
143 

 

 

Fig 5.5: XRD: FAI Perovskite capped degradation [125℃] 

The stability of the FAI perovskite in comparison to MAI perovskite can be associated to ion 

migration. F. H. Alharbi et al [237] showed that by replacing Methyl Amine organic cation with 

other organic cation’s, the structural stability improves owing to the electron coupling between the 

organic cation and 𝑃𝑏𝐼6 octahedral. Also, Kai Zhu et al [238] showed that at high temperature, the 

composition of material varied at grain boundaries indicating migration of mobile of ions at grain 

boundaries that start’s degradation. Finally, the work by Venkataraman el al [239] shows that the 

predominant mechanism of device degradation was thermally activated fast ion. They calculated 

the diffusion coefficient and activation energy for MA and FA at 45℃, the values are given below. 

Organic Cation Diffusion coefficient (𝑐𝑚2𝑠−1) Activation energy (eV) 

Methyl Ammonium ~3.6×10−12 0.227 

Formamidinium ~3.0×10−13 0.787 
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As methyl ammonium has a higher diffusion coefficient and lower activation energy, the ions are 

more mobile in Methyl amine based perovskite inducing faster degradation, hence MAI perovskite 

degrades faster in comparison to FAI perovskite. 

5.2. FAI Sequential Vapor Devices 

In addition, we also fabricated Sequential FAI devices using the NIP architecture, the band 

structure, IV and QE results of the FAI devices is shown in Figure 5.6 & 5.7. The fabrication steps 

of the sequential FAI devices are mentioned in detail in Chapter 3. 

 

Fig 5.6: FAI device NIP architecture  

 

Fig 5.7: FAI device IV & QE 
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The best FAI device had an efficiency~11.8%, 𝑉𝑂𝐶~0.93𝑉, Fill factor~0.58 & Efficiency~11.8%. 

From the QE results, we recognize that higher current can easily be achieved by optimization of 

the device thickness. Figure 5.8 shows a histogram of the FAI device parameters.  

 

Fig 5.8: FAI device Histogram 

Till date, we are the only group to make FAI devices using the sequential vapor approach. The 

device parameters of the FAI devices are as follows: mean 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦~10.2%, mean 𝑉𝑂𝐶 =

0.93𝑉, mean 𝐹𝑖𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟~0.56 & mean 𝐶𝑢𝑟𝑟𝑒𝑛𝑡~21.6𝑚𝐴/𝑐𝑚2. As can be seen from the 

histogram, the devices were very consistent.  

Finally, a QE comparison of the MAI and FAI device is shown in Figure 5.9, the results clearly 

show that FAI perovskite has a smaller bandgap to MAI perovskite. FAI perovskite’s bandgap is 

~1.45eV whereas MAI perovskite bandgap is ~ 1.55eV. Therefore, FAI perovskite has a broader 

absorption spectrum in comparison to MAI perovskite. With grain enhancement techniques and 

slight thickness optimization higher current can be obtained for FAI devices. 
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Fig 5.9: QE: FAI vs MAI 

 

5.3. Transport Layer Development 

In addition to developing Perovskite solar cells, some of my work also involved development of 

transport layers namely Nickel oxide (𝑁𝑖𝑂𝑥) and Cadmium sulphide (CdS). Nickel oxide is one of 

few p-type oxides that has it valence band matching perfectly with Perovskite. It’s valence band 

edge is at ~5.4eV and conduction band edge is at ~ 2.2 eV making it a very good Type-II 

heterojunction for collecting holes and blocking electrons. Likewise, Cadmium sulphide has its 

conduction band edge at ~ 4.1eV and valence band edge at ~ 6.52eV making it a very good Type-

II heterojunction for extracting electrons and blocking holes.  

The cadmium sulphide film development was for futuristic needs i.e. to make multijunction or 

tandem solar cell. To make tandem solar cells using perovskite as large bandgap material and 

crystalline silicon as the low bandgap material, light must come from the top, thus entailing use of 

conductive oxide like sputtered Aluminum Doped Zinc oxide as top contact. However, perovskite 

and PCBM, both cannot endure plasma and will degrade. So, depositing a thin layer of CdS on top 
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of PCBM will protect both perovskite and PCBM from plasma. Also, since PCBM makes ohmic 

contact with Perovskite and doped ZnO, there is no collection issues. Both, 𝑁𝑖𝑂𝑥 and CdS recipes 

were developed using E-Beam evaporator, by depositing it at a rate of 1.0 A/s and post deposition 

𝑁𝑖𝑂𝑥 was annealed at 200/60mins. The transmission of 𝑁𝑖𝑂𝑥 and CdS is shown in Figure 5.10 & 

5.11 respectively.  

 

Fig 5.10: CdS Transmission 

 

Fig 5.11: 𝑁𝑖𝑂𝑥Transmission 
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The architecture of the PIN devices made using 𝑁𝑖𝑂𝑥 and CdS is shown in Figure 5.12. The 

perovskite film was solution processed and the recipe for the same was developed by Liang Zhang.  

 

 
 

Fig 5.12: 𝑁𝑖𝑂𝑥 and CdS based device– PIN architecture 

The results of the 𝑁𝑖𝑂𝑥 & CdS based device is shown in Figure 5.13. 

 

 
Fig 5.13: 𝑁𝑖𝑂𝑥 and CdS based device – IV & QE results 

 

 

 



149 

 

CHAPTER 6 

 CONCLUSION  

 

6.1. Conclusion  

To summarize this work, high efficiency sequential and co-evaporated vapor devices were made 

using both NIP and PIN architecture. Some of the significant findings from this work are follows. 

• High efficiency sequential NIP devices were made P3HT as p-type Type II heterojunction. 

The devices were consistent and thickness of P3HT was critical in attaining high 

efficiencies. Techniques such as vacuum annealing for removing excess MAI was 

introduced. 

• The sequential NIP devices has voltage evolution and hysteresis. Voltage evolution was 

improved by reducing the amount of MAI; however hysteresis could not be solved by 

reducing MAI owing to charge trapping in undoped transport layers. 

• PIN sequential devices made using doped organic transport layers did not have hysteresis 

and no voltage evolution. 

• Consistent high efficiency PIN devices were made using Co-evaporator. The co-evaporated 

devices were made on FTO and ITO superstrates at room temperature, 50℃ and 75℃. The 

substrate temperature was increased for grain enhancement, one of the highest efficiency 

PIN vapor device was fabricated. 

• FTO/PTAA devices have improved voltage evolution to ITO/PTAA devices and this is due 

to the intrinsically larger grains formed on FTO/PTAA surface. In comparison, the 
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sequential PIN devices have no voltage evolution owing to both large grains and doped 

transport layers (New discovery) 

• Co-evaporated NIP devices were made with a modified fabrication for grain enhancement. 

The devices had improved voltage evolution. Still, the co-evaporated NIP devices have 

hysteresis due to charge trapping in undoped 𝑇𝑖𝑂2 

• FAI perovskites were fabricated using NIP architecture, we were the first group to make 

FAI based devices using vapor approach.  

• Thermal degradation study was carried out on both MAI and FAI based perovskites, FAI 

perovskites was found to be thermally more stable.  

• Cadmium Sulfide and Nickel oxide film development was carried out using E-beam 

evaporator. CdS offers a pathway to use the device as the top cell in a tandem, protects 

the perovskite from plasma during ZnO sputtering and stops diffusion of moisture and 

mobile ions towars the contact.
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