenetic scale 

necessary for understanding ecological interactions. 

In chapter three, I focused on microhabitats in soil that may be important for 

understanding microbial interactions that influence biogeochemical cycling.  Soil aggregates 

are distinct agglomerations of soil particles and organic matter than can differ in resource 

availability and may foster different microbial communities.  When considering their role in 

biogeochemical cycling, aggregates are key mediators between soil C storage and 

atmospheric CO2 release, affecting global climate change over centuries (Jastrow, 1996; 

Paustian et al., 1999). Studies aimed at characterizing differences in soil microbial 

communities across biomes (e.g (Fierer et al., 2012), can have large impacts on the field of 
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ecology despite an implicit mischaracterization of soil microbial communities based on bulk 

soil sampling.  As I have shown here, care needs to be taken to sample aggregate fractions 

specifically in order to truly understand the level of diversity in soils.  Global surveys of 

microbial communities may poorly represent terrestrial ecosystems as a whole by ignoring 

soil aggregates as their distribution in a soil can vary depending on abiotic (Six et al., 2000; 

Sarah, 2005) and biotic factors (Grandy & Robertson, 2007).  Scaling down to an aggregate-

centric view of soil microbial communities is a necessary step towards integrating physical 

and biochemical approaches that link biodiversity and soil microenvironments (Young & 

Crawford, 2004) while revealing important information necessary for scaling between 

ecosystem level nutrient cycling and microbial communities that drive biogeochemistry 

(Falkowski et al., 2008).  

When focusing on ecosystem functions in chapter four, I found that taking an 

aggregate-centric view can be important for understand C-allocation belowground. While 

standard protocols in measuring soil C pools would use whole soil TC measurements despite 

the difficulty in detecting differences within this soil C pool (Kravchenko & Robertson, 

2011), I found specific differences among aggregate fractions that are important for our 

interpretation of agricultural land-use on biogeochemical fluxes.  Notably, our whole soil 

analysis demonstrated an average increase in soil C under switchgrass while our aggregate 

analysis suggested an average decrease.  Though this study does not necessarily confirm 

which method is the best for measuring soil C, it supports the logic that whole soil sampling 

ignores important processes occurring in the soil.  Beyond the comparison of soil aggregates 

to whole soil, I found that switchgrass is a less C-negative cropping system than corn (~1.25 

Mg-C ha-1 yr-1), and these relationships between corn and switchgrass differ depending on 
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the topographic position at which they were grown.   These findings suggest that in order to 

optimize yield and ecosystem services garnered from agricultural products, it is necessary to 

implement strategic planning of crop placement across the landscape.  Thus when modeling 

microbes and ecosystems together, understanding topographic shifts in productivity that also 

may drive differences in microbial communities (Hargreaves & Hofmockel, 2014) may be 

necessary for accurate prediction of biogeochemical fluxes.      

In the last chapter of my dissertation, I focused on another microbially mediated 

biogeochemical flux, greenhouse gas emissions, that are important to understand at multiple 

scales within an ecosystem.  Despite previous work that has characterized greenhouse gas 

emissions with a variety of methods, we demonstrate that specific ways of calculating flux 

rates can bias researchers findings in regards to greenhouse gas consumption by soil 

microorganisms (e.g., Chapuis-Lardy et al., 2007; Levine et al., 2011). Additionally, these 

methods do not explicitly model uncertainty around greenhouse gas fluxes, making estimates 

of within-ecosystem or across-ecosystem budgets difficult (USDA, 2014).  We therefore 

proposed the application of Bayesian MCMC models that allow for greater flexibility and 

modeling of uncertainty to measuring greenhouse gas fluxes. This explicit modeling of 

uncertainty around a biogeochemical rate (i.e., gas flux) can be applied to any 

biogeochemical rates that rely on the interpretation of a slope between discrete measurements 

taken over time, and potentially improve our ability to model biogeochemistry at multiple 

scales.  

Overall, the chapters in this dissertation explain variation that occurs across in 

biogeochemical processes (e.g., C-storage and greenhouse gas emissions) and the 

microorganisms that are responsible for them.  Results from these chapters also point to the 
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potential gains garnered from perennial bioenergy production; though the benefits from 

fertilized monocultures like switchgrass may not be as great when compared to fertilized 

mixed-species systems.  The conclusions presented in these chapters are not limited to 

agricultural systems alone; the interplay between soil aggregation, microbial communities, C-

balance, and greenhouse gas emissions are an important part of all terrestrial ecosystems.  

The work in these chapters demonstrates methodologies for understanding microbially driven 

biogeochemical processes that are scalable between microbial habitats and ecosystems.  By 

taking a more informed look at appropriate scales within soil to quantify microbial 

communities and biogeochemical processes, we may finally begin linking microbes and 

ecosystems in a modeling framework with explicit consideration of model uncertainty around 

our measurements.     
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