Surface analysis of model systems: from a metal-graphite interface to an intermetallic catalyst

Thumbnail Image
Date
2016-01-01
Authors
Kwolek, Emma
Major Professor
Advisor
Patricia A. Thiel
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

This thesis summarizes research completed on two different model systems. In the first system, we investigate the deposition of the elemental metal dysprosium on highly-oriented pyrolytic graphite (HOPG) and its resulting nucleation and growth. The goal of this research is to better understand the metal-carbon interactions that occur on HOPG and to apply those to an array of other carbon surfaces. This insight may prove beneficial to developing and using new materials for electronic applications, magnetic applications and catalysis.

In the second system, we investigate the intermetallic single crystal NaAu2. We conducted a characterization of the clean (111) surface along with a determination of the effects of gas exposures on the surface. No surfaces of bulk NaAu2 have been previously characterized, although the closely related system of Na films on Au(111) has been investigated. NaAu2 is an active catalyst for CO oxidation. To better understand the catalytic reaction occurring, we studied the NaAu2 surface after exposure to O2,g, COg, CO2,g and H2Og. The goal of this research is to find a possible alternative for supported gold catalysts by utilizing an Au-rich intermetallic compound and to determine how its catalytic reaction proceeds. This insight may be valuable in determining other catalytic alternatives as well as helping understand catalytic reactions that occur with other intermetallic compounds.

In order to characterize and examine these systems, we utilized several ultrahigh vacuum (UHV) techniques, including scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED).

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2016