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ABSTRACT 

 

Avian pathogenic Escherichia coli (APEC) is an extra-intestinal pathogenic E. coli 

(ExPEC) pathotype that causes avian colibacillosis, resulting in a major economic loss to the 

poultry industry annually.  It’s not known to directly cause disease in humans, however 

APEC is able to transmit its plasmid-encoded virulence genes to human ExPEC pathotypes 

(UPEC and NMEC) or commensal microorganisms present in the human GI tract.  This 

could potentially result in the creation of more virulent or antibiotic resistant strains and 

classifies APEC as potentially zoonotic.  Increased regulation of antibiotic usage as growth 

promoters and disease preventatives in food animals has resulted in a push towards antibiotic 

alternatives.  Original XPCTM (Diamond V, Cedar Rapids) is a Saccharomyces cerevisiae 

fermentation product that has proved efficacious as a growth promoter and in reducing 

different pathogens across numerous animal species.  Ceca from poultry provided a diet with 

this feed additive were collected at the time of slaughter, reconstituted in Luria Broth, plated 

on Xylose Lysine Deoxycholate selective and differential media, and E. coli colonies were 

assayed for the presence of APEC and subjected to an antibiogram.  The presence of APEC 

in each cecum was determined utilizing a pentaplex PCR and individual E. coli isolates were 

tested for resistance against three antibiotics: ceftiofur, enrofloxacin, and chloramphenicol.  

Results revealed an overall reduction in both APEC prevalence and antibiotic resistance, 

supporting XPC as a useful alternative to antibiotics in the poultry industry. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

Thesis Introduction 

Avian pathogenic Escherichia coli (APEC) is the leading cause of avian colibacillosis 

globally and is a major economic burden on the poultry industry due to the morbidity and 

mortality rates.  APEC is classified as an extra-intestinal pathogenic E. coli (ExPEC) along 

with uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), the pathotypes 

known to cause disease in humans and mammals.  Each ExPEC pathotype is known to cause 

a distinct disease depending on the location within the host, however they all have a common 

set of virulence genes located primarily on a colicin plasmid.  Over recent years, these 

virulence genes have become associated with antibiotic resistance genes at an alarming 

frequency due to high recombination rates.  Within the poultry industry this is a problem 

because it has increased the challenge of attempting to eliminate APEC from poultry flocks. 

APEC is also gaining further interest as a public health concern due to its ability to reside in 

the gastrointestinal tract of poultry as a commensal organism.  The organism could 

potentially be consumed by the human population and act as a reservoir for virulence and 

resistance genes that can be transferred to other bacterial organisms within the human GI 

tract.  

Given the importance of APEC in both the poultry industry and public health, it is 

imperative to find a method to control its prevalence in the poultry population to reduce 

disease and transference.  The rapid increase in antibiotic resistance across most bacterial 

pathogens means this control method needs to be an alternative to antibiotics.  This study 

focused on Original XPCTM (Diamond V, Cedar Rapids), a Saccharomyces cerevisiae 
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fermentation product, that has proven efficacious in the reduction of gastrointestinal 

pathogens in numerous animal species.   

This study aims to determine if XPC could be used as a prophylactic treatment for 

APEC in poultry.  If successful it would reduce the morbidity and mortality rates seen in 

poultry, saving the industry millions of dollars.  Additionally, it would mitigate the 

propagation of APEC and its virulence and antibiotic resistance genes.  This could be 

important from a public health perspective to reduce the potential of creating more resistant 

human-associated Enterobacteriaceae pathogens capable of extra-intestinal infection.  To 

accomplish the study goal, poultry fed a diet including XPCTM were tested for the prevalence 

of APEC and antibiotic resistance of E. coli isolated from the cecum. 

Thesis Organization 

 This thesis is organized into four chapters.  Chapter 1 serves as the general 

introduction while Chapter 2 serves as the literature review covering topics relevant to the 

study of ExPEC.  Topics covered in the literature review include a general introduction to 

ExPEC, colicin-encoding plasmids, antibiotic resistance, zoonotic potential of APEC, and 

alternatives to antibiotics.  Chapter 3 is the original research chapter for the study testing the 

effects of Original XPC on APEC prevalence and antibiotic resistance of E. coli colonies 

isolated from poultry cecum.  Chapter 4 includes general discussion, conclusions, and future 

directions.   

The author’s role in this study included assisting in development of the study design 

and culturing of E. coli from poultry cecum, collecting E. coli isolates for later assays, 

performing the laboratory assays, data collection and analysis, and manuscript writing.  
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CHAPTER 2: LITERATURE REVIEW ON EXTRAINTESTINAL PATHOGENIC 

ESCHERICHIA COLI 

 

Escherichia coli (E. coli) is a member of the Enterobacteriaceae family and is 

commonly found in the environment, foods, and gastrointestinal tract of animals and humans 

(1).  Commensal or pathogenic pathotypes are determined by the genome, which consists of a 

core genome and variable mobile genetic elements (2).  The core genome is a conserved set 

of genes encoding the genetic information for essential cellular processes.  Variable mobile 

genetic element is an umbrella term encompassing plasmids, transposons, prophages, and 

mobile genomic islands that encode strain-specific genetic information.  Pathogenic E. coli 

exhibit a variety of pathotypes that are commonly characterized by somatic (O) and flagella 

(H) antigens (3).  Different pathotypes are responsible for different disease syndromes, and 

are most commonly identified by their phenotypic disease characteristics.  Despite their 

different disease presentation all E. coli pathotypes have the same basic scheme of 

pathogenesis; the organism must colonize the mucosal site, evade the host defense systems, 

replicate, and cause cytopathic effect.  This review will focus on pathotypes characterized as 

extra-intestinal pathogenic E. coli (ExPEC), including classification, plasmid carriage, 

antibiotic resistance profile, zoonotic potential, as well as explore current alternatives to 

antibiotics. 

Extra-intestinal Pathogenic E. coli 

Classification of E. coli is important given the large number and variety of strains.  

Phylogenetic grouping is one method used with three assays available; multi-locus enzyme 

electrophoresis, ribotyping, or a triplex PCR assay (4–6).  Four phylogenetic groups have 

been identified for E. coli (A, B1, B2, and D), within which certain pathotype patterns have 
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been observed (7).  These phylogenetic groupings are indicative of a genetic divergence in 

the evolutionary history of E. coli that resulted in group B2 exhibiting more virulent 

tendencies due to the acquisition of virulence genes on plasmids, transposons, genetic 

islands, etc. (8).  Serotyping is also commonly used in the classification of E. coli and is 

based on the 173 O (somatic), 80 K (capsular), and 56 H (flagellar) antigens (9).  

Determination of O and H antigens is by bacterial agglutination, while the K antigens are 

determined primarily by immunoprecipitation in a gel.  The O antigens are based on the 

structure of the polysaccharide side chain present in the lipopolysaccharide in the surface of 

the E. coli, K antigens are related to the structures of acidic polysaccharides on the cell 

surface, and H antigens are related to the proteins that compose the flagella present on the E. 

coli cell.  Numerous serotypes have been identified in the various pathotypes and strains of 

E. coli; some of these serotypes are unique to the pathotype while other serotypes are 

common across multiple pathotypes.   

Many researchers have worked to identify traits to distinguish the three different 

pathotypes of ExPEC; uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), 

and avian pathogenic E. coli (APEC) (10).  One of the leading causes of urinary tract 

infections (UTIs) is UPEC, typically presenting as a superficial infection of the bladder and 

urinary tract, with about 4% of cases progressing to pyelonephritis (11, 12).  Uncomplicated 

UTIs effect approximately 1 in 3 women by age 24 and cost the United States almost $2 

billion annually (12, 13).  NMEC is the second leading cause of neonatal meningitis globally, 

with a rate of 0.1 cases in every 1000 children born in the industrialized world (14, 15).  

Meningitis typically occurs between 6-9 days of age, has a mortality rate of 20-40%, and of 

those who survive approximately 50% develop neurological problems (15).  Colibacillosis in 
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poultry is primarily a result of APEC infection, causing millions of dollars lost worldwide in 

the poultry industry due to significant morbidity and mortality rates (16, 17).  In the United 

States, at least 30% of commercial flocks are affected by APEC with disease presentation 

ranging from salpingitis, peritonitis, swollen head syndrome, cellulitis, and necrotic 

dermatitis.  While not a known cause of human disease, APEC is important to study as a 

potential human pathogen due to its numerous overlapping virulence characteristics with 

human ExPEC pathotypes.   

Controversy remains as to whether these pathotypes are distinguishable from one 

another.  Johnson et al. (16) identified 5 genes that, when all are present, are indicative of 

APEC, while Logue et al. (18) identified 10 potential discriminators of NMEC.  However, 

there is an overlap of these genes within APEC, UPEC, and NMEC that questions the 

legitimacy of identifying them as individual pathotypes (19–22).  Phylogenetic analysis 

emphasizes this understanding.  The UPEC and NMEC strains most commonly fall into 

groups B2 and D, APEC strains fall into groups A and B2, while commensal strains fall 

primarily into group A (8, 19, 20, 23).  Serotyping analyses indicate NMEC are most 

commonly classified within the O7 and O18 serogroups (20), UPEC within the O1, O2, O6, 

O15, O18, O25, O26, and O75 serogroups (19, 20, 23), and APEC within the O1, O2, O18, 

and O78 serogroups (24–26).  Unfortunately, 10-40% of ExPEC strains are non-typeable, 

therefore serotyping is not a good indication of pathogenicity nor pathotype (19, 20, 23).  The 

molecular analysis of the presence of mobile genetic elements signifies pathogenic potential 

more than broad phylogenic groups. 

 Animal colonization studies support the claim that these may not be unique 

pathotypes after all.  In one study, chicken pulmonary sacs were experimentally infected with 
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UPEC strains and developed lesions similar to APEC.  Further studies include 

experimentally inducing UTI in murine models with APEC, resulting in disease pathology 

associated with UPEC (23).  A study from the same group also found that APEC isolates 

could cause sepsis and neonatal meningitis in a rat model, and that NMEC isolates were 

lethal to chick embryos and caused colisepticemia in chicks (27).  These studies indicate that 

location may be more important for ExPEC than a designated pathotype.  It is important to 

note that while all strains tested caused disease, mortality rates varied depending on the 

strain.   

 Infections caused by ExPEC strains are important to human and animal health, 

resulting in billions of dollars of lost due to health care costs and poultry mortality.  

Phylogenetic analysis and serotyping, although broad also have overlapping commonalities 

across ExPEC, revealing the close similarity of these pathotypes.  This similarity is also 

exemplified in animal infection studies.  As further analysis is done, ExPEC may need to be 

re-evaluated as one path-pathotype rather than three. 

Colicin-Encoding Plasmids 

An important feature of E. coli is the presence of numerous plasmids 

(extrachromosomal genetic elements) that confer different properties to the organism (28).  A 

variety of plasmid sizes have been identified within E. coli with the tendency towards a 

bimodal distribution (fewer copies of large plasmids versus more copies of small plasmids) 

(29).  The large, incompatible plasmids are typically the plasmids that encode virulence or 

resistance genes and are the largest contribution to variation in E. coli pathotypes (30).  

Transfer and recombination of these plasmids is a common occurrence, promoting genetic 

exchange between the genome and plasmids, ultimately leading to a complement of plasmids 
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and extensive genetic variation within individual bacterial chromosomes (31, 32).  Despite 

the variation in genes carried on E. coli plasmids, it has been determined the majority of them 

have a common genetic backbone and therefore likely evolved from a single plasmid (30). 

Invasive extra-intestinal E. coli are most commonly associated with the colicin-

encoding plasmids (33, 34).  Colicins are small molecules, produced by Enterobacteriaceae, 

that are classified as bacteriocins due to their antibacterial activity against related specie of 

bacteria (35).  The ColV plasmid is the most common colicin-encoding plasmid and the 

primary contributor of virulence factors for the three ExPEC pathotypes (36–38).  The 

original understanding of the plasmid purely encoding colicin production has evolved to 

include carriage of numerous virulence-encoding genes that are vital for extra-intestinal 

infection (34).  Insertion sequences flanking the virulent genetic regions indicate that many 

of these traits likely originated in other pathogenic species and were included in the plasmid 

as a result of recombination (39–41).  These molecular events resulted in the acquisition of 

traits such as iron sequestration (39, 42), iron and manganese transportation (43), increased 

serum survival (44), hemagglutination (40), and outer membrane vesicle production (45). 

 Plasmids are a defining feature of Enterobacteriaceae that provide variability in 

pathogenicity and resistance.  Colicin-encoding plasmids harbor the virulence genes that 

define ExPEC strains and are therefore of the utmost importance to study and characterize.  

Identification of these virulence traits allows for elucidation of the detailed pathogenesis, 

which can be used to improve treatment and preventative measures of disease.  
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Molecular Identification of the APEC Pathotype 

The APEC pathotype is conferred through ColV and ColBM plasmids, both encoding 

specific genes that aid in the virulence of the pathogen.  The ColV plasmids are the primary 

plasmids identified as harboring ExPEC virulence traits, with numerous studies indicating the 

importance of this plasmid to the pathogen.  Within the last decade, however a plasmid was 

identified in an APEC strain that also encodes these genes, the ColBM plasmid, which likely 

evolved from ColV (46).  Importantly, the ColBM plasmid can confer antibiotic resistance 

genes as well as virulence genes associated with ColV (47).  This exemplifies the 

prominence that recombination events within the colicin-encoding plasmids can have on the 

pathogenicity of these organisms.  The conserved set of genes, commonly referred to as the 

pathogenicity island, located on the ColV plasmid is important for the successful transfer of 

virulence genes during recombination events (38).  This pathogenicity island has been 

primarily located in APEC and the virulence genes within have been used as genetic 

identifiers for this pathotype (16).  The importance of each virulence gene will now be 

discussed to understand their importance in the pathogenicity of ExPEC.  

Iron is essential for the survival of bacteria due to its contribution to many cellular 

processes, including nucleotide biosynthesis, electron transport, and peroxide reduction (48).  

Mammalian hosts have limited amounts of free iron available as an innate mechanism of 

immunity to pathogenic bacteria through a complex system of proteins meant to sequester 

free iron (49).  In response, pathogenic bacteria developed methods of iron sequestration in 

order to survive and replicate within the host (50).  One common method of acquiring iron in 

deficient host environments is the production of siderophores, which are compounds released 

from the bacteria that competitively bind the iron that is bound by host molecules.  
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Siderophores can then bind to prokaryotic receptors and salvage host iron for use in 

molecular and biochemical processes essential for survival.  The system is not perfect.  For 

example, enteric bacteria produce siderophores referred to as enterochelins, that are inhibited 

by serum albumin, thus useless in systemic infections (51).  To maximize iron salvaging 

capabilities, ExPEC encode different iron sequestration systems both in their genome and on 

plasmids found in APEC pathotypes.  The two iron sequestration systems that have been 

located on the ColV plasmid are the aerobactin and salmochelin operons, which produce 

siderophores that are effective outside of the intestinal tract (30). 

Siderophores produced by the aerobactin operon are hydroxamate compounds that 

have a transient association with the receptors on the bacterial membrane (42).  The 

aerobactin operon region encodes five polypeptides.  Four of the genes (iucABCD) encode 

polypeptides that participate in aerobactin synthesis and one gene (iutA) encodes an outer 

membrane protein that serves as a receptor (52, 53).  Aerobactin has a lower affinity for iron 

compared to enterochelins, requiring it to preferentially scavenge iron from cells and tissues 

(54).  The aerobactin operon is commonly found in most ExPEC, however there are 

variations in its encoded location.  In animal strains, it is more frequently plasmid-encoded 

while in human strains it is most often located on the chromosome (34).  Salmochelins are 

the second type of siderophore commonly found linked to the ColV plasmid and appear to 

contribute more to virulence than aerobactins (39, 55).  The iroA locus is divided into two 

operons, iroBCDE and iroN, and encodes five genes responsible for synthesis, export, and 

import of salmochelins (56).  Salmochelins are glycosylated variants of enterochelins, with 

the modification occuring within the bacteria by IroB and IroE enzymes.  After modification, 

salmochelins are exported from the bacterial cell via the membrane-bound IroC and IroN 
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enzymes.  Upon binding with an iron molecule, the siderophore-iron complex is imported by 

the same membrane enzymes and then degraded by IroD within the bacterial cell.  Despite 

being located on plasmids, both the aerobactin and salmochelin encoding operons are 

regulated by the chromosomally located fur gene product, that represses production of the 

siderophores when efficient amounts of free iron are present in the environment (57, 58). 

Ion transporters encoded on the ColV plasmid are also vital to ExPEC, particularly the 

sitABCD operon, encoding both iron and manganese transporters (43).  The ABC-type 

transporters encoded by this operon have a higher affinity for iron, however the importance 

of manganese import cannot be diminished given its function as an antioxidant as well as a 

detoxifier of radical oxygen species, H2O2 and O2
- (59).  Researchers hypothesize that the use 

of manganese is important because it is a more energy efficient method of protecting the 

bacterial cell from radical oxygen species than superoxide dismutase and peroxidase 

enzymes.  Regulation occurs via the same fur operon as the aerobactin and salmochelin 

operons, which is primarily repressed by iron but also by manganese in some cases (60). 

Commonly coupled with the sit operon is iss, which encodes a polypeptide that 

increases survival of the pathogenic E. coli in host serum (41, 61).  Host serum has numerous 

bactericidal components, the most notable being lysozymes and complement that act on the 

bacterial surface to cause cell lysis (62).  For ExPEC to cause systemic infection, it is 

therefore important to produce a protein able to counteract these serum components.  Three 

variations of iss have been identified; type 1 is primarily located on ColV plasmids and most 

common in APEC and NMEC isolates, while type 3 has primarily been discovered on the 

chromosome of UPEC isolates (41).  Currently nothing is known about the mechanism of the 

gene product, although due to its high homology with a similar chromosomally encoded 
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polypeptide involved in serum survival, it is believed to be a membrane-bound molecule 

(61).  

The final two important virulence genes to briefly identify and discuss are hlyF and 

tsh.  HlyF was originally believed to be a product associated with hemolytic activity (63). 

This characterization was deemed to be inaccurate when studies revealed its involvement in 

the formation of outer membrane vesicles (OMVs) (45).  The OMVs release toxins and 

induce autophagy of eukaryotic cells, an important contribution to the cytopathic effect of 

ExPEC.  The tsh associated with ColV plasmids, encodes a temperature sensitive 

hemagglutinin that has hemagglutination activity on chicken erythrocytes predominately at 

about 26⁰C (40, 64, 65).  Studies done in APEC revealed Tsh may have additional virulence 

contributions, such as acting as an adhesin, increasing the rate of colonization in the airsacs, 

and contributing to lesions and fibrin deposition in the air sacs of poultry (40).  Studies 

evaluating Tsh have primarily been done on APEC, therefore not much is currently known 

about the contribution of Tsh in the virulence of other ExPEC pathotypes.  

The conserved pathogenicity island of the ColV plasmid houses several virulence 

genes crucial to extra-intestinal infections, encoding traits ranging from iron sequestration 

and transportation to serum survival and outer membrane vesicle formation.  The genes 

located on this pathogenicity island have proved useful as predictors of APEC; however, the 

easy transferability of these virulence genes is of great concern. 

Zoonotic Potential of APEC 

Zoonotic organisms, by definition, are organisms that normally reside in animal 

species but can transmit to and infect humans (66).  Controversy exists around the zoonotic 
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potential of APEC pathotypes.  Two arguments are put forward to suggest that APEC should 

be considered a potential concern to human health are that: 1) they are reservoirs for 

promiscuous antibiotic resistance plasmids (67) and 2) the pathotype causes experimental 

disease in multiple hosts (23, 27).  Therefore, the ColV and ColBM plasmids are insidious 

contributors to the zoonotic potential of APEC (30).  The APEC associated plasmid pAPEC-

O2-ColV has been transferred to an avian commensal E. coli and successfully conferred 

pathogenicity within chicken and mice models (68).  Commensal E. coli became lethal to 

chicken embryos upon acquisition of the plasmid and in other studies exhibited enhanced 

growth in human urine, and colonization in the kidney of a murine model (68).  These results 

exemplify the potential of APEC as a zoonotic pathogen for humans, combined with the 

knowledge that APEC can colonize the GI tract of poultry (69).  

Additional evidence for APEC and the colicin plasmids as a public health concern is 

seen in the identification of a plasmid in a Salmonella serovar and drug resistant E. coli 

isolates in avian organic fertilizer (70–72).  Salmonella enterica serovar Kentucky is a 

pathogen that has been increasingly identified as a causative agent of disease in poultry, 

humans, and companion animals; further, it has recently been found to carry the conserved 

pathogenicity island of the ColV plasmid (70, 71).  The carriage of the ColV-like plasmid in 

S. Kentucky has been determined to increase colonization capabilities and virulence of the 

pathogen in extra-intestinal regions in poultry (70).  This plasmid contributes to antibiotic 

resistance through the carriage of tetracycline resistance (71).  Low levels of tetracycline in a 

host or the environment has been shown to increase the occurrence of conjugative transfer of 

tetR encoded plasmids (73).  Given the regular use of antibiotics in animal production (74), 

the dissemination and transfer of the ColV plasmid and its virulence genes is likely being 
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propagated by the industry.  These plasmids are subject to vertical transmission through the 

food chain through the utilization of organic fertilizers from avian compost.  Fertilizers 

produced from organic animal waste are commonly used for vegetable production and 

undergo a composition process thought to reduce the presence of potential microbial 

pathogens found in the avian excrement (75).  Sixty percent of E. coli isolates from fertilizer 

were identified as having at least one gene from the ColV plasmid conserved pathogenicity 

island (72).  Of all the isolates tested, 50% of them were resistant to at least one antibiotic, 

with the most common ones being tetracycline, amoxicillin, ampicillin, and streptomycin.  

This indicates that the composting process is not completely successful at removing E. coli 

encoding APEC virulence and antibiotic resistance genes.  These strains could therefore be 

acquired by humans via consumption and handling of produce.  

 The zoonotic potential of APEC is exemplified by the appearance of pColV virulence 

genes and resistance genes in alternative genera and the environment.  Presence of APEC 

within the GI tract of poultry sent to slaughter is of concern as a source of not only a 

potentially human pathogen, but also a reservoir of virulence and antibiotic resistance genes 

capable of high rates of transmission and recombination.  From a public health stand point, a 

prophylactic treatment needs to be identified to mitigate the transmission of APEC to 

humans. 

Antibiotic Resistance 

 Antibiotic resistance is a problem in pathogenic microorganisms that was first 

identified in the 1930s and is a significant threat to clinical and veterinary health worldwide 

(76).  While development of antibiotic resistance in microorganisms is a natural occurrence 

(77), humans have accelerated the process over the last fifty years due to non-therapeutic an 
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inappropriate therapeutic use of antibiotics (78).  Thus, resulting in upwards of millions of 

metric tons of antibiotics released into the environment (76).  There are many methods in 

which microorganisms can acquire antibiotic resistance genes, but the most concerning is 

plasmid-mediated transmission.  When bacteria are exposed to low levels of antibiotics in 

their environment, an SOS response is activated that enhances plasmid transmission and 

recombination (76, 79).  The continuous use and release of antibiotics in the environment is 

therefore perpetuating the spread of antibiotic resistance genes. 

 Enterobacteriaceae as a family are a reservoir of plasmids bearing antibiotic 

resistance genes undergoing frequent conjugation and transformation (80–82).  Accordingly, 

the high usage of antibiotics in production animals as prophylaxis and growth promoters has 

led to an increase in antibiotic resistance in APEC found in poultry.  Results from data 

demonstrate significantly increased resistance to sulfamethoxazole, tetracycline, 

streptomycin, ampicillin, ciprofloxacin, penicillin, tylosin, and enrofloxacin (24, 83–86).  

Resistance of APEC to many of these drugs has been linked to the acquisition of resistance-

encoding genes, primarily through plasmid recombination (87).  As these mobile genetic 

elements are vertically transmitted through the food chain (88–90), the prodigious use of 

antibiotics in veterinary medicine has significantly contributed to the problem.  

The human clinical impact of this characteristic is far reaching and deeply concerning 

world-wide.  Not only is there significant acquisition of mobile genetic elements from the 

environment and through vertical transmission in the food chain, the misuse of antibiotics in 

clinical settings significantly amplifies this threat.  As of 2010, up to 45% of ExPEC isolates 

from clinical patients were determined to be resistant to cephalosporins, fluoroquinolones, 

and trimethoprim-sulfamethoxazole, all of which are commonly prescribed for Gram 
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negative infections (91).  This increase in resistance within human ExPEC pathotypes is 

likely a result of overprescribing antibiotics for the treatment of uncomplicated urinary tract 

infections (92) and for intrapartum use in females (93). 

 Genotypes conferring resistance pathotypes are diverse.  Many isolates of ExPEC 

have recently been classified as carriers of extended-spectrum β lactamases (ESBLs) which 

provide the pathogen with resistance to a wide variety of β lactams, including 3rd and 4th 

generation cephalosporins and penicillins (94, 95).  Irrespective of host, it has been 

determined that CTX-M is the most prevalent ESBL worldwide (96), and has been identified 

on both narrow and broad host-range plasmids (97).  Strains of E. coli encoded for CTX-M 

hydrolyze penicillins, cephalosporins, and monobactams (98).  Fluoroquinolone resistance is 

also commonly identified in CTX-M encoding isolates due to the presence of closely linked 

plasmid-mediated qnr genes (97).  Additional genes that have been located on a plasmid 

harboring CTX-M encode resistance to aminoglycosides, chloramphenicol, sulfonamide, 

trimethoprim, and tetracycline (99); classifying many CTX-M carrying isolates as multi-drug 

resistant. 

The New Delhi metallo-β-lactamase (NDM-1) is another important β-lactamase that 

has appeared in E. coli within the last decade, enabling resistance to all β-lactams (91, 100).  

NDM-1 has been identified in a UPEC isolate in association with a plasmid belonging to 

sequence type 131 (ST131) (101).  This is an important relationship to understand as more 

than 50% of ST131 clones have been associated with multi-drug resistance in ExPEC and 

almost 70% associated with fluoroquinolone and extended-spectrum cephalosporin resistance 

(102).  Analysis of ST131-positive E. coli has also revealed that they tend to combine both 
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resistance and virulence for increased pathogenesis that was not commonly seen in isolates in 

the past.   

Finally, mcr-1, a colistin resistance-encoding gene, has spread globally within a few 

years (103–106).  Colistin is of the Polymyxin E antibiotic class and is of great concern to 

public health because of its classification as a last resort antibiotic in the treatment of multi-

drug resistant infections (103, 107).  Since its appearance a few years ago, mcr-1 has already 

been identified in ExPEC isolates worldwide (103, 104, 108–110).  The first E. coli 

harboring mcr-1 in the United States was isolated from a patient with a UTI in 2016 (109). 

This colistin resistance gene was located on a novel IncF plasmid that was identified as also 

encoding CTX-M and tetracycline resistance.  The location of these resistance genes on a 

plasmid type well-known for dissemination of genes among Enterobacteriaceae (111) is of 

great concern for public health worldwide. 

Antibiotic resistance has seen dramatic increases in recent decades, largely due to the 

occurrence of resistance genes located on transmissible plasmids.  Inappropriate use of 

antibiotics in feed animals, even at low levels, has escalated the rate of the natural 

transmission process, resulting in the large number of multi-drug resistant pathogens seen 

today.  ExPEC has been associated with plasmids housing genes encoding several ESBLs, 

including CTX-M, NDM-1, and MCR-1.  Identification of resistance to colistin, a last resort 

drug, within APEC has further exemplified the need to reduce the prevalence of this gene 

reservoir within poultry.  
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Alternatives to Antibiotics 

 With the rise of antibiotic resistance in microbial pathogens, there has been a surge in 

research to identify drugs or natural compounds that can prevent and reduce disease 

development in both animals and humans.  Recent identification of the involvement of the 

gut microbiota in the regulation of host metabolic pathways (112) has led much of the 

research to focus on developing a prophylactic treatment that supports a healthy gut 

microbiome.  Many of these treatment options try to optimize growth and development of 

beneficial bacteria and compounds that are already present in a healthy GI tract.  Three 

categories of prophylactic treatments that have been developed are prebiotics, probiotics, and 

postbiotics. 

Prebiotics are classified as non-digestible food ingredients that improve the health of 

the host through the promotion of growth or activity of beneficial bacteria present in the 

colon (113).  Prebiotics are typically defined by the presence of β-linkages in the cell wall 

that enable the prebiotic to survive the enzymatic degradation process of the upper GI tract 

(114).  In general, any indigestible fiber can be classified as a prebiotic, but only two 

prebiotics thus far meet all the criteria.  Inulins and fructooligosaccharides (FOS) are 

fermented by certain species and strains of lactic acid bacteria and Bifidobacterium, 

promoting the growth of these bacterial species and increasing the production of short chain 

fatty acids (SCFAs) (113, 114).  Specifically, fermentation of inulin results in the production 

of butyrate and fermentation of FOS produces acetate and lactic acid.  Colonocytes in the 

cecum and large intestine utilize the SCFAs for energy, with butyrate being the most 

important in this instance (115).  Additionally, SCFAs contribute to maintaining luminal pH 

acidity, modulating hormone secretion, activating fatty acid oxidation, regulating lipid and 
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glucose metabolism, and participating in anti-inflammatory processes (115, 116).  It has also 

been determined that butyrate is capable of downregulating genes in the Salmonella 

pathogenicity island (117), reducing the potential virulence of Salmonella species.  This is 

one indication of the importance of butyrate in the GI tract. 

Probiotics are live microorganisms added to feed or ingested in a capsule with the 

intention of promoting the health of the GI tract and the host as a whole (118).  The primary 

genus used in probiotics currently is Lactobacillus due to their association with a healthy GI 

tract (119).  Lactobacillus spp. contribute to a healthy GI tract via reduction of intestinal 

permeability and the reduction of pathogenic bacteria due to lactic acid, bacteriocins, and 

hydrogen peroxide production and competitive exclusion.  Probiotics are available for both 

human and animal use; however, inconsistent results indicate probiotics may need to be more 

specialized for animal species and their overall efficacy is debated (119).  In fact, a recent 

study determined that probiotics can have negative effects, inducing local inflammation in 

healthy hosts and in hosts with inflammatory bowel disease detrimentally effecting the 

inflamed tissue (120).  Results from this same study revealed that in a tissue model 

postbiotics are more effective at reducing inflammation caused by Salmonella than 

probiotics.  

Postbiotics are soluble metabolites produced by probiotic microorganisms that have 

been shown to have beneficial effects on the health of the GI tract, including bacteriocin 

effects, improvement of the integrity of the mucosal gut barrier, and modulation of 

inflammatory mediator secretion (121).  The most common postbiotics studied thus far have 

been metabolites derived from Lactobacillus species, with similar results seen across 

numerous animal species including rats, broiler chickens, laying hens, and swine (122–125).  
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Metabolites are most commonly included in the feed of the animal, and studies have 

determined they are most effective when a variety of metabolites isolated from different 

strains of Lactobacillus plantarum are included (123, 124).  Common benefits from the 

ingestion of these metabolites include a decrease in fecal pH, decrease in prevalence of 

Enterobacteriaceae in the feces contrasted with an increase in lactic acid bacteria, increase in 

the concentration of SCFAs present in the feces, and an increase in the height of the intestinal 

villi (122–125).  In piglets, these factors contributed to an overall increase in growth 

performance, indicated by birth weight, overall weight gain, average weight gain per day, 

and reduction in diarrhea production (124).  A similar study in laying hens found that 

postbiotics contributed to a reduction in plasma and yolk cholesterol within eggs (122).  This 

is an important benefit to humans that consume chicken eggs because cholesterol is known to 

be a leading cause of coronary heart disease (126).  Overall the numerous health benefits that 

have been identified from the use of postbiotics classifies them as favorable alternatives to 

antibiotics, with further research being done to identify additional benefits as well as other 

organisms that can provide beneficial metabolites. 

Recent research has focused on Saccharomyces cerevisiae fermentation products as a 

promoter for health in humans and animals.  Currently there are two yeast fermentation-

based products at the top of the market; EpiCor® (EpiCor) produced by Embria Health 

Services as a supplement for humans and Original XPCTM (XPC) produced by Diamond V as 

a feed additive for animals.  These postbiotics are a result of anaerobic fermentation of S. 

cerevisiae in a proprietary medium, followed by drying of the liquid in order to obtain the 

yeast metabolites (127).  Numerous studies have tested the efficacy of these products on the 

gut microbiota, host immune response, and growth response in production animals.  In vitro 
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studies indicate that XPC-adapted chicken ceca are better able to inhibit Salmonella 

colonization and result in increased concentrations of acetate and butyrate present (128). 

EpiCor studies have shown similar results, in addition to antioxidant and anti-inflammatory 

activity in human leukocytes (127, 129).   

In vivo studies have been vital in testing the efficacy of XPC, especially in production 

animals, the setting in which it has the potential to make a large impact in the replacement of 

antibiotics as growth additives.  Broiler chickens fed XPC in their diet exhibit a significant 

reduction in shedding and large intestinal colonization of Salmonella Typhimurium, as well 

as a reduction in tissue culture invasiveness and chloramphenicol resistance of the 

Salmonella colonies isolated from those chickens (130).  Weaned pigs have an overall 

improvement of growth performance, potentially due to the increased jejunal villi width and 

area allowing for enhanced digestion and absorption of nutrients in the intestine (131).  When 

the sows are fed XPC during gestation and lactation they produce litters with greater weight 

and require fewer recovery days between weaning and the next breeding cycle (132).  In 

Salmonella challenged pre-weaned dairy calves provided XPC in milk replacer and feed, 

there was a reduction in diarrhea and fever as well as improved development of the rumen 

(133).  The current research clearly indicates the benefits Saccharomyces cerevisiae 

fermentation products have on animal health, with further research still being done to test the 

effects on other gastrointestinal pathogens and antibiotic resistance across multiple species. 

Conclusion 

 Bacterial diseases such as urinary tract infections, neonatal meningitis, and avian 

colibacillosis are most commonly caused by ExPEC pathotypes.  These pathogens are well 

defined by the presence of a ColV or ColBM plasmid that harbors a large majority of the 
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core virulence genes.  The high transfer and recombination rate of these virulence and 

resistance plasmids has led ExPEC pathotypes to become a global public health concern.  

The potential of APEC as a zoonotic pathogen is exemplified by the new virulent Salmonella 

strain due to acquisition of ColV plasmid-encoded genes (70, 71) and a ColBM plasmid 

encoding macrolide resistance (47).  Additionally, APEC strains can cause both urinary tract 

infections and meningitis in rat models when inoculated in the appropriate location for 

disease to occur (23, 27).  It is therefore possible that APEC strains colonizing the poultry GI 

tract (134) could be consumed by humans and potentially cause human infections.  Even if 

APEC consumed from poultry does not result in disease, cells that survive the passage to the 

intestine will have the opportunity to transmit and recombine plasmids, potentially leading to 

the development of pathogenic organisms that were once commensal or more virulent and/or 

drug resistant APEC strains. 

 Given the potential APEC has as a zoonotic pathogen to humans and the large 

economic impact it has on the poultry industry, it is important to find a method of reducing 

its prevalence within poultry.  The increase in antibiotic resistance is leading to a reduction in 

the use of antibiotics as a disease preventative and growth promoter in feed animals.  

Original XPCTM is a postbiotic that is currently widely used and already has many proven 

benefits across multiple animal species (128, 130–132).  The fermented Saccharomyces 

cerevisiae product is produced by Diamond V and is provided to animals as a feed additive.  

Proven benefits within poultry include increased body weight, increased daily weight gain, 

reduction in both Salmonella Typhimurium and Campylobacter coli, and a decrease in 

Salmonella virulence and antibiotic resistance (130, 135).  Research should be done to 
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evaluate the efficacy on APEC prevalence and antibiotic resistance, to determine if XPC is a 

good alternative to antibiotics for the poultry industry. 
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CHAPTER 3: PREVALENCE OF AVIAN PATHOGENIC ESCHERICHIA COLI 

AND ANTIBIOTIC RESISTANCE OF E. COLI ISOLATES FROM THE CECA OF 

POULTRY FED ORIGINAL XPCTM 

 

Abstract 

 Avian pathogenic Escherichia coli (APEC), is an extra-intestinal pathogenic E. coli 

(ExPEC) pathotype.  It is the leading cause of avian colibacillosis and results in significant 

economic loss to the poultry industry annually.  While APEC is not a proven cause of disease 

in humans, it does transmit its plasmid-encoded virulence and resistance genes to 

Enterobacterieaceae.  Horizontal gene transfer is well known for resulting in increased 

antibiotic resistance and pathogenic conversion of commensal microorganisms.  Increased 

regulation of antibiotics as growth promoters and disease preventatives creates a void for 

antibiotic alternatives.  Original XPCTM (Diamond V, Cedar Rapids) is a Saccharomyces 

cerevisiae fermentation product originally used as a growth promoter.  Evidence has emerged 

indicating significant potential for the reduction of the prevalence of multiple pathogens.  To 

evaluate the effect of XPC on APEC, ceca from broiler poultry on XPC containing diets 

(treatment) or standard industry corn-soy based meal (control) were evaluated for changes in 

antibiotic resistance and the APEC pathotype.  Treatment with XPC resulted in a reduction in 

the prevalence of APEC by 50% in 10/13 of the poultry sources tested.  Antibiotic resistance 

in XPC-treated poultry exhibited an almost 2-fold reduction for ceftiofur, enrofloxacin, and 

chloramphenicol.  These results, combined with the results of previous studies, support XPC 

as a useful alternative antibiotic in the poultry industry. 
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Introduction 

 Avian pathogenic Escherichia coli (APEC) is a pathotype of extra-intestinal 

pathogenic E. coli (ExPEC), which are the cause of neonatal meningitis and urinary tract 

infections in humans (1).  The avian pathotype is the causative agent of colibacillosis and 

septicemia in birds that leads to localized inflammation, most commonly presenting as 

perihepatitis, airsacculitis, and/or pericarditis.  It can also be fatal.  Importantly, APEC 

colonizes the gastrointestinal tract of poultry, and accordingly is an opportunistic pathogen 

capable of causing disease in immunosuppressive states (2).  APEC is easily aerosolized 

from feces and thus threatens poultry housed together (1).  Further, APEC is inherently 

resistant to many common disinfectants, making management difficult (3).  This results in 

significant morbidity and mortality rates up to 20% and millions of dollars lost in the 

industry worldwide (4, 5), requiring a pressing need to find a management solution. 

 In addition to the impact on the poultry industry, APEC also has potential as a 

zoonotic pathogen due its shared set of virulence genes with human ExPEC pathotypes, 

uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) (6–8).  The pathotype 

UPEC is one of the leading causative agents of urinary tract infections (9) and NMEC the 

second leading cause of neonatal meningitis worldwide (10).  Interestingly, APEC strains can 

cause urinary tract infections and meningitis in rat models, and UPEC and NMEC strains can 

cause colibacillosis in poultry (11, 12).  These studies suggest that APEC inadvertently 

transferred from poultry has the potential to cause disease in humans.  Further, due to the 

nature of Enterobacteriaceae, APEC acts as a reservoir of virulence and antimicrobial 

resistance genes that are easily transferrable to other E. coli strains or Gram-negative species 

residing in the microbiota.  Previous studies have revealed that acquisition of a pColV by 
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commensal E. coli results in the ability of the organism to cause lethality in chicken embryos, 

enhanced in vitro growth in human urine, and colonization of the kidney in a murine model 

(13). 

 A colicin plasmid, pColV, contains a majority of the core virulence genes that are 

characteristic of ExPEC pathogenesis (14).  With the common occurrence of recombination 

among plasmids and bacterial chromosomes (15), these virulence genes have the potential to 

be transferred to not only other E. coli but also other bacterial species.  This is exemplified in 

the identification of ColV plasmid-linked virulence genes in a strain of Salmonella enterica 

serovar Kentucky that increase colonization capabilities of the pathogen and increase 

virulence in extra-intestinal regions of the poultry (16).   

A concerning feature of APEC resides in the antimicrobial resistance genes associated 

with non-colicin and colicin plasmids (17).  Plasmid mediated antibiotic resistance within 

ExPEC isolates thus far include ESBL carriage, including CTX-M (18, 19), NDM-1 (20, 21), 

as well as MCR-1 (22).  Enterobacteriaceae serves as a potent reservoir for these plasmids 

and enhances the concern of the spread of antimicrobial resistance.  This rise of antibiotic 

resistance in not only ExPEC but many other human and animal pathogens has forced an 

evaluation of the use of antibiotics, especially within food animal production (23).  

Antibiotics are commonly used for growth promotion and disease prophylaxis.  The void left 

requires immediate investigation into potent alternatives to antibiotics that act as both 

efficacious prophylaxis and growth promoters. 

 Yeast fermentation products from Saccharomyces cerevisiae have recently been at the 

forefront of this research endeavor due to largely efficacious results across multiple food 

animals.  The benefits include reduction of pathogenic bacteria, modification of intestinal 
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morphology to improve nutrient absorption, enhancement of the immune system, and 

reduction of energy required for intestinal epithelial maintenance (24–27).  The fermentation 

of the yeast produces beneficial metabolites while reducing the potentially negative effects of 

live cultures.  These metabolites produced include carotenoids, vitamins, enzymes, amino 

acids, and some yet uncharacterized products that appear to be beneficial to host health.  

Original XPCTM (Diamond V, Cedar Rapids), has emerged as a relevant postbiotic.  The 

evaluation of the efficacy of XPC in poultry revealed an increase in finisher weight, decrease 

in feed to gain ratios, a reduction in Salmonella Typhimurium and Campylobacter coli 

colonization and shedding, and a decrease in Salmonella virulence and antibiotic resistance 

(24, 25, 28).  Given that Salmonella enterica and E. coli are genetically at least 95% similar 

(29), it is reasonable to hypothesize that XPC might have similar effects on APEC within 

poultry.  

 Currently the best method available for identifying APEC is the pentaplex PCR assay 

designed by Johnson et al (4).  For E. coli to be classified as APEC, all 5 ColV plasmid-

associated virulence genes must be present: iroN, ompT, hlyF, iss, and iutA.  Respectively, 

these genes encode a salmochelin siderophore receptor (iroN) (30), a putative outer 

membrane protein (ompT) (31), a protein involved in outer membrane vesicle formation 

(hlyF) (32), a polypeptide that increases serum survival (iss) (33), and an aerobactin 

siderophore receptor (iutA) (34).   

It is currently unknown as to if XPC decreases APEC virulence and colonization in 

poultry.  To evaluate changes in APEC carriage, the pentaplex PCR assay was performed on 

E. coli cultured from the ceca of broiler chickens and turkeys from thirteen poultry factories 

across the United States.  Additionally, antibiotic resistance was evaluated using an 
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antibiogram on individual E. coli isolates from poultry ceca.  Results indicate an overall 

reduction in the prevalence of APEC in poultry fed an XPC-based diet compared to those on 

a standard diet. 

Materials and Methods 

Study Design 

Ceca were collected on site from poultry headed to slaughter from thirteen different 

poultry sources across the United States; 5 sources provided turkey ceca, 7 sources provided 

broiler chicken ceca, and 1 source provided cloacal swabs from layer chickens.  At each 

source, birds were fed either an XPC containing diet (treatment) or standard industry corn-

soy based meal (control).  Over a 15-month period ceca were shipped overnight and received 

in Whirl-Pak® bags on ice in groups of 25-100, each group representing a poultry barn fed 

either the XPC-based diet or the control diet.  At the time of the study all lab employees 

remained uninformed to the classification of the barns.   

E. coli Isolation 

 To evaluate the colonization of poultry with APEC, turkey or chicken ceca were 

weighed, ligated, and contents were resuspended in Luria Broth (LB).  The contents were 

massaged to release the cecal contents and aliquoted onto Xylose Lysine Deoxycholate 

(XLD) agar, a selective and differential medium for the isolation of Enterobacteriaceae and 

Pseudomonas.  The inoculated XLD plates were then incubated at 35⁰C for 24 hours. 

Following incubation, 9-10 XLD plates were selected from each barn as a 

representative sample.  Plates were selected based on the presence of individual E. coli 

colonies, appearing on XLD agar as round, white colonies on yellow medium due to 
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fermentation of the lactose and xylose.  For each plate, 100 E. coli colonies were collected 

into 1 mL of sterile LB using sterile toothpicks and vortexed.  The E. coli suspensions were 

stored at 4⁰C and processed within 7 days. 

Colony Pentaplex PCR Assay 

 To identify the presence of APEC within each cecum, the E. coli suspension was 

subjected to a pentaplex PCR assay, modified from Johnson et al (4).  Primers are identified 

with the expected amplicon sizes in Table 1.  The protocol was modified with the following 

procedure.  The Q5 High-Fidelity PCR kit from New England BioSciences was utilized for 

this study.  Master mix was created per reaction that included 10.4 µL DEPC, 4 µL Q5® α 

Enhancing buffer, 4 µL Q5® α Enhancer, 0.4 µL dNTP (10µM), 0.2 µL Q5® α polymerase, 

5 pM of each primer (100 µM; totaling 0.5 µL per reaction), and 0.5 µL of template.  

Template was created by boiling 50 µL of the E. coli suspension for 20 minutes.  The 

template was diluted 1:2 with DEPC prior to addition to the master mix.  The PCR cycling 

was optimized for the Q5 High-Fidelity PCR kit: 98⁰C for 30 seconds followed by 35 cycles 

of 98⁰C for 10 seconds, 67⁰C for 30 seconds, 72⁰C for 15 seconds, and then 72⁰C for 5 

minutes for terminal extension.  The completed PCR product was subjected to 2% agarose 

gel electrophoresis at 120 mV and visualized under an ultraviolet light.  Samples were 

considered positive for APEC only if all 5 bands were visualized on the gel.  Positive and 

negative APEC controls were utilized.  The positive APEC control was grown at 37⁰C, 

subject to colony PCR, purified using the Zymo Research DNA Clean & ConcentratorTM -5 

Kit, and stored at -20⁰C until use due to the instability of the plasmid. 
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Antibiogram 

 From the same barn, 24 XLD plates were selected for the antibiotic resistance assay.  

Isolates were collected into a 96-well round bottom polystyrene plate filled with 300 µL of 

LB.  From each plate, 2 E. coli colonies were selected individually using a sterile toothpick 

and each colony was placed in its own individual well.  The 96-well plate was incubated at 

37⁰C for 18-24 hours and then subjected to pin-replicating into 3 separate 96-well plates 

containing a different antibiotic media at their respective, predetermined breakpoint 

concentrations.  Antibiotics selected for this assay are ceftiofur (32 ug/mL), enrofloxacin (8 

ug/mL), and chloramphenicol (32 ug/mL).  Following incubation, the wells were visually 

analyzed for growth, with any turbidity or breading of colonies considered a positive result. 

Statistics 

 Significance of control versus XPC-treated birds within each source was performed 

for both prevalence and antibiotic resistance data using a 2-way ANOVA with repeated 

measures with Tukey’s multi-comparison test. 

Results 

Colony Pentaplex PCR Assay 

 Thirteen poultry sources were subjected to the APEC survey with approximately 

2,000 turkeys and 3,000 chickens tested.  All 13 of the poultry sources exhibited a reduction 

in prevalence of APEC in poultry fed an XPC-based diet (Table 2).  Within the control 

groups of turkeys, the prevalence of APEC positive colonies ranged from 44% to 100%, 

while in the XPC-treated groups the prevalence ranged from 16% to 50% (Figure 1).  Within 

chickens, the prevalence of APEC positive colonies in control groups ranged from 60% to 
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93% and in treatment groups ranged from 25% to 50% (Figure 2).  The two sources 

identified as having a non-statistically significant difference in prevalence were C3 and C7.  

Three sources were identified with a p < 0.001 (T4, C2, and C4), four with a p < 0.005 (T2, 

T3, C1, and L1), one with a p < 0.01 (C6), and three with a p < 0.05 (T1, T5, and C5). 

Antibiogram 

In this study, E. coli colonies collected from poultry ceca were tested for resistance 

against ceftiofur, enrofloxacin, and chloramphenicol.  Ceftiofur was the initial antibiotic 

tested with results indicating a statistically significant reduction of resistant E. coli colonies 

in poultry fed an XPC-based diet in 11 of the 13 poultry sources (Table 3).  The portion of 

resistant colonies in the control group of turkeys ranged from 55% to 91%, while the XPC-

fed group ranged from 30% to 48% (Figure 3A).  Chickens from the control group had 

resistance colonies ranging from 38% to 100% and the treatment group ranging from 17% to 

48% (Figure 4A).  Most of the poultry sources exhibited a significant p-value less than 0.001, 

the exception being source C1 with a p < 0.01 and T4 and L1, which were not statistically 

significant. 

 Enrofloxacin and chloramphenicol resistance assays were included after initial 

ceftiofur data indicated a reduction in the XPC-fed group.  For this reason, enrofloxacin and 

chloramphenicol resistance data is not included for sources C1-C4.  Additionally, no control 

group resistance data was recorded for these two antibiotics for source T1.  Antibiogram data 

for enrofloxacin revealed 5 of the 8 barns exhibited a statistically significant reduction in 

resistance (Table 3).  Enrofloxacin resistance for turkeys ranged from 30% to 72% in the 

control group and from 17% to 44% in the XPC-fed group (Figure 3B).  Chickens exhibited 

enrofloxacin resistance ranging from 34% to 73% in the control group and 10% to 23% in the 
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treatment group (Figure 4B).  Sources T2, T3, T5, C5, and C6 had a p-value < 0.001.  Of the 

8 poultry sources tested for chloramphenicol resistance, all exhibited a statistically significant 

reduction in chloramphenicol resistant colonies.  Chloramphenicol resistance in turkeys 

ranged from 58% to 99% in the control group and from 20% to 51% in the XPC-fed group 

(Figure 3C).  Chickens in control groups exhibited a resistance range of 85% to 96% and in 

treatment groups a range of 22% to 52% (Figure 4C).  All 8 sources exhibited a significant 

difference indicated by a p-value < 0.001. 

Discussion 

 Diamond V Original XPCTM is a Saccharomyces cerevisiae fermentation product 

added to feed that has proved quite successful in increasing growth weight of animals and 

decreasing intestinal colonization of pathogens (24–26, 28).  Given the success of XPC in 

reducing Salmonella Typhimurium and Campylobacter coli colonization in poultry (24, 25, 

28), this study looked at the effects of XPC on APEC colonization in poultry.  

Eleven of the 13 poultry sources tested exhibited a statistically significant reduction in 

the amount of APEC isolated from the ceca of poultry fed a diet with XPC added.  Evidence 

is highly suggestive of a role the microbiota plays in the reduction of food animal pathogens.  

Consumption of XPC lowers the intestinal pH which may reduce the success of E. coli 

colonization (35, 36).  Likely this occurs because at a lower pH short chain fatty acids such 

as propionic acid and formic acid can reduce an E. coli population by 90% without damaging 

the cell membrane (37).  Further, intestinal butyrate increases in animals fed XPC containing 

products (38).  Butyrate is used by enterocytes as a primary energy source and increases the 

growth of Lactobacillus spp. while decreasing Enterobacteriaceae growth (39).  In vitro, 

XPC has been shown to reduce gastrointestinal inflammation (40) and increase microbial 
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competition and diversity through modulations in the availability of SCFAs (38).  This 

competitive enhancement strategy supports the growth of organisms that can act as a natural 

competitive exclusion culture against pathogens in the gastrointestinal tract (41).  Our study 

also revealed that poultry fed an XPC-based diet demonstrate a significant reduction in the 

number of E. coli cells resistant to ceftiofur, enrofloxacin, and chloramphenicol, further 

supporting the usefulness of XPC as a good alternative to antibiotics in poultry.  This 

evidence parallels what is seen in Salmonella recovered from XPC fed animals (25).   

In summary, this survey provides substantial evidence for the use of Original XPCTM 

to help reduce the amount of APEC as well as the number of antibiotic resistant 

microorganisms in the microbiota of chickens and turkeys.  Combining these results with the 

results of other studies, indicates that overall XPC appears to be an alternative to antibiotics 

in feed for growth promotion and the prevention of diseases.  Future work should be 

considered to elucidate the components of XPC that are acting on APEC to reduce 

prevalence in the gastrointestinal tract and what mechanisms result in a reduction of 

antibiotic resistance.  
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Figure 1. Prevalence of APEC in ceca of ~2,000 turkeys (T) from 5 different sources in 

the United State. Birds were fed a diet with (XPC) or without (control) Diamond V 

Original XPCTM. p-values calculated from a 2-way ANOVA with repeated measures 

with Tukey’s multi-comparison test: p < 0.05 (*), p < 0.005 (***), p < 0.001 (****). 
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Figure 2. Prevalence of APEC in ceca of ~3,000 broiler chickens (C) and layers (L) from 

8 different sources in the United State. Birds were fed a diet with (XPC) or without 

(control) Diamond V Original XPCTM. p-values calculated from a 2-way ANOVA with 

repeated measures with Tukey’s multi-comparison test: p < 0.05 (*), p < 0.001 (**), p < 

0.005 (***), p < 0.001 (****). 
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Figure 3. Ceftiofur (A), enrofloxacin (B), and chloramphenicol (C) resistance 

rates of E. coli colonies isolated from the ceca of ~ 2,000 turkeys (T) from 5 

sources across the United States.  Data collection for source T1 was incomplete 

for Enrofloxacin and Chloramphenicol resistance. Birds were fed a diet with 

(XPC) or without (control) Diamond V Original XPCTM. p-value calculated from 

a 2-way ANOVA with repeated measures with Tukey’s multi-comparison test: p 

< 0.001 (****). 
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Figure 4. Ceftiofur (A), enrofloxacin (B), and chloramphenicol (C) resistance 

rates of E. coli colonies isolated from the ceca of ~3,000 broiler chickens (C) and 

layers (L) from 8 sources across the United States. Data collection for source C1-

C4 was incomplete for Enrofloxacin and Chloramphenicol resistance. Birds were 

fed a diet with (XPC) or without (control) Diamond V Original XPCTM. p-value 

calculated from a 2-way ANOVA with repeated measures with Tukey’s multi-

comparison test: p < 0.01 (**), p < 0.001 (****). 
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CHAPTER 4: GENERAL CONCLUSIONS 

 

 With the advent of further antibiotic usage restrictions in the Veterinary Feed 

Directive and the rising concern of APEC as a zoonotic pathogen, research identifying 

regulatory methods for APEC in poultry is critical.  Demonstration of the public health 

concern of APEC was exemplified by the increase in antibiotic resistance and high 

transmission of virulence plasmids.  A combined concern for poultry and human health led to 

a desire to identify a prophylactic treatment for APEC to mitigate disease in poultry and the 

propagation of the pathogen via food sources.  The survey presented in this thesis 

successfully analyzed poultry from sources across the United States for APEC prevalence 

and E. coli antibiotic resistance.  Results revealed that Original XPCTM is efficacious in 

reducing poultry carriage of APEC and reducing the presence of E. coli resistant to ceftiofur, 

enrofloxacin, and chloramphenicol.  Identification of a prophylactic treatment for APEC is 

economically beneficial for the poultry industry and will potentially reduce the threat to 

public health. 

Since this was a surveillance study, much more work needs to be done to elucidate 

the mechanisms of action of XPC.  Initial studies should be done to determine if there is a 

reduction in virulence, identified by the loss of function of any of the important virulence 

genes.  Genetic regulation of the virulence or resistance genes by a component of XPC or the 

gut microbiota could be a point of mechanistic action.  Additionally, further studies should be 

done evaluating the effects of XPC on the overall gut microbiota, including but not limited to 

community sequencing and calculating concentration changes of metabolites in the GI tract.  

Finally, additional surveillance studies should be done testing the efficacy of XPC on other 

Enterobacteriaceae pathogens and viruses across numerous animal species. 
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