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                                   A                                                                                  B 

  

                                 C                                                                                  D 

  

                                E                                                                                   F 

Figure 3.16. System working flow map. A is the 3D image acquiring. B is the plant model visualization. C is 

plant parameter computing. D is acquiring leaf color image. E is diagnosing the infected plant. F is leaf 

probing.   

 
3.4.1 Detection of virus symptoms 

The target leaves are the two leaves on top because the lower leaves are covered by 

upper leaves in the system view.  

3D model reconstruction 

Phenotypic parameter computation 
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During each day when samples are taken, the system reports “positive” or “negative”, 

where “positive” means the probability of “infected” is high and “negative” means the 

probability of “infected” is low for this plant. The leaf symptom pattern of an “infected 

plant” may be reported on different days than for other plants. For example, the pattern 

emerged about 1 week earlier for batch #4 than for batches #1, #2, and #3.  On the 16th day, 

all 60 plants in batches #1, #2, and #3 tested “negative”.  

In batches #1, #2, and #3, plants 1 to 8 were inoculated by water and labeled as A, 

plants 9 to 20 were inoculated by virus reagent and labeled as B. The number “1” in the 

above table means “positive” while “0” means “negative”.  In batch #4, plants 1 to 7 were 

inoculated by and labeled as A, and plants 8 to 18 were inoculated by virus reagent and 

labeled as B. In the final result, we used the average of the 3 values to perform the 

classification. The final result of “diagnose” is shown in the table below.   

One month after inoculation, all plants were sampled for ELISA to detect infection by 

SCMV. As shown in Figure 17, the negative control plants and all the mock-treated plants 

tested had a background OD405 less than 0.20, while the positive control and SCMV-

infected plants had OD405 readings ranging from 1.27 to 1.92, significantly higher than the 

background readings. Ten SCMV-treated plants showed similar OD405 readings as the 

negative control plants, indicating unsuccessful SCMV infection. When leaf symptoms were 

checked to confirm infection, the result correlated well with the ELISA result. The ELISA 

result was treated as the gold standard in this project. 
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Figure 3.17. ELISA result for 4 batches  
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Table 3.1. Batch 1 (every sampling days) diagnose result 

Plant ID 11A 12A 13A 14A 15A 16A 17A 18A 11B 12B 13B 14B 15B 16B 17B 18B 19B 110B 111B 112B 

19 days 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

22 days 0 0 0 1 1 0 0 0 1 1 0 0 0 N/A 0 0 N/A N/A 0 1 

25 days 0 0 1 0 0 0 0 0 1 1 0 0 0 N/A 0 0 N/A N/A N/A 1 

 

 Table 3.2. Batch 2 (every sampling days) diagnose result  

Plant ID 21A 22A 23A 24A 25A 26A 27A 28A 21B 22B 23B 24B 25B 26B 27B 28B 29B 210B 211B 212B 

19 days 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 

22 days 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 

25 days 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 

 

Table 3.3. Batch 3 (every sampling days) diagnose result 

Plant ID 31A 32A 33A 34A 35A 36A 37A 38A 31B 32B 33B 34B 35B 36B 37B 38B 39B 310B 311B 312B 

19 days 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 

22 days 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 

25 days 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 

 

Table 3.4. Batch 4 (every sampling days) diagnose result 

Plant ID 41A 42A 43A 44A 45A 46A 47A 41B 42B 43B 44B 45B 46B 47B 48B 49B 410B 311B 

19 days 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

22 days 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 

25 days 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 
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Table 3.5. Batch 1 final diagnose result 

Plant ID 11A 12A 13A 14A 15A 16A 17A 18A 11B 12B 13B 14B 15B 16B 17B 18B 19B 110B 111B 112B 

Diagnose C C C C C C C C I I C C C N/A C C N/A N/A N/A I 

Truth C' C' C' C' C' C' C' C' I' I' C' C' C' N/A C' C' N/A N/A N/A I' 

Correction 
             

N/A 
  

N/A N/A N/A 
 

 

Table 3.6. Batch 2 final diagnose result 

Plant ID 21A 22A 23A 24A 25A 26A 27A 28A 21B 22B 23B 24B 25B 26B 27B 28B 29B 210B 211B 212B 

Diagnose C C C C C C C C I C I C C I I C I I C C 

Truth C' C' C' C' C' C' C' C' I' C' I' C' C' I' I' I' I' I' C' C' 

Correction 

                    

 

Table 3.7. Batch 3 final diagnose result 

Plant ID 31A 32A 33A 34A 35A 36A 37A 38A 31B 32B 33B 34B 35B 36B 37B 38B 39B 310B 311B 312B 

Diagnose I C C C C I I C I I I I I C I C C I I I 

Truth C' C' C' C' C' C' C' C' I' C' I' I' I' C' I' C' C' I' I' I' 

Correction 

                    

 

Table 3.8. Batch 4 final diagnose result 

Plant ID 41A 42A 43A 44A 45A 46A 47A 41B 42B 43B 44B 45B 46B 47B 48B 49B 410B 311B 

Diagnose C C I C C C C I C I I I I I I I C C 

Truth C' C' C' C' C' C' C' I' I' I' I' I' I' I' I' I' I' I' 

Correction 
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The first row in Tables 3.5, 3.6, 3.7 and 3.8 are the plant IDs; the second row is the 

diagnostic result from the system, where “C” means control plant and “I” means the infected 

plant. The third row presents ground-true from ELISA test, again with “C’” meaning control 

plant and the “I’” meaning infected plant. The last row shows the correction, where a check 

mark designates a correct result and a cross mark designates an incorrect result. In batches 

#1, #2, and #3, the system detected 18 “infected” plants in group B, while 3 plants were 

considered “infected” in group A. There were 74 cases, 65 correct and 9 incorrect, and the 

accuracy was 87.84%. 

3.4.2 Leaf Probing test 

 We performed a leaf-probing test for batch#1 every sampling day. We tested for 2 

directional errors: absolute error distance between gripper center and leaf center along the 

leaf midrib and the cross midrib.   

 

Figure 3.18. Leaf Probing error definition. 
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Figure 3.19. Leaf Probing error distribution in cross direction (left) and along the midrib direction (right). 

 

 

Table 3.9. Cross Midrib error (mm) 

Quantiles   Summary Statistics 

100% maximum 37 Mean 12.4041 

75% quartile 16.5 Std Dev 5.5868 

50% median 12 Std Err Mean 0.36062 

25. % quartile 8 Upper 95% Mean 13.1145 

0% minimum 3 Lower 95% Mean 11.6937 

        N 240 

 

 

Table 3.10. Along Midrib error(mm) 

Quantiles   Summary Statistics 

100% maximum 84 Mean 23.0166 

75% quartile 30 Std Dev 15.2989 

50% median 19 Std Err Mean 0.9875 

25. % quartile 13 Upper 95% Mean 24.9621 

0% minimum 3 Lower 95% Mean 21.0713 

        N 240 
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There were 240 leaves were tested. The mean of the error along the leaf midrib direction was 

23 mm, and the median of the error was 19 mm. These two values across the midrib direction 

were 12.4 mm (mean) and 12 mm (median). 

3.4.3 SCMV effects tests 

We grew 60 maize plants, labeled as batches #1, #2, and #3. They were grown in one 

growth chamber and placed in the left (batch #1), middle (batch#2), and right (batch #3) 

chamber locations. There were 9 sampling days in the interval from the 1st day to the 25th day 

after the treatment. In each sampling day, the system would output the plant stem height, 

each leaf’s length, for every plant. We also measured these parameters manually to provide a 

gold standard for comparison.  

3.4.3.1 System result 

According to the diagnostic result and plant parameter output, there were 216 plant-

height values in the “control” group and 171 values in the “infected” group. We treated these 

387 height values as observations, with effect factors that included Batch ID, plant ID, days 

of “infected or not”. In this way we attempted to build a linear regression model. 

0 1_ [ / ]Stem Height Intecept Days Infected Yes Noβ β= + × + ×  

Because the testing of effect of “infected” status on plant height was the main activity of 

interest, we were concerned only about “days” and “infected” factors. We set an alpha level 

of 0.05, and used JMP 11 Pro software to run this model. 

Table 3.11. Summary of fit (Height model using system output) 

 

RSquare 0.7494 

Root Mean Square Error 24.7232 

Mean of Response 92.4383 

Observations  378 
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Table 3.12. Parameter estimates (Height model using system output) 

Term   Estimate Std Error t Ratio Prob>|t| 

Intercept 22.3892 6.2297 3.59 0.0468* 

days 5.3986      0.1655 32.6    <.0001* 

infected -1.7401     -1.5096 16.19      0.2566 

 

 

Figure 3.20. Residual V.S. Predicted (Height model using system output) 

Table 3.11 shows that the R-square of this model is 0.7494. This means that there are 

74.94 % samples in the population that can be explained using this model. The root mean 

square estimates the standard deviation of random error. 92.48 mm was the mean value of 

stem height and there were 378 samples observed in this model. Table 3.12 provides the 

coefficients of the factors and p-value forthe F-test. We can see the residula by predicted plot 

(Figure 3.20); there are obvious patterns, so this model is not suitable and should be changed. 

Beacause there are only 9 scales (day of 1, 4, 7, 10, 13, 16, 19, 22, 25) in the factor of “days”, 

less than the response y of stem height (30 mm ~ 220 mm), we transferred the response y 

(stem height) to logarithmic representation. Here is the fixed model: 

0 1( _ ) [ / ]
e

Log Stem Height Intecept Days Infected Yes Noβ β= + × + ×  
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Table 3.13. Summary of fixed model fit (Height model using system output) 

RSquare 0.8067 

Root Mean Square Error 0.2207 

Mean of Response 4.4153 

Observations  378 

 

 

Table 3.14. Parameter estimates of fixed model (Height model using system output) 

Term   Estimate Std Error t Ratio Prob>|t| 

Intercept 3.6653 0.0222 164.81    <.0001* 

days -0.0214 0.01147 -1.87 0.0621 

infected     -0.0211 0.0579 0.0014  39.53 

 

Table 3.15. Effect test of Height fixed model (F-test) 

Source Nparm DF     F Ratio Prob > F 

days 1 1 1562.314 <.0001* 

infected 1 1 3.5014 0.0621 

 

 

Figure 3.21. Residual V.S. Predicted (Height fixed model using system output) 
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Figure 3.22 Quantile-Quantile Plot (Height fixed model using system output) 

The R square is 0.8067, meaning that there are 80 % samples in the population that 

can be explained by this new model. The residula of the predicted plot (Figure 3.21) has no 

obvious pattern. The histogram and normal quantile plots (Figure 3.22) prove that the 

residual of the new model obeys a normal distribution. The new model thus is acceptable. 

The Effect Tests (F test) table shows that the P-values of  “days” are very small and “infected” 

is larger than the alpha value. We fail to reject the hypothesis that the coefficient of “infected” 

is zero at α=0.05.  For leaf length, we built a fixed model as below: 

0 1( _ ) [ / ]
e

Log Leaf length Intecept Days Infected Yes Noβ β= + × + ×  

Table 3.16. Summary of fixed model fit (Leaf length fixed model using system output) 

RSquare 0.7026 

Root Mean Square Error 0.3351 

Mean of Response 5.0409 

Observations  1455 
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Table 3.17. Effect test of fixed leaf length fixed model using system output (F-test) 

Source Nparm DF      F Ratio Prob > F 

days 1 1 446.9407    <.0001* 

Infected 1 1 2.6692    0.1228 

 

            The R-square of this model is 0.7, and the P-value of  “days” is very small and 

“infected” is twice the alpha value. We thus fail to reject the hypothesis that the coefficient of 

“infected” is zero at α=0.05. 

3.4.3.2 Ground-truth result 

 We use the ground-truth of stem height and leaf length and “diagnose” results to run 

the height and length model. The R-square of the height model and length model wer 0.88 

and 0.73, the P-value of “Infected” were 0.1 and 0.22, i.e., greater than α = 0.05. We fail to 

reject the hypothesis that the coefficient of “infected” is zero at α=0.05. 

Table 3.18. Summary of fixed model fit (Height fixed model using manual measurement) 

RSquare 0.8803 

Root Mean Square Error 0.1725 

Mean of Response 4.4154 

Observations  378 

 

Table 3.19. Effect test of fixed height fixed model using manual measurement (F-test) 

Source Nparm DF     F Ratio Prob > F 

days 1 1 2756.505    <.0001* 

infected 1 1 2.7029 0.101 

 

Table 3.20. Summary of fixed model fit (Leaf length fixed model using manual measurement) 

RSquare 0.7301 

Root Mean Square Error 0.3317 

Mean of Response 5.011 

Observations  1713 
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Table 3.21. Effect test of fixed leaf length fixed model using manual measurement (F-test) 

Source Nparm DF F Ratio Prob > F 

days 1 1 792.2429    <.0001* 

Infected 1 1 1.6016 0.2252 

 

In conclusion, there is no evidence to prove that SCMV would affect the maize plant 

with respect to stem height and leaf length during an interval ranging from 8 days to 32 days 

after sprouting. 

3.4.4 Discussion and Conclusion 

 The results show that this platform is feasible for use in a maize-seeding phenotyping 

study. After distinguishing the infected plants, we used phenotypic parameters to build a 

model for analyzing the effects of “infected” on maize plants’ stem height and leaf length. 

The P-values of “infected” were greater than α = 0.05, so we concluded that the “infected” 

status does not affect the stem height and leaf length during V2~V5 growth stages. The 

probing test demonstrates that this system is able to approach the leaf center.  

The infection detection error comes from four sources. The first factor is leaf texture 

image instability. We took a square sample from the leaf image center in this project, based 

on that assumption that an infected plant would have symptoms on its all its leaf surfaces. 

However, some symptoms emerged first at the bottom of the leaf and then appeared on the 

whole leaf after several additional days, so we misdiagnosed some infected plants as control 

plants in the early days of the test. A second source of error resulted from the classifier. It is 

easy to find a line to discriminate between the two classes, infected plants and control plants, 

in the training set, but when we have a large sample size, the overlap of these classes occurs 

and decreases the ability to discriminate. A third error source was the GLCM variables. 

While we used energy and homogeneity as judgmental factors, we could add more variables 
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and attempt to extract additional traits from the images to discriminate between these two 

classes. A fourth error source was caused by biological issues. The training set cannot 

include all symptoms and describe all control leaf patterns. It is probable that control leaves 

may have irregular texture due to environment changes, and such situations are not included 

in our training set. 

In the future, using a more flexible robot arm and a better ToF camera with higher resolution 

would be keys to improving system performance. It is necessary to take more than just one 

center area of a leaf for sampling texture analysis. In addition to the GLCM, we can apply 

other imaging methods to extract traits of the leaf surface. Different classifiers should be 

tested and the training set should be enlarged. We might also optimize the algorithm and 

apply more enhanced programing skills to increase the processing speed.  
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

 

Summary 

This project consisted of two main efforts, maize seeding phenotyping and 

determining the effects of “Infected” status on plant growth. To solve the first problem, I 

used a robot arm and a ToF camera as the main hardware set-up. The biggest challenge was 

achieving suitable communication between the robot arm and personal computer because of 

the need for real-time control. A protocol was applied for the communication function in 

which the robot arm functioned as a server and the computer functioned as a client. 

Commands to control the arm were transferred through a TCP/IP socket. After solving this 

problem, the next issue was how to build a user-friendly interface using a professional 

software approach. QT platform add-in Visual Studio 2010 was used as the programing 

environment. QT is a professional cross-platform application and UI development 

framework; it is very easy to draw windows and controls in the QT environment. Various 

libraries are implemented to support software development. PCL (Point Cloud Library) was 

applied to process 3D data, and some OpenCV functions were used to process color images. 

VTK (The Visualization Toolkit) helped in building the model visualization window. 

The second problem was to analyze the “infected” factor in maize plants’ growth. The 

first issue here is how to distinguish “infected” plants. Texture is the main difference 

between the control plant leaf and the infected plant leaf. The infected plant was inoculated 

with Sugarcane mosaic virus (SCMV); the texture of such a plant leaf exhibits irregular 

broken form, and I used the color and gray images to detect the infected leaf. The challenge 

was how to locate the target leaf. In my algorithm, I used 3D curves to fit the skeleton of the 
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leaf, find the normal to the leaf surface, and build a triangular surface to build the leaf center 

frame. In this way, the positional relationship between the arm and plant leaf were 

established. GLCM was applied to extract and digitize the difference between these two 

types of leaves. The next step was to classify them according to the digitized traits. Based on 

the phenotypic parameters and diagnostic results, I built the stem height and leaf length 

model and performed an effect test on the coefficient of the “infected” factor using JMP Pro 

11. 

 

Discussion and Conclusion 

Errors in the phenotypic parameter measurement came from three sources: point 

cloud filters, ToF camera accuracy, and the leaf skeleton curve-fitting algorithm. The 

accuracy of the measurements are very sensitive to the filter parameters. Pass-through and 

outlier remover filters were used in this project, but since the performance of these filters 

depended on the plants’ shapes, it was difficult to set filter parameters to satisfy all situations. 

If color information could be used to remove the noise and background from the plant 

images, that might decrease the measurement error. Such a color based-method might be 

implemented in different-shaped corn plants because the corn plants’ color has merely 

difference. 

Four sources contributed to infection-detection error. The first source was leaf texture 

image instability. In this project, we only took a square sample of the leaf image to analyze 

texture, but some symptoms of SCMV appeared first at the bottom of the leaf and then 

extended to the whole leaf only after several days. The infected plants were thus 

misdiagnosed as control plants in the early days of the test. The second source of error was 
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the classifier. In the training set, the two classes (infection and control plants) can be 

discriminated by a simple line. When the sample sizes become larger, the overlap of these 

classes occurs and decreases the classifier accuracy. Third, we used energy and homogeneity 

variables from the GLCM for trait extraction. More variables and traits from the leaf image 

could be used to discriminate between these two types of plants. Biological issues also can 

lead to error. The training set did not contain all symptoms of the SCVM or describe all 

control-leaf patterns. The control leaves probably have non-uniform texture because of the 

environment variations, but our training set did not consider these situations. 

This platform has the capacity for reconstructing a 3D model of maize plant during 

V2~V5 growth stages, acquiring the phenotypic parameters, and distinguishing between 

“infected” and “control” plants. There is no evidence to show that the “Infected” factor 

affects the maize plants with respect to stem height and leaf length during V2~V5 stages, 

according to the models.  

In the future, we can improve the platform’s performance by optimizing the 

segmentation algorithm. If we wish the system to work on a wider range of maize growth 

stages and to process more than one plant at a time, a more flexible robot arm and improved 

ToF camera with higher resolution would be necessary. 


