Moisture Sensing in Baled Crops

Thumbnail Image
Date
2017-01-01
Authors
Just, John
Major Professor
Advisor
Matthew Darr
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

This dissertation is comprised of three papers. The first paper describes in detail a planar dielectric probe design using finite element analysis to determine sensing range and efficiency. The probe is subsequently connected to a Keysight impedance analyzer to measure dielectric properties of raw cotton at controlled levels of moisture content, compressed densities, and source frequency sweeps. Sensitivity to compositional differences such as turnout (lint vs seed) and variety is also explored. The response to the different factors is shown graphically and further quantified statistically in the form of a predictive model for the complex permittivity (dielectric constant and loss tangent).

The second paper extends the dielectric probe used in the first paper to real-time harvesting on a round-module cotton harvester by leveraging a packaged sensor with embedded impedance measurement circuit and probe all in one mobile unit. A moisture prediction model based on permittivity is developed from lab-measured data and adjusted based on field data collected during cotton harvesting in Fall of 2014 for pickers and Spring of 2015 for strippers. Verification of the prediction accuracy is performed on field data collected during cotton harvesting in 2016. Sources of variability and sensitivity to confounding factors are investigated and quantified. Finally, plots of diurnal trends of predicted and actual moisture content are overlaid for several days of harvesting.

The third paper draws on the first two in applying capacitive-based moisture sensing to large-square bales of alfalfa. A lab characterization is performed on alfalfa over a wide range of moisture contents and densities using both the Keysight impedance analyzer and packaged sensor to measure permittivity. Field data (on-machine permittivity measurements of bales and corresponding ground truth moisture content) is subsequently collected during baling in 2015 and 2016 for alfalfa hay (<30%) and silage (>30%) and used for training and validation of prediction models. In following with the other two papers, sources of variability are discussed and sensitivity to factors quantified. Limitations in sensing range of the packaged sensor lead to multiple prediction models: a simple but limited model restricted to hay and another using modern fitting techniques (feature engineering and artificial neural network) for both hay and silage. Real-time filtering of the prediction signal is investigated using the simple model in light of what seems like mechanically induced oscillations, using a Kalman filter to isolate and remove them while minimizing delay. The real-time prediction signal is finally overlaid with actual moisture content found from core samples of the same bales.

Comments
Description
Keywords
Citation
Source
Copyright
Sun Jan 01 00:00:00 UTC 2017