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to 1 mN [42], the sub-mN force level of the micro-tentacle can be highly useful for 

biomedical cellular manipulation. 

 

Fig. 21 Characterization of PDMS micro-tentacle actuation: (a) Measured deflection of the 
cantilever due to the PDMS micro-tentacle’s grabbing force. The inset shows the 
experimental setup (MW: metal wire, SMF: glass optical fiber, MT: micro-tentacle). The 
solid line represents c, the deflection at the grabbingpoint (hg), calculated based on the 
standard beam deflection theory with the point-loaded force of 0.78mN.The measured c 
begins to deviate from the theory after it exceeds 90 m, the maximum stroke achievable 
with the current setup. (b) and (c) Optical micrographsshowing the micro-tentacle’s ability to 
grab and hold aMallotusvillosusegg by winding around it conformally. (d) Optical 
micrograph of another micro-tentacle grabbing and holding an ant. (Scale bar: 500 m for 
all) 
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Conclusion 

To conclude, I have demonstrated elastomer-based soft-robotic micro-tentacles 

capable of winding around and holding microscale objects. To realize the thin, highly 

deformable microtubes, I established a new fabrication technique based on in situ thermal 

solidification of PDMS dip-coated around a cylindrical template and direct peeling of the 

cured structure. Its capability to asymmetrize the microtube’s cross-sectional shape enabled 

the microtube to bend up to a single turn. But I went further to amplify the bending into a 

life-like, multi-turn spiraling motion. To that end, I established a semi-analytical model to 

shape-engineer the microtube and turn it into a micro-tentacle. The optimized micro-tentacle 

exhibited a spiraling motion with two full turns and ~200 μm inner radius, which is ideal for 

grabbing micro-objects.  

Experimental confirmation of the feasibility of such a winding motion in elastomer-

based microscale pneumatic actuators is another of this study’s contribution. The spiraling 

capability will render the micro-tentacle particularly useful for manipulating fragile or easily 

deformable objects since it will allow the micro-tentacle to grab and hold a delicate object 

either by winding around it conformally or by forming a ring that can scoop up the object 

without squeezing. Thanks to the use of PDMS for its construction and also to its 

microorganism-level force, our micro-tentacle is fully compliance-matched to biological 

structures [29] and will be ideal for future in vivo biomedical manipulation or surgery [36, 

37] and endovascular operations [43, 115] where tissue safety holds the highest priority. 
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CHAPTER 6 

 SUMMARY AND CONCLUSIONS 

 

In conclusion, I have successfully demonstrated new micro-fabrication schemes for 

unconventional, elastomer-based microsystems and their applications.  

First, I established a simple and novel fabrication scheme which enables the 

realization of 3D networked, cylindrical MF channels by adopting sucrose as the sacrificial 

material. The sucrose fiber templates exhibit chemical, mechanical, and thermal 

characteristics suitable for their shaping, bonding, and assembly, enabling the realization of 

essential 3D MF channel architectures such as cylindrical tapers, internal looping, end-to-

side junctions, tapered junctions, and local stenosis, which are difficult when attempted with 

existing schemes. The last two will especially benefit vaso-mimetic efforts, hemodynamic 

studies, and 3D tissue scaffolding. On top of that, the scheme is based on only low 

temperature, water dissolution process so that it is environment friendly and cost effective. 

As potential applications of the MF channels for PoC monitoring, I have successfully 

demonstrated the integration of the bokeh microscopy with microfluidics. For this work, MF 

channels were realized based on our proprietary fabrication technique and then, a single 

microlens was installed over the microfluidic side. The microlens-generated image capturing 

was achieved by an ordinary, widely available camera. Analysis of the resulting magnified 

images of MF channel and its contents indicate that this simple microscopy scheme is 

capable of providing 10~40 of magnification and 67~252m of field-of-view extent, which 

are adequate for monitoring 50~100 m microchannels carrying 10~50 m objects. Thanks 

to the inherent simplicity of the bokeh microscopy scheme and its fabrication techniques, the 
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implementation of the bokeh microscopy integrated with the MF channels greatly facilitates 

its use for PoC applications in highly resource limited environment. 

On top of that, I report a new technique which enables the realization of PDMS 

micropillars with ultra-high aspect-ratio. The incorporation of in situ thermal hardening with 

the direct-drawing technique was the key enabler. With the technique, I routinely produced 

micropillars with their mm-scale height and m-scale diameter, achieving aspect-ratios in the 

range between 57 and 112, which is unprecedented for elastomers such as PDMS. The 

scheme also differentiates itself from other direct-drawing techniques in its use of detachable 

microspheres as the drawing probes which allows self-aligned capping of the micropillar 

with microspheres possessing various functionalities. As a validation of the microsphere-

tipped PDMS micropillar’s utility, I turned it into an optical air-flow sensor. Its high aspect-

ratio, together with the excellent flexibility of PDMS, allowed the micropillar to deform 

significantly even under weak air-flows, leading to mm/s-scale detection resolution. The 

increase in the micropillar’s height also lowered their resonance frequency from the usual 

kHz range down to ~100 Hz, filling the gap in the operation bandwidth of microscale air-

flow sensing. The microspheres, on the other hand, were utilized as compact, self-aligned 

mirrors which guarantee maximal reflection during optical read-out of the micropillar’s 

deformation. Overall, both the microsphere-tipped high aspect-ratio micropillar architecture 

and its fabrication technique will constitute useful additions to the toolbox of soft-MEMS 

technology, with their utility and success hinged on the choice of the microspheres’ size and 

composition. 

Finally, I have demonstrated elastomeric microtube based soft-robotic tentacles 

capable of grabbing and holding microscale objects. For this work, I established a new 
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fabrication technique which allows the realization of high aspect-ratio elastomeric 

microtubes with very thin walls based on in situ thermal solidification of PDMS dip-coated 

around a cylindrical template and direct peeling of the cured structure. It also allows 

significant asymmetrization of the microtube’s cross-sectional shape which leads to bending 

up to a single-turn. Then, I shape-engineered the microtube to amplify its bending into multi-

turn spiraling. Using a semi-analytical model, I established a design rule which enables such 

a spiraling with a simple hump. The outcome exhibited a spiraling motion with a final radius 

of ~185 μm and 0.78 mN of squeezing force, which are ideal for grabbing micro-objects that 

can easily be deformed or damaged.  

In summary, I have actively researched on realizations of unconventional elastomeric 

structures by devising novel, simple, and cost-effective fabrication schemes. And I believe 

that the outcomes will constitute a useful toolbox for diverse research areas. For example, the 

high aspect-ratio PDMS micropillar which can function as a standing-upright flexible 

waveguide and its fabrication scheme can benefit not only soft-MEMS research area but also 

optics related studies by paving a new road for freestanding elastomeric optics, escaping 

from the rigid, inelastic optics, which will, in turn, widen the scope of optical applications. 
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