IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Graduate Theses and Dissertations))
Dissertations

2017

Coloring problems in graph theory

Kevin Moss
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

b Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Moss, Kevin, "Coloring problems in graph theory" (2017). Graduate Theses and Dissertations. 15383.
https://lib.dr.iastate.edu/etd /15383

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15383?utm_source=lib.dr.iastate.edu%2Fetd%2F15383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Coloring problems in graph theory

by

Kevin Moss

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mathematics

Program of Study Committee:
Bernard Lidicky, Co-major Professor
Steve Butler, Co-major Professor
Clifford Bergman
Ryan Martin
Sung-Yell Song

The student author and the program of study committee are solely responsible for the
content of this dissertation. The Graduate College will ensure this dissertation is globally
accessible and will not permit alterations after a degree is conferred.

Towa State University
Ames, Iowa
2017

Copyright (© Kevin Moss, 2017. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES it i e e e e e e e e e e e e e e e e e v
LIST OF FIGURES i i e e e e e e e e e e e e e e e e vi
ACKNOWLEDGEMENTS & i ittt e e e e e e e e e e e et e e e e viii
ABSTRACT . . . o it e ix
CHAPTER 1. GENERAL INTRODUCTION 1
1.1 Imtroduction e 1
1.2 Basic Definitions 1
1.3 Planar Graphs e 4
1.3.1 Graph Coloring 5)

1.3.2 List Coloring and Choosability)

1.3.3 Intersection and Union Separation 6

1.3.4 Packing Coloring L 8

1.4 The Discharging Method 9
CHAPTER 2. CHOOSABILITY WITH UNION SEPARATION 12
2.1 Imtroduction 12
2.1.1 Notation 14

2.2 Non-(k,t)-Choosable Graphs 15
2.3 Reducible Configurations 16
2.4 Sparse Graphs L 17
2.5 (4,t)-choosability 18

2.6 (3,11)-choosability 20

iii

CHAPTER 3. TOWARDS (3,10)-CHOOSABILITY 23
3.1 Introduction L 23
3.2 (3,10)-Choosability 23

3.2.1 Reducible Configurations 24
3.2.2 Proof of Theorem 3.2.2 28
CHAPTER 4. PACKING COLORING ON INFINITE LATTICES 32
4.1 Introduction e 32
4.1.1 Density on an Infinite Graph 33
4.2 Hexagonal Lattice 36
4.3 Truncated Square Lattice o 39
4.4 Two-layer Hexagonal Lattice, 42
4.5 Offset Two-Layer Hexagonal Lattice 43
4.6 Generating Colorings 44
4.6.1 Backtracking 46
4.6.2 Random Coloring 47
4.6.3 Priority-Based Random Coloring 47
4.6.4 Checking Colorings L 49
4.6.5 Choosing Dimensions 0. 50
4.7 SAT Solvers e 50
4.8 Results. o e 51

CHAPTER 5. CONCLUSION ittt ettt e e e 54

APPENDIX A. (3,11)-CHOOSABILITYttt ittt 56

APPENDIX B. SOURCE CODES ittt it 58
B.1 Objects o . o 58

B.1.1 Graph o 58
B.1.2 Vertex e 71
B.1.3 Symmetryo 72

B.1.4 Graph Colorer 75

iv

B.1.5 Local Random Graph Colorer 83
B.1.6 Naive Random Graph Colorer 88
B.1.7 FileReader 90
B.2 Additional Methods 94
B.2.1 Distances e 94
B.2.2 Graph Experiments 99

BIBLIOGRAPHY . . . e e e e e e e e e e e e e e e e e e 104

Table 3.1
Table 3.2

Table 3.3

Table 4.1

Table 4.2

LIST OF TABLES

Cases with negative charge after applying (R2). 29
Cases with negative charge after applying (R3). 30
Remaining cases with negative charge after applying (R3). 31

Density of color ¢ for 1 < ¢ < 80 in five attempts at packing P» [1H.
Attempt 5 resulted in a 205-packing. oL 52
Density of colors 1 through ¢ for 1 < ¢ < 80 in five attempts at packing

P, OH. Attempt 5 resulted in a 205-packing. 53

Figure 1.1
Figure 1.3
Figure 1.5

Figure 1.7

Figure 1.8

Figure 1.10

Figure 1.12

Figure 2.1

Figure 2.2

Figure 3.1

Figure 3.2

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

vi

LIST OF FIGURES

Agraph G. e
Graphs Ps, a path of length 5; and Cg, a cycle of length 6.
The Cartesian product of two graphs.
The complete graph K3, a tree on 7 vertices, and the complete bipartite
graph Kz4.
A plane graph.
Parts of the triangular, square, and hexagonal lattices. The tilings are
infinite and cover the plane.

Parts of the lattices P, [0S and P, (1H.

A graph that is not (k,t)-choosable.

A planar gadget with a (3,5)-list assignment.

Configuration C1. L

Configuration C2.

H represented on Z2.
The truncated square lattice.
The truncated square lattice represented on Z2.
The tiling pattern for the truncated square lattice.
A colored tile in the truncated square lattice. Each tile is colored iden-
tically.

A subgraph G of Sgp. Lo

40

41

vii

Figure 4.7 A second variant of the two-layer hexagonal lattice. Large dots represent

two vertices in different layers, joined by an edge. 44

viii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks for those who helped me with
various aspects of conducting research and writing this thesis. I am particularly grateful for
the guidance, patience, and support provided by Dr. Derrick Stolee in conducting research. His
advice has inspired me to pursue a career in Computer Science, giving my future a direction
after graduation. I would also like to give thanks to Dr. Bernard Lidicky for his outstanding
support in both research and writing my thesis, especially under the pressure of my timeframe
for graduation. My thanks continue towards Dr. Steve Butler for his support and advice in
keeping to a schedule and completing my thesis in time.

I’d like to thank Dr. Sung-Yell Song for his support and advising early in my graduate career,
and Dr. Elgin Johnston for his support during my time in high school and as an undergraduate.
Many thanks to the the remainder of my committee, Dr. Ryan Martin and Dr. Cliff Bergman,
as well as to the Discrete Math group, especially including Dr. Leslie Hogben and Dr. Michael

Young. Their efforts and contributions have made this work possible.

ix

ABSTRACT

We consider two branches of coloring problems for graphs: list coloring and packing coloring.
We introduce a new variation to list coloring which we call choosability with union separation:
For a graph G, a list assignment L to the vertices of G is a (k, k + t)-list assignment if every
vertex is assigned a list of size at least k and the union of the lists of each pair of adjacent vertices
is at least k + ¢. We explore this new variation and offer comparative results to choosability
with intersection separation, a variation that has been studied previously. Regarding packing
colorings, we consider infinite lattice graphs and provide bounds to their packing chromatic
numbers. We also provide algorithms for coloring these graphs. The lattices we color include
two-layer hexagonal lattices as well as the truncated square lattice, a 3-regular lattice whose

faces have length 4 and 8.

CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Graph theory is the study of graphs, which are discrete structures used to model relation-
ships between pairs of objects. Graphs are key objects studied in discrete mathematics. They
are of particular importance in modeling networks, wherein they have applications in computer
science, biology, sociology, and many other areas. We focus on coloring problems, which are
problems concerning the partitions of a graph. We focus on two main types of colorings: list
colorings and packing colorings.

Chapter 1 provides definitions as well as an overview of the current progress in each area.
Chapter 2 is a submitted paper that introduces a new variation for list coloring. Chapter 3
provides additional work regarding this variation. In Chapter 4, we consider packing colorings

on infinitely large graphs.

1.2 Basic Definitions

A graph G = (V,E) is a set V = V(G) of vertices together with a set £ = E(G) of edges,
which are two-element subsets of V' (i.e. E C (‘2/)) This definition is often referred to as that
of a simple graph to distinguish it from other definitions. The typical way to picture a graph
is to draw a dot for each vertex and have a line joining two vertices if they share an edge.

Figure 1.1 is an example of one such picture.

Figure 1.1: A graph G.

The order of graph G, denoted |G|, is the number of vertices in G; and the size of G,
denoted ||G||, is the number of edges in G. In Figure 1.1, |G| = 8 and ||G|| = 6. Unless
otherwise specified, we assume that a graph has a finite number of vertices and edges.

Two vertices u and v are adjacent if {u,v} € E, and an edge e and vertex v are incident
if v € e. We typically denote an edge {u,v} with the shorter notation uv or equivalently vu.
For a vertex v, the neighborhood of v, denoted N(v), is the set of vertices adjacent to v; and
the degree of v, denoted deg(v), is the order of N(v). If deg(v) = k, we say v is a k-vertex; if
deg(v) < k, we say v is a k™ -verter, and if deg(v) > k, we say v is a kT -vertez. We let A(G)
and §(G) respectively denote the maximum and minimum degrees among all vertices in G. In
Figure 1.1, A(G) = 4 and §(G) = 0.

Two graphs G and H are isomorphic if there is a bijection f : V(G) — V(H) such that
wv € E(Q) if and only if f(u)f(v) € E(H). The function f is called a graph isomorphism. If f
is a graph isomorphism from G to itself, than f is called a graph automorphism. We also call
isomorphic graphs equivalent. By abuse of notation, we typically treat equivalent graphs as if
they are the same graph.

A graph G is connected if for every distinct pair of vertices u,v € V(G), there exists a
set wi,wa,...,wr C V(G) such that {uwy, wiws, ..., wg_qwg,wpv} € E(V). A graph H is a
subgraph of Gif V(H) CV(G) and E(H) C E(G)N (V(QH)) (i.e. G contains H). Graph H is an
induced subgraph if E(H) = E(G) N (V(QH)). Graph H is a proper subgraph if V(H) # V(G)
or E(H) # E(G). H is a component of G if H is connected and not a proper subgraph of any
other connected subgraph of G (i.e. H is a maximally connected subgraph).

A walk of length n in G is a sequence of vertices (v1,va,...,Un41) such that v;vi41 €
E(G) for all 1 < i < n. A walk is closed if vi = vp41. A path P, is a graph of order n
such that there is some labeling of the vertices V(P,) = {vi,ve,...,v,} wherein E(P,) =
{viva, vovs, ..., p_1n}. A cycle C), is a path with the additional edge viv,. Figure 1.3 is an
example of a path and a cycle. Notice that a path corresponds to a walk wherein no vertex
is repeated, and a cycle corresponds to a closed walk wherein no vertex is repeated except the
first and last vertex. A chorded cycle is a cycle with an additional edge; the edge is called a

chord. Cycle Cs is often referred to as a triangle.

AN

Figure 1.3: Graphs Py, a path of length 5; and Cg, a cycle of length 6.

For two vertices u,v € V(QG), the distance between u and v, denoted dist(u, v), is the length
of the shortest walk from u to v (or v to). If no such walk exists, then v and v are in different
components and we say dist(u,v) = co. Note that dist(u,v) = 1 if and only if v and v are
adjacent, and dist(u,v) = 0 if and only if u = v.

For graphs G and H, the Cartesian product G H is a graph whose vertex set is the
Cartesian product V(G) x V(H) and for any pair of vertices (u,v) and (v/,v") in GO H, (u,v)
and (u/,v’) are adjacent if and only if v = v/ and vv' € F(H) or v = v/ and uv’ € E(G).

Figure 1.5 is an example of a Cartesian product of graphs.

/_\/m\:

Figure 1.5: The Cartesian product of two graphs.

There are many important families of graphs: A complete graph of order n, denoted K, is
a graph that contains every potential edge. That is, V(K,) is a set of order n, and F(K,,) =
(V(é{")). A tree is a connected graph that contains no cycles, and a forest is a graph wherein
every component is a tree. An r-regular graph is a graph wherein every vertex has degree r
(i.e. A(G) =0(G) =r). A bipartite graph is a graph for which there exists a bipartition of the
vertices such that the subgraph induced by each part contains no edges. The complete bipartite
graph, denoted K, ,,, is the bipartite graph with bipartition U,V such that |U| = m, |V| =n,
and for each u € U and v € V, wv € E(K,,). Figure 1.7 is an example of a complete graph,

a tree, and a complete bipartite graph.

Figure 1.7: The complete graph K5, a tree on 7 vertices, and the complete bipartite graph
K374.

1.3 Planar Graphs

A family of graphs of particular importance to this dissertation is the family of planar

graphs.

Definition 1.3.1. A planar graph is a graph that can be embedded in the plane. That is, a
planar graph can be drawn in R? such that every vertex corresponds to a distinct point, every
edge corresponds to an arc between its corresponding points, and the interior of each edge
contains no vertex and no point of any other edge. A plane graph is a planar graph together

with a planar embedding.

Figure 1.8: A plane graph.

A plane graph G has additional attributes called faces. A face in G is a maximal region in
R2\G; this includes the outer unbounded region. The graph in Figure 1.8 has four faces. Two
faces are adjacent if their boundaries share an edge. A face is incident to an edge or vertex if
the edge or vertex lies on the boundary of the face. The length of a face f, denoted len(f), is
the total length of all disjoint closed walks traversing the boundary of f. The number of such
edge walks is equal to the number of components with vertices incident to f; there is typically
only one. If len(f) = k, we say f is a k-face; if len(f) < k, we say f is a k™ -face, and if
len(f) >k, we say f is a k™ -face. The set of all faces in G is denoted F(G).

There are many results involving planar graphs. One particularly well-known result is

Euler’s Formula.

Theorem 1.3.2. Euler’s Formula: If G is a connected plane graph, then
V(&) - EG) + |F(G)| =2

Many proofs to Euler’s Formula are known (see Eppstein [11]).

1.3.1 Graph Coloring

Graph coloring is the labeling of certain elements of a graph; the labels are typically called
colors. The traditional elements to color are vertices, and unless otherwise specified, we follow
this tradition. For a graph G = (V| E), a k-color assignment is a function ¢ : V — {1,2,... k}.
We say c is proper if for all uv € E, c(u) # c(v). We say G is k-colorable if there exists a
proper k-color assignment of G. The chromatic number x(G) is the smallest k such that G is
k-colorable. Given a coloring ¢, a color class for color i is a set X; = {v € V : ¢(v) = i}.

A central result in graph coloring is the Four-Color Theorem.
Theorem 1.3.3. Four-Color Theorem: All planar graphs are 4-colorable.

The Four-Color Theorem was introduced as a conjecture in 1852 [folklore], but a valid proof
wasn’t announced until 1976 [1], and it heavily relied on computer aid to exhaust all cases.
The proof technique is known as the discharging method, and it continues to be useful in graph
theory problems, including those covered in this dissertation.

Though it is easy to find planar graphs that are not 3-colorable, conjectures have been
made and results found regarding 3-colorability of planar graphs without certain subgraphs.
In particular, Grotzsch showed that planar graphs without 3-cycles are 3-colorable [19]. On a
similar avenue, Steinberg conjectured in 1976 that every planar graph without 4- and 5-cycles is
3-colorable (see [20]). This was proven false by Cohen-Addad, Hebdige, Kral, Li, and Salgado
[8]. However, Borodin, Glebov, and Raspaud [3] showed that planar graphs without 3-cycles

sharing edges with cycles of length 4 through 7 are 3-colorable.

1.3.2 List Coloring and Choosability

List coloring is a generalization of graph coloring. Rather than having a global set of colors,

each vertex is given an individual list. For a graph G = (V, E), a k-list assignment is a function

L on V such that L(v) is a set of size at least k for all v € V. An L-coloring is a function ¢ on
V such that ¢(v) € L(v) for all v € V. We say c is proper if c(u) # c(v) for all uv € E. We say
G is k-choosable if every k-list assignment L of G admits a proper L-coloring.

It is clear that list coloring generalizes traditional coloring: a k-list assignment that assigns
each vertex the same set of k colors emulates the conditions for k-coloring. One particular
question is whether or not all planar graphs are 4-choosable; this turns out to be false [37].
However, it is the case that all planar graphs are 5-choosable [35]. A field of problems in-
volve determining choosability of planar graphs given additional conditions. Theorem 1.3.4

summarizes many of the results.
Theorem 1.3.4. A planar graph is 4-choosable if it avoids any of the following subgraphs.

e 3-cycles (folklore)

4-cycles (Lam, Xu, Liu [26])

5-cycles (Wang, Lih [39]

6-cycles (Fijavz, Juvan, Mohar, Skrekouvski [15])

7-cycles (Farzad [13])

Chorded J-cycles and chorded 5-cycles (Borodin, Ivanova [5])

1.3.3 Intersection and Union Separation

A variant to choosability involves placing restrictions on the viable list assignments. This
version of choosability is called choosability with separation. In particular, choosability with
intersection separation involves restricting list assignments to those where the lists of adjacent
vertices have an upper bound on intersection size. We say a k-list assignment L on a graph G
is a (k, k — s)-list assignment if for all uwv € E(G), |L(u) N L(v)| < k —s. We use the notation
k — s to relate intersection separation with the complementary idea of choosability with union
separation. We say L is a (k,k + s)-list assignment if |L(u) U L(v)| > k + s for all uv € E(G).
For t = k+s, we say G is (k,t)-choosable if every (k, t)-list assignment admits a proper coloring.

Observe that for both union and intersection separation, (k, k)-choosability is equivalent to

k-choosability. Furthermore, for r > s, (k, k — s)-choosability implies (k, k —r)-choosability and

(k, k + s)-choosability implies (k, k + r)-choosability. Finally notice that (k, k + s)-choosability
implies (k, k — s)-choosability; the reverse isn’t generally true unless we restrict our list assign-
ments on each vertex to have size exactly k.

Intersection separation was introduced by Kratochvil, Tuza, and Voigt [24], where they
proved that all planar graphs are (4, 1)-choosable and asked the question of whether or not
all planar graphs are (4, 2)-choosable; this problem remains open. There are many examples
of planar graphs that are not (4, 3)-choosable [30]. Regarding 3-choosability, Voigt [37] found
examples of triangle-free planar graphs that are not 3-choosable. Skrekovski [32] found non-
(3,2)-choosable planar graphs, and asked whether or not all planar graphs are (3, 1)-choosable;
this problem also remains open.

As an approach to the problems of (4,2)- and (3, 1)-choosability of planar graphs, many
have found partial results by forbidding certain subgraphs. Theorems 1.3.5 and 1.3.6 summarize

the results.
Theorem 1.3.5. A planar graph is (3,1)-choosable if it avoids any of the following subgraphs.

o 3-cycles (Kratochvil, Tuza, Voigt [24])

o 4-cycles (Choi, Lidicky, Stolee [7])

e 5-cycles (Choi, Lidicky, Stolee [7])
Theorem 1.3.6. (Berikkyzy et al. [2]) A planar graph is (4,2)-choosable if it avoids any of the
following subgraphs.

e Chorded 5-cycles

e Chorded 6-cycles

e Chorded 7-cycles

Choosability with union separation was recently introduced [25]; the introductory paper is

included as Chapter 2.

1.3.4 Packing Coloring

As a departure from list coloring, another variant is packing coloring. A k-packing coloring
of a graph G is a color assignment ¢ such that c¢(u) = ¢(v) = i implies dist(u,v) > i. The
packing chromatic number of G, denoted x,(G), is the smallest k such that G admits a valid
k-packing coloring.

Packing coloring was introduced by Goddard et al. [18] under the term broadcast coloring.
The term was later changed to packing coloring by Bresar, Klavzar, and Rall [6].

Observe that every finite graph has a finite packing chromatic number. One question is
whether or not an infinite graph has a finite packing coloring. Infinite graphs of interest are
those that can be described easily, so we consider lattice graphs. A lattice graph is an infinite
graph that has an embedding in Euclidean space of some dimension (typically 2) wherein
the embedding forms a regular tiling. The notable infinite graph in one dimension is the
infinite path. The infinite path is the graph whose vertex set is Z and whose edge set is
{{i,j} : li — j| = 1}. We denote the infinite path with Ps. In two dimensions, the square
lattice S satisfies S = Po [Py, and it corresponds to a square tiling of the plane. The
triangular lattice T is the 6-regular graph corresponding to a triangular tiling of the plane, and
the hexagonal lattice H is the 3-regular graph corresponding to a hexagonal tiling of the plane.

Figure 1.10 shows a typical drawing of T, S, and H.

Figure 1.10: Parts of the triangular, square, and hexagonal lattices. The tilings are infinite and
cover the plane.

Finbow and Rall [16] proved that the triangular lattice does not have a finite packing
chromatic number. The square lattice was shown to have finite packing chromatic number

by Goddard et al. [18] with an initial upper bound of 23. Fiala, Klavzar, and Lidicky [14]

gave an initial lower bound of 10. The upper bound was improved to 17 by Soukal and Holub
[34], while the lower bound was improved to 12 by Ekstein, Fiala, Holub, and Lidicky [10].
B. Martin, Raimondi, Chen, and J. Martin [28] later showed that 13 < x,(S) < 15. Regarding
the hexagonal lattice H, it was shown in [18] that 6 < x,(H) < 8. In [14], it was shown that
Xp(H) < 7, and Korze and Vesel [22] verified by computer that x,(H) > 7. So, we can conclude
that x,(H) = 7.

There are further problems to explore regarding the extension of tilings to three dimen-
sions. For instance, Fiala, Klavzar, and Lidicky [14] proved that x,(P20Z?) = oo and thus
Xp(Z3) = oo. They also explored one extension of H in three dimensions. They showed
that xp(PpnOH) = oo for m > 6, and thus that x,(ZOH) = oo. It is believed that
Xp(Pm OH) = oo for m > 3, but this has yet to be shown. Bohm, Lénsky, and Lidicky

[27] showed that x,(P,OH) < 526. Figure 1.12 shows a drawing of P, 0S and P, OH.

Figure 1.12: Parts of the lattices P, S and P, H.

1.4 The Discharging Method

The discharging method is a proof technique used for many graph coloring problems. It is
part of a two-prong approach for inductive proofs. On one hand, there are reducible configura-
tions, i.e. local substructures of a graph that cannot exist in a minimum counterexample, as the
configurations are accompanied by instructions to form a smaller counterexample. In addition,
there may be forbidden configurations that the authors decide to disallow from their graphs
as part of their claim. For a strong claim, it’s desirable to minimize the number of forbidden

configurations.

10

Discharging consists of initially assigning charge to features of a graph (i.e. vertices, edges,
or faces) in such a way that the total charge is a known constant. Next, rules are put into place
to move charge locally among features in such a way that a claim can be made that the total
charge is not equal to the original constant. Such a claim leads to a contradiction. Typically,
the constant is negative and charge is moved so that the charge on each individual feature
is nonnegative. For plane graphs, Euler’s Formula (see Theorem 1.3.2) is typically used, and
charge is assigned to vertices and faces. If charge pu(v) = adeg(v) — 2(a + b) is assigned to each
vertex v and v(f) = b len(f) — 2(a + b) is assigned to each face f, then we can compute total

charge as follows.

Total Charge = Z w(v) + Z v(f)

veV(Q) fEF(G)
=a Y deg(v)—2(a+b)V(G)|+b Z len(f) — 2(a + b)|F(G)|
veV(G) fEF(G

= 2a|E(G)| — 2(a + b)|V(G)| + 2b|E(G)| — 6|F(G)]
= 2(a +b)(|E(G)| = [V(G)| = [F(G)]) = —4(a +b)

Typically values of a and b are chosen so that p(v) = deg(v) — 4 and v(f) = len(f) — 4,
though this is just for convenience; a single discharging rule can move charge so one set of
functions is analogous to another.

The challenge in discharging lies in developing the rules for moving charge. Some discharging
arguments [2] are lengthy due to the high number of cases to consider.

We present Example 1.4.1 to illustrate the discharging method.

Example 1.4.1. We will use discharging to show that triangle-free planar graphs are 4-
choosable. Suppose there exist one or more triangle-free planar graphs that are not 4-choosable.
Among all such graphs, consider one with minimum order; let G be a corresponding plane graph.
Suppose G has a vertex v of degree at most 3. Then G — v is 4-choosable, so for any 4-list
assignment L of of G — v, there is a proper L-coloring of G — v; this coloring clearly extends
to a proper coloring of G. It follows that 6(G) > 4. We could consider a vertex of degree at
most 3 to be a reducible configuration, though minimum degree conditions are often treated as

self-evident in discharging proofs.

11

Consider initial charge functions p : V(G) — R; p(v) = 2deg(v) — 6 and v : F(G) — R;
v(f) = len(f) — 6. By Euler’s Formula (Theorem 1.3.2), total charge is —12. Observe that
all faces in G have length at least 4, so the only features with negative charge are 4-faces and
5-faces. We apply the discharging rule: Each vertex sends charge % to each incident face.

Each 4-face had charge —2 but was sent charge 2 for a final charge of 0. Each 5-face had
initial charge —1 but was sent charge % for a final charge of % All other faces clearly still have
non-negative charge. Each vertex v sends at most charge %deg(v) for a final charge of at least
3 deg(v) — 6. Recall that §(G) > 4, so all vertices have non-negative final charge. We have
a contradiction, since all features in the graph have non-negative charge and total charge is
negative. So, we can conclude that all triangle-free graphs are 4-choosable. O

Note that this is not the simplest way to prove the result; if we assigned initial charge
w(v) = deg(v) — 4 and v(f) = len(f) — 4, then sending charge wouldn’t be necessary. However,

our proof would then fail to illustrate a discharging rule.

12

CHAPTER 2. CHOOSABILITY WITH UNION SEPARATION

This chapter is composed of the paper Choosability with Union Separation by Mohit Kumb-

hat, Kevin Moss, and Derrick Stolee [25].

ABSTRACT. List coloring generalizes graph coloring by requiring the color of a vertex to be selected
from a list of colors specific to that vertex. One refinement of list coloring, called choosability with
separation, requires that the intersection of adjacent lists is sufficiently small. We introduce a new
refinement, called choosability with union separation, where we require that the union of adjacent lists is
sufficiently large. For t > k, a (k, t)-list assignment is a list assignment L where |L(v)| > k for all vertices
v and |L(u)UL(v)| > t for all edges uv. A graph is (k,t)-choosable if there is a proper coloring for every
(k,t)-list assignment. We explore this concept through examples of graphs that are not (k, ¢)-choosable,
demonstrating sparsity conditions that imply a graph is (k,t)-choosable, and proving that all planar

graphs are (3,11)-choosable and (4, 9)-choosable.

2.1 Introduction

For a graph G and a positive integer k, a k-list assignment of G is a function L on the
vertices of G such that L(v) is a set of size at least k. An L-coloring is an assignment ¢ on the
vertices of G such that c¢(v) € L(v) for all vertices v and ¢(u) # ¢(v) for all adjacent pairs uv. A
graph is k-choosable if there exists an L-coloring for every k-list assignment L of G, and G is k-
colorable if there exists an L-coloring for the k-list assignment L(v) = {1,..., k}. The minimum
k for which G is k-choosable is called the choosability or the list-chromatic number of G and
is denoted by x/(G). Erdés, Rubin, and Taylor [12] and independently Vizing [36] introduced

the concept of list coloring and demonstrated that there exist graphs that are k-colorable but

13

not k’-choosable for all &’ > k > 2. Since its introduction, choosability has received significant
attention and has been refined in many different ways.

One refinement of choosability is called choosability with separation and has received recent
attention [2, 7, 17, 21, 32| since it was defined by Kratochvil, Tuza, and Voigt [24]. Let G be
a graph and let s be a nonnegative integer called the separation parameter. A (k,k — s)-list
assignment is a k-list assignment L such that |L(u)NL(v)| < k—s for all adjacent pairs uv. We
say a graph G is (k, t)-choosable if, for any (k,t)-list assignment L, there exists an L-coloring of
G. As the separation parameter s increases, the restriction on the intersection-size of adjacent
lists becomes more strict.

We introduce a complementary refinement of choosability called choosability with union
separation. A (k,k+ s)-list assignment is a k-list assignment L such that |L(u) U L(v)| > k+s
for all adjacent pairs uv. We similarly say G is (k, t)-choosable to imply choosability with either
kind of separation, depending on t < k or k < t. Observe that if G is (k,k + s)-choosable,
then G is both (k,k — r)-choosable and (k, k + r)-choosable for all » > s. Note that if L is a
(k,k — s)-list assignment, we may assume that |L(v)| = k as removing colors from lists does
not violate the intersection-size requirement for adjacent vertices. However, when considering a
(k, k+ s)-list assignment, we may not remove colors from lists as that may violate the union-size
requirement for adjacent vertices. Due to this asymmetry, we do not know if there is a function
f(k,s) such that every (k,k — s)-choosable graph is also (k, k + f(s))-choosable.

Thomassen [35] proved that all planar graphs are 5-choosable. The main question we
consider regarding planar graphs and choosability with union separation is identifying minimum
integers t3 and t4 such that all planar graphs are (3,t3)-choosable and (4, t4)-choosable. We
demonstrate that 6 <t3 <11 and 6 <ty <9.

Kratochvil, Tuza, and Voigt [23] proved that all planar graphs are (4,1)-choosable and
conjecture that all planar graphs are (4, 2)-choosable. Voigt [37] constructed a planar graph

that is not (4, 3)-choosable and hence is not (4, 5)-choosable. We show that ¢4 < 9.

14

Theorem 2.1.1. All planar graphs are (4,9)-choosable.

A chorded (-cycle is a cycle of length ¢ with one additional edge. For each ¢ € {5,6,7},
Berikkyzy et al. [2] demonstrated that if G is a planar graph that does not contain a chorded
¢-cycle, then G is (4,2)-choosable. The case ¢ = 4 is notably missing from their results,
especially since Borodin and Ivanova [5] proved that if G is a planar graph that does not
contain a chorded 4-cycle or a chorded 5-cycle, then G is 4-choosable. We prove that if G is a
planar graph containing no chorded 4-cycle, then G is (4, 7)-choosable (see Theorem 2.5.1).

Kratochvil, Tuza, and Voigt [23] conjecture that all planar graphs are (3,1)-choosable.
Voigt [38] constructed a planar graph that is not (3,2)-choosable and hence is not (3,4)-
choosable. In Section 2.2 we construct graphs that are not (k,t)-choosable, including a planar
graph that is not (3, 5)-choosable. This hints towards a strong difference between intersection

separation and union separation. We show that ¢35 < 11.
Theorem 2.1.2. All planar graphs are (3,11)-choosable.

We also consider sparsity conditions that imply (k,t)-choosability. For a graph G, the

2|E(H)|
V(H)]

mazximum average degree of G, denoted Mad(G), is the maximum fraction among sub-
graphs H C G. If Mad(G) < k, then G is (k — 1)-degenerate and hence is k-choosable. Since
Mad (K1) = k and x¢(Kg+1) > k, this bound on Mad(G) cannot be relaxed. In Section 2.4,
we prove that G is (k, t)-choosable when Mad(G) < 2k—o(1) where o(1) tends to zero as t tends
to infinity. This is asymptotically sharp as we construct graphs that are not (k,t)-choosable
with Mad(G) = 2k — o(1).

Many of our proofs use the discharging method. For an overview of this method, see the

surveys of Borodin [4], Cranston and West [9], or the overview in Berikkyzy et al. [2]. We use

a very simple reducible configuration that is described by Proposition 2.3.1 in Section 2.3.

2.1.1 Notation

A (simple) graph G has vertex set V(G) and edge set E(G). Additionally, if G is a plane
graph, then G has a face set F(G). Let n(G) = |V(G)| and e(G) = |E(G)|. For a vertex

v € V(G), the set of vertices adjacent to v is the neighborhood of v, denoted N(v). The degree

15

of v, denoted d(v), is the number of vertices adjacent to v. We say v is a k-vertex if d(v) = k,
a k~-vertex if d(v) < k and a k'-vertex if d(v) > k. Let G — v denote the graph given by
deleting the vertex v from G. For an edge uv € F(G), let G — uv denote the graph given by
deleting the edge uv from G. For a plane graph G and a face f, let ¢(f) denote the length of
the face boundary walk; say f is a k-face if £(f) = k and a k™-face if £(f) > k.

2.2 Non-(k,t)-Choosable Graphs

Proposition 2.2.1. For allt > k > 2, there exists a bipartite graph that is not (k,t)-choosable.

Proof. Let uy,...,u; be nonadjacent vertices and let L(u1),..., L(u) be disjoint sets of size
t —k+ 1. For every element (ay,...,a) € Hle L(u;), let A={ay,...,ax}, create a vertex x4
adjacent to u; for all i € [k], and let L(x4) = A (see Figure 2.1). Notice that |L(u;)UL(z4)| =t
for all ¢ € [k] and all vertices x4, so L is a (k, t)-list assignment. If there is a proper L-coloring
c of this graph, then let A = {c(u;) : i € [k]}; the color ¢(x4) is in A and hence the coloring is

not proper. O

k vertices

(t — k + 1)¥ vertices

Figure 2.1: A graph that is not (k,t)-choosable.

2k(t—k+1)*

k(—k+1)F? 88

Observe that the graph constructed in Proposition 2.2.1 has average degree
t increases, this fraction approaches 2k from below. Observe that when k& = 2 the graph built

in Proposition 2.2.1 is planar, giving us the following corollary.
Corollary 2.2.2. For allt > 2, there exists a bipartite planar graph that is not (2,t)-choosable.
We now construct a specific planar graph that is not (3, 5)-choosable.

Proposition 2.2.3. There ezists a planar graph that is not (3,5)-choosable.

16

abeocs

Lol | e
DN

abeygeq

Figure 2.2: A planar gadget with a (3, 5)-list assignment.

Proof. Let A and B be disjoint sets of size three, and let cq,...,cq4 be distinct colors not in
AU B. Let vyq and vp be two vertices and let L(vg) = A and L(vg) = B. For each a € A and
b € B, consider the graph displayed in Figure 2.2; create a copy of this graph where the left
vertex is v4 and the right vertex is vp. Assign lists to the interior vertices of this graph using
the colors {a, b, c1,...,cq} as shown in the figure. Observe that L is a (3, 5)-list assignment. If
there exists a proper L-coloring, then let a € A be the color on v4 and b € B be the color on vpg
and consider the copy of this gadget using these colors. Observe that in the 4-cycle induced by
the neighbors of the center vertex, all four colors ¢y, ..., ¢4 must be present. Then the coloring

is not proper as the center vertex is assigned one of these colors.]

2.3 Reducible Configurations

To prove all of our main results, we consider a minimum counterexample and arrive at
a contradiction through discharging. In this section, we describe the structures that cannot

appear in a minimum counterexample.

Proposition 2.3.1. Let G be a graph, uv an edge in G, t > k > 3, and a = |N(u) N N(v)|
with a € {0,1,2}. Let L be a (k,t)-list assignment and suppose that there exist L-colorings of

G—u, G—v, and G —wv. If d(u) + d(v) <t + a, then there exists an L-coloring of G.

Proof. 1f |L(u)| > d(u), then the L-coloring of G — u extends to an L-coloring of G as there is
a color in L(u) that does not appear among the neighbors of u; thus we assume |L(u)| < d(u).
By a symmetric argument we may assume |L(v)| < d(v). If L(u) N L(v) = &, then the L-
coloring of G —wv is an L-coloring of G; thus we assume |L(u) N L(v)| > 1 and |L(u) U L(v)| <

[L(w)] + [L(v)] =1 < d(u) +d(v) - 1.

17

Note that t+2 > d(u) +d(v) > |L(u)|+ |L(v)| > t+1. Thus a > 1 and either |L(u)| = d(u)
or |L(v)| = d(v); assume by symmetry that |L(u)| = d(u). Let ¢ be an L-coloring of G — .
For z € {u,v}, let L'(x) be the colors in L(x) that do not appear among the neighbors y €
N(z)\ {u,v}. Since ¢(v) € L'(v), we have L'(v) # &. Since |L(u)| = d(u), we have L' (u) # @.
Observe that |L'(u) UL (v)] > |L(u) UL(v)|—|N(u)UN@)|+2 >t — (d(u) +d(v) —a)+2 > 2.
Thus either |L'(u)] = |L'(v)| = 1 or |L'(x)] > 2 for some x € {u,v} and therefore there are
choices for ¢'(u) € L'(u) and ¢(v) € L'(v) such that (u) # d(v). If d(y) = ¢(y) for all

y € V(G) \ {u, v}, then ¢ is an L-coloring of G. O

2.4 Sparse Graphs

In this section, we determine a relationship between sparsity and choosability with union

separation.

Theorem 2.4.1. Let k > 2 andt > 2k—1. If G is a graph with Mad(G) < 2k (1 — t%), then

G is (k,t)-choosable.

Proof. Let ¢ = 2k— % Observe that since t > 2k —1 that ¢ > k. For the sake of contradiction,
suppose there exists a graph G with Mad(G) < ¢ and a (k,t)-list assignment L such that G
is not L-choosable. Select (G, L) among such pairs to minimize n(G) + e(G). Observe that
k <|L(v)| <d(v) for every vertex.

We use discharging to demonstrate Mad(G) > ¢, a contradiction. Assign charge d(v) to

every vertex v, so the total charge sum is equal to 2e(G). We discharge using the following

rule:

R) If w is a vertex with d(u) < ¢, then u pulls charge <) fom each neighbor of
d(u)

u.

Suppose that v is a vertex that loses charge by (R). Then there exists an edge uv € E(G)
where d(u) < ¢. Note that since G —uwv is L-choosable, |L(u)NL(v)| > 1 and d(u)+d(v) > t+1.
It follows that

dv)>t+1—d(u) >t+1—-c>c.

18

Therefore, a vertex either loses charge by (R) or gains charge by (R), not both.
Observe that if d(u) < ¢, then u pulls enough charge by (R) to end with charge at least c.
Finally, suppose v is a vertex with d(v) =d > ¢.
If d >t+1—k, then neighbors of v pull charge at most % from v. The final charge on v

is given by

¢k % — ¢ 2k — (2k — 27 2% 2%
d—d =d —d o) g) > 1 —k)— =
< k > < k) (k <t+1)—(jL i

Now suppose that d < t+ 1 — k. If a vertex u pulls charge from v by (R), then d(u) > d' =

t+1—d. Thus, v loses charge at most ‘;l,d, to each neighbor. The final charge on v is given by

c—d c—d
() efr-5)

Observe that d M > cif and only if 2(t4+1—d)d — (t+1)c > 0. By the quadratic for-
t+1—d

mula, this polynomial (in d) has roots at d € {% (t +1£/E+1)(t+1- 2c)) }; the discrimi-
nant is nonnegative since (t+1)((t+1)—2¢) = (t+1—2k)2. Thus, the final charge on v is below

cif and only if d < k or d > t+1—k, but we are considering d where k < ¢ <d<t+1—k. 0O

Note that Theorem 2.4.1 implies that a graph G is (4,15)-choosable when Mad(G) <
8(1— 1%) = 6. If G is planar, then Mad(G) < 6 and hence is (4, 15)-choosable. There is
no t such that Theorem 2.4.1 implies all planar graphs are (3,t)-choosable. We now directly

consider planar graphs and find smaller separations suffice.

2.5 (4,t)-choosability

Proof of Theorem 2.1.1. Suppose G is a plane graph minimizing n(G) + e(G) such that G is
not L-colorable for some (4,9)-list assignment L. By minimality of G, we can assume that
d(v) > |L(v)] > 4 for all vertices v and |L(u) N L(v)| > 1 for all adjacent pairs uv. By
Proposition 2.3.1, if uv is an edge in G, then d(u) 4 d(v) > 9+ min(|N(u) N N(v)|,2). Observe

that min(|V(u) N N(v)|,2) is at least the number of 3-faces incident to the edge uv.

19

For each v € V(G) and f € F(G) define u(v) = d(v) — 4 and v(f) = ¢(f) — 4. Note that
the total initial charge of G is —8. For a vertex v, let t3(v) be the number of 3-faces incident

to v. Apply the following discharging rule.

(R1) If v is a 5T-vertex and f is an incident 3-face, then v sends charge t‘; ((?) to f.

All vertices and 4" -faces have nonnegative charge after applying (R1).

Let f be a 3-face with incident vertices u, v, w where d(u) < d(v) < d(w). Since v(f) = —1,
if suffices to show that f receives charge at least 1 in total from u, v, and w by (R1).

If d(u) > 6, then % > 1 for all z € {u, v, w} and each vertex u, v, and w sends charge at
least %, giving f nonnegative final charge.

If d(u) = 4, then d(w) > d(v) > 7 since d(u) + d(v) > 11 by Proposition 2.3.1. If d(v) > 8,
then each of v and w send charge at least %, giving f nonnegative final charge. Thus, suppose
d(v) = 7. Since d(u) + d(v) = 11, there is not another 3-face incident to the edge wv by
Proposition 2.3.1. Thus, t3(v) < 6 and hence v sends charge at least % to f. Similarly, w sends
charge at least % so f has nonnegative final charge.

If d(u) = 5, then d(v) > 6 since d(u) + d(v) > 11 by Proposition 2.3.1. If d(v) > 7,
then vertex w sends charge at least % and each of v and w send charge at least %, giving f
nonnegative final charge. If d(v) = 6, then there is not another 3-face incident to the edge uv
by Proposition 2.3.1. Thus, t3(v) < 5 and v sends charge at least % Similarly, w sends charge
at least % so f has nonnegative final charge.

We conclude that all vertices and faces have nonnegative charge, so G has nonnegative total
charge, a contradiction.

O

Theorem 2.5.1. If G is a planar graph and does not contain a chorded 4-cycle, then G is
(4,7)-choosable.

Proof. Suppose G is a plane graph minimizing n(G) + e(G) such that G does not contain a
chorded 4-cycle and G is not L-colorable for some (4, 7)-list assignment L. By minimality of G,

we can assume that d(v) > |L(v)| > 4 for all vertices v and |L(u) N L(v)| > 1 for all adjacent

20

pairs uv. In particular, no two adjacent vertices of degree 4 share a 3-face by Proposition 2.3.1.
Let the initial charge of a vertex be d(v) — 4 and that of a face be ¢(f) — 4. Note that the
total initial charge of G is —8. For a vertex v, let t3(v) be the number of 3-faces incident to v.

Apply the following discharging rule.

(R1) If v is a 5T-vertex and f is an incident 3-face, then v sends charge t‘; ((1;)) to f.

Since chorded 4-cycles are forbidden, no two 3-faces can share an edge. Hence for each vertex
v € V(G), there are at most L@J 3-faces incident to v. It follows that vertices of degree at least
5 send charge at least % to each incident 3-face. Since a 3-face has at most one incident 4-vertex

by Proposition 2.3.1, all 3-faces have nonnegative final charge after (R1). Hence all vertices and

faces have nonnegative final charge, so G’ has nonnegative total charge, a contradiction. O

2.6 (3,11)-choosability

Proof of Theorem 2.1.2. Suppose G is a plane graph minimizing n(G) + e(G) such that G is
not L-colorable for some (3,11)-list assignment L. By minimality of G, we can assume that
d(v) > |L(v)| > 3 for all vertices v and |L(u) N L(v)] > 1 for all adjacent pairs uv. By
Proposition 2.3.1, if wv is an edge in G, then d(u) +d(v) > 11+ min(|N(u) NN (v)[,2). Observe
that min(|/V(u) N N(v)|,2) is at least the number of 3-faces incident to the edge uv.

For each v € V(G) and f € F(G) define initial charge functions u(v) = d(v) — 6 and
v(f) = 2¢(f) — 6. By Euler’s formula, total charge is —12. Apply the following discharging

rules:

(R1) Let v be a vertex and u € N (v).

(a) If d(v) = 3, then v pulls charge 1 from w.

(b) If d(v) = 4, then v pulls charge 5 from w.

N[

(c¢) If d(v) = 5, then v pulls charge = from u.

U=

(R2) If f is a 4*-face and uv is an edge incident to f with d(u) < 5, then f sends charge % to

.

21

We claim the final charge on all faces and vertices is nonnegative. Since the total charge
sum was preserved during the discharging rules, this contradicts the negative initial charge sum.
Observe that no two 5~ -vertices are adjacent by Proposition 2.3.1, so each face f is incident

to at mos vertices of degree at most five. If f is a 3-face, then f does not lose charge. If

f is a 4*-face, then f loses charge at most 1 per incident 5~ -vertex. We have K(Z—f) <20(f)—6
whenever £(f) > 4, so f has nonnegative final charge.

Each 5~ -vertex gains exactly enough charge through (R1) so that the final charge is non-
negative.

Suppose v is a 6T-vertex. We introduce some notation to describe the structure near v. For
an edge uv, let a(uv) be the number of 3-faces incident to the edge uv. Note that if d(u) < 6
and a(uv) = 0, then v sends charge at most 1 to u by (R1) and gains charge at least 1 via uv
by (R2), giving a nonnegative net difference in charge. Thus, if v ends with negative charge, it
must be due to some number of 5~ -vertices u € N(v) with a(uv) > 0.

For k € {3,4,5}, let Dy be the set of neighbors u of v such that u is a k-vertex and
a(uww) = 2; let di, = |Dy|. Let D be the set of neighbors u of v such that u is a 3-vertex and
a(uww) = 1; let d§ = |Dj|. If u € Dy, then v gains no charge via uv in (R2). If v € D3, then v
loses charge 1 to u in (R1) but gains charge % via uv in (R2). Therefore, the final charge of v
at least p(v) — dg — 3dj — 3d4 — +ds. Recall pu(v) = d(v) — 6, so if v has negative final charge,
then

1 1 1

Let D = D3 U D3 U Dy U Ds. For each 3-face uwvw incident to v, at most one of u,w is in
D. Ifue D, we Nw)\ D, and uvw is a 3-face, then u gives a strike to w. Each vertex in
D3 U D4 U D5 contributes two strikes, and each vertex in D3 contributes one strike. The total
number of strikes is 2ds + dj + 2d4 + 2d5 and each vertex w € N(v) \ D receives at most two

strikes, so 2d3 + d5 + 2d4 + 2ds < 2(d(v) — (d3 + d3 + d4 + ds)). Equivalently,

2ds + ;d; + 2d4 + 2d5 < d(v). (2.2)

22

We now have d(v) > 6 and the two inequalities (2.1) and (2.2). Also recall that since d(u) +
d(v) > 11+ min(|N(u) NN (v)|,2), we have the following implications: if d(v) < 10 then d3 = 0;
if d(v) <9, then dj + dy = 0; if d(v) < 8, then ds = 0.

If we subtract (2.1) from (2.2), then we find the following inequality.
. 39
ds + d3 + §d4 + 5d5 < 6. (2.3)

There are 77 tuples (ds, d3, d4, d5) of nonnegative integers that satisfy (2.3); see Appendix A for
the full list. None of these tuples admit a value d(v) that satisfies (2.1) and the implications.
Therefore, there is no 6™-vertex v with negative final charge. We conclude that all vertices and
faces have nonnegative final charge. But total charge is —12, a contradiction. Thus a minimum

counterexample does not exist and all planar graphs are (3, 11)-choosable.]

23

CHAPTER 3. TOWARDS (3,10)-CHOOSABILITY

3.1 Introduction

We suspect that Theorem 2.1.2 can be made stronger. In particular, we introduce Conjec-
ture 3.2.1. An approach using discharging has yielded promising results, but the complexity
of the discharging argument increased significantly when stepping from (3, 11)-choosability to

(3,10)-choosability. We provide Theorem 3.2.2 as a partial result.

3.2 (3,10)-Choosability
Conjecture 3.2.1. All planar graphs are (3,10)-choosable.

We introduce some notation to aid in the description of configurations relevant to the
discharging argument. These are similar to those in the proof of Theorem 2.1.2: Let G be a
plane graph. For a vertex v € V(G) and for k € {3,4,5}, let Di(v) be the set of neighbors u
of v such that w is a k-vertex and edge uv is incident to two 3-faces. Let di(v) = |Dg(v)|. Let
D3;(v) be the set of neighbors u of v such that such that v is a 3-vertex and exactly one face

incident to edge uv is a 3-face. Let dj(v) = |Dj(v)|.

Theorem 3.2.2. Suppose G is a plane graph of minimum (order + size) such that G is not
(3,10)-choosable, and let L be a (3,10)-list assignment of G that does not admit a proper L-

coloring. Then G contains a vertex v that satisfies one of the following cases:
e deg(v) =11, L(v) =9, and (d3(v),d5(v),ds(v),ds(v)) = (3,3,0,0)
e deg(v) =11, L(v) =9, and (d3(v),d5(v),ds(v),ds(v)) = (4,2,0,0)

e deg(v) =12, L(v) € {9,10}, and (d3(v), d5(v),ds(v),ds(v)) = (5,1,0,0)

24

e deg(v) =12, L(v) € {9,10}, and (d3(v), d5(v),ds(v),ds(v)) = (6,0,0,0)

Before proceeding with the proof of Theorem 3.2.2, we provide Lemmas 3.2.3, 3.2.4, and

3.2.5; each of which describes a reducible configuration.

3.2.1 Reducible Configurations

Lemma 3.2.3. Let C1 be the graph shown in Figure 3.1. Suppose a plane graph G contains a
(not necessarily induced) copy of C'1 wherein deg(v) = 10 and deg(uz) = deg(us) = deg(ug) =
3. Suppose L is a (3,10)-list assignment of G such that |L(v)| < 10 and every proper subgraph

of G can be properly L-colored. Then G can be properly L-colored.

u3 Us
Ug
Uz Ug

Ul »

. U7

Figure 3.1: Configuration C1.

Proof: We will extend a proper L-coloring ¢ of G — {v, u2, u4, ug} to G. Note that |L(w)| <
deg(w) for every w € V(G), or else a proper coloring of G — {w} extends to a proper coloring of
G. In particular, | L(ug2)| = 3. We know G—{ugv} can be properly colored, so |L(uz)NL(v)| > 1.
Hence |L(v)| + |L(u2)| = |L(v) U L(ug)| + |L(v) N L(ug)| > 11 and |L(v)| > 8. We will consider
the cases |L(v)| = 8 and |L(v)| = 9 separately.

First suppose |L(v)| = 8. Let the colors chosen for uy,us, us, and u7 in ¢ be ¢y, ¢3, ¢5, and
c7 respectively. For i € {2,4,6}, if {¢;—1,¢iv1} € L(u;), then u; is guaranteed an available
color if colored after v. We know |L(u;)\L(v)| > 2, so if {¢i—1,civ1} € L(u;) and ¢;—1 € L(v)
or ¢i11 € L(v), then u; is guaranteed an available color if colored after v. If at least three

of ¢1,¢3,c5, and ¢7 lie in L(v), then we can obtain a proper coloring by greedily coloring in

25

order v, ug, uq, ug. If exactly two of ¢1, 3, c5, and c7 lie in L(v), then at most one of ug, ug, and
ug, is not guaranteed an available color if colored after v. Greedily color in an ordering with
this vertex before v and the others after, and we have a proper coloring. If one or fewer of
c1,¢3,¢5, and ¢y lie in L(v), then we can obtain a proper coloring by greedily coloring in order
U2, Ug, Ug, V.

Now suppose |L(v)| = 9. Again let the colors chosen for uj,us, us, and ur be ¢, cs, c5, and
¢y respectively. For i € {2,4,6}, if {c;—1,ciy1} € L(u;), then u; is guaranteed an available
color if colored after v. We know |L(u;)\L(v)| > 1, so if {¢;_1,civ1} € L(u;) N L(v), then w; is
guaranteed an available color if colored after v. If {¢1,¢3,¢5,¢7} € L(v), then we can obtain a
proper coloring by greedily coloring in order v, us, uq, ug. If exactly three of ¢1, c3, ¢5, and c¢7 lie
in L(v), then at least one of ug, u4, and ug can be colored after v. Greedily color in an ordering
with this vertex after v and the others before, and we have a proper coloring. If two or fewer of
c1,¢3,¢5, and ¢y lie in L(v), then we can obtain a proper coloring by greedily coloring in order

UL, Uy, UG, V. OJ

Lemma 3.2.4. Let C2 be the graph shown in Figure 3.2. Suppose a graph G contains a (not
necessarily induced) copy of C2 wherein deg(v) = 10 and deg(uz) = deg(uy) = 3. Suppose L
is a (3,10)-list assignment of G such that |L(v)| = 10 and every proper subgraph of G can be

properly colored. If one of the following holds, then G can be properly colored.

(a) |L(us)| = deg(uz) — 1
(b) |L(us)| = deg(us) — 2, exactly one of ujug and ugus lies in E(G), and deg(ug) < 10

(¢) |L(us)| = deg(us) — 3, uius, ugus € E(G), and deg(us) < 11

Proof: First note that |L(w)| < deg(w) for every w € V(G), or else a proper coloring of
G — {w} extends to a proper coloring of G. Now consider a proper coloring of G — {v}. If there
is no way to extend the coloring to GG, then it must be the case that each neighbor of v has a
distinct color. Let the color choices of ui,us,us,us, and us be a, b, c,d, and e respectively. If
L(ug) # {a,b,c}, then we can choose b for v and recolor uy. Similarly, we can find a proper

coloring if L(uy4) # {c,d,e}. So suppose L(uz) = {a,b,c} and L(u4) = {c,d, e}.

26

u3

U2 Ug

U] @

o U5

Figure 3.2: Configuration C2.

Let k = [{ujus, usus} N E(G)|. In case (a), there at most |L(uz)| — 2 — k neighbors of us
outside {uy,u2,v,uq,us}. So, there are at least 2 + k color choices for ug that do not interfere
with vertices outside {u, ug,v, u4, us}, one of which is color c¢. We will recolor ug with another
available color, denoted . If ujuz € E(G), then we have enough available colors to choose
¢ # a. Similarly, if ugus € E(G), then we have enough available colors to choose ¢ # e. To
complete the coloring, color ug and wug with c¢. Since |L(v)| = deg(v) and two neighbors of v
have the same color, there is an available color for v.

In cases (b) and (c), there at most |L(ug)| — 2 neighbors of uz outside {u1,u2,v,uq,us}.
So, there are at least two color choices for ug that do not interfere with vertices outside
{u1, uz,v,uy,us}, one of which is color ¢. We denote the other color ¢. We know |L(ug)| < 8
and |L(ug) U L(ug)| > 10, so |L(u2)\L(u3)| > 2 and a,b ¢ L(ugz). Similarly, d,e ¢ L(us). It
follows that ¢ & {a,e}. So, if we color ug with ¢ and uy and uy with ¢, there is an available

color for v that completes a proper coloring. O

Lemma 3.2.5. Suppose G is a plane graph with (3,10)-list assignment L. If a vertez u € V(Q)
satisfies |L(u)| = 8 and ds(u) + % > deg(u) — 7, and G — {u} has a proper L-coloring, then

G has a proper L-coloring.

Proof: Let D = D3(u) U D3(u), P = N(u)\D, and p = |P|. Choose a proper L-coloring of

G — D — {u}. We call each vertex in G — D — {u} precolored. We claim the coloring extends

27

to a proper L-coloring of G. In particular, we claim there is an ordering of D U {u} along
which we may greedily color to obtain a proper coloring. Any vertex in D colored before v is
guaranteed an available color, since its list size is three and at most two neighbors have already
been colored.

In the coloring, p neighbors of u are precolored. Let F' C P be the set of precolored vertices
that have had a color chosen which is contained in L(u), and let f = |F'|. For vertex v € F, let
the color chosen for v be a.. Suppose there exists some w € D incident to v. If o ¢ L(w), then
no matter where w is in our ordering, there will be a color available for w. Suppose a € L(w).
We know |L(w)| = 3 and |L(w) U L(u)| > 10, so |L(v) N L(u)] < 1 and L(v) N L(u) = {a}.
Again, no matter where w is in the ordering of a greedy coloring, there will be a color available
for w. In both cases, we choose to color w after u. Vertices in D not incident to a vertex in F'
will be colored before w.

For each v € F, we say v gives a strike to any adjacent vertex in D. A strike denotes a
counter. Each vertex in Ds(u) is adjacent to two vertices in P, and each vertex in Dj(u) is
adjacent to one vertex in P. So, there are 2d3(u) + d5(u) edges between P and D. Each vertex
in P is adjacent to at most two vertices in D, so there are at most 2(p — f) edges between
vertices in P\F and vertices in D. It follows that there are at least 2d3(u) + d5(u) — 2(p — f)
edges between vertices in F' and vertices in D. A strike is given along each such edge, and each
vertex in D receives at most two strikes, so there are at least ds(u) + %(u) — (p — f) vertices
with at least one strike in D. Each such vertex is colored after u in our ordering, so at most
(deg(u) — p) — (ds(u) + %(u) —(p—f)) = deg(u) — ds(u) — %(u) — f vertices in D are colored
before u in our ordering. Each such vertex is potentially forced to choose a color in L(u),

so including the f precolored vertices with a color choice already in L(u), there are at least

8 — (deg(u) — ds(u) — dgéu)) available colors available for u in our greedy coloring. If there is at

least one available color, we will obtain a proper coloring of G. So if d3(u)+ %(u) > deg(u) —7,

we can properly color G.]

28

3.2.2 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2: Suppose that G is a plane graph of minimum order + size such
that G is not (3, 10)-choosable, and let L be a (3,10)-list assignment of G that does not admit
a proper L-coloring. Since G is a minimum counterexample, G does not contain any reducible
configurations. From Proposition 2.3.1, G does not contain any vertices of degree < 2, any
pair of adjacent vertices with degrees totaling < 10, any pair of adjacent vertices sharing a 3-
face with degrees totaling 11, or any pair of adjacent vertices sharing two 3-faces with degrees
totaling 12.

For each v € V(G) and f € F(G) define initial charge functions pg(v) = deg(v) — 6 and
vo(f) = 2¢(f) — 6. By Euler’s formula, total charge is —12. Apply the following discharging

rules:

(R1) (a) Each 3-vertex pulls charge 1 from adjacent vertices.

(b) Each 4-vertex pulls charge % from adjacent vertices.

from adjacent vertices.

(S

(c) Each 5-vertex pulls charge

(R2) If f is a 4T-face, then for each edge uv incident to f with deg(u) < 5, f sends charge %

to v.

(R3) Let v be a vertex with negative charge after (R2). For each vertex w adjacent to v such

that w and v share two neighbors in D3(v), v pulls charge % from w.

For i € {1,2,3}, let p;(v) and v;(f) be the charge on each vertex v and face f immediately

after applying (Ri). We claim the final charge on all faces and vertices is nonnegative. Since

the total charge sum was preserved during the discharging rules, this contradicts the negative

charge sum from the initial charge values. Observe that no two 5~ -vertices are incident, so
o)

each face f is incident to < =5~ such vertices. If f is a 3-face, then f loses no charge. If f is

a 41-face, then f loses charge at most 1 per incident 5~ -vertex. We have @ < 20(f) — 6, so

V3<f) Z 0

Each vertex that loses charge in (R3) is adjacent to a 3-vertex, so no 7~ -vertices lose charge

by (R3). Each 5~ -vertex gains exactly enough charge through (R1) so that the final charge is

29

nonnegative. Suppose v is a 6T-vertex. If u is an adjacent 3-vertex such that wwv is incident
to two 4T -faces, then v loses charge 1 to u in (R1) but gains charge 1 back from each face via
edge uwv in (R2). If u is an adjacent 4-vertex or 5-vertex such that wv is incident at least one
4T -face, then v loses charge < % to u in (R1) but gains charge > % back via edge uv in (R2).
So, it suffices to count the remaining cases.

If u € Dy(v) for k = 3,4, or 5, then v loses charge 1, %, and % to u respectively in (R1); no

charge is gained via wv in (R2). If u € Dj(v), then v loses charge 1 to u in (R1) but gains 3
charge back via uv in (R2). So, p2(v) = po(v) —ds(v) — 5dj(v) — $ds(v) — £d5(v). Recall po(v) =
deg(v) — 6, so if pa(v) < 0, then we must have deg(v) — 6 < d3(v) + 3d5(v) + 3da(v) + Ld5(v).

Let D(v) = D3(v) U D4(v) U Ds(v) U Dj(v). For each 3-face wvw incident to v, at most
one of u,w is in D(v). If u € D(v), we say u gives a strike to w. Similarly, if w € D(v),
then w gives a strike to u. Each vertex in D3(v) U D4(v) U Ds(v) contributes two strikes, and
each vertex in Dj(v) contributes 1 strike. So, the total number of strikes is 2(d3(v) + da(v) +
ds(v)) + dj(v). Each vertex adjacent to v that is not in D can have at most two strikes, so
d3(v) + da(v) + ds(v) + di(v) + 5(2(ds(v) + da(v) + ds5(v)) + dj(v)) < deg(v). Equivalently,
2(d3(v) + da(v) + d5(v)) + 2d3(v) < deg(v).

We have two inequalities: d3(v) + 5d5(v) + 1da(v) + %dg)(v) > deg(v) — 6 and 2(ds(v) +
da(v) + d5(v)) + 3d5(v) < deg(v). We also note that our reducible configurations justify the
following: If v is a 97 -vertex, then dz(v) = 0. If v is an 8 -vertex, then dj(v) =dsy = 0. If v is
a 7~ -vertex, then ds(v) = 0. It is also clear that d3(v),d%(v), ds(v),ds(v) > 0. With an integer
program, we may verify that the only valid integer 5-tuples (deg(v), ds(v), d5(v), da(v), ds(v))

that satisfy the above inequalities are those in Table 3.1.

Table 3.1: Cases with negative charge after applying (R2).

deg(v) d3 dz;) d4 d5 175
10 5101010 -1
10 [4]1]0]0]|—-1/2
100 |40 1]0]-1/2
100 4|00 1]=1/5

30

Now consider configurations C1 (Figure 3.1) and C2 (Figure 3.2) described by Lemmas 3.2.3
and 3.2.4. If |L(v)| <9, then in each case, the graph contains C1. So, suppose |L(v)| = 10.
Let u be a neighbor of v such that v and v share two neighbors in D3(v). Configuration C2
ensures that |L(u)| < deg(u) — 2 and, in particular, po(u) > 0. In (R3), u sends charge & to
v. Enough charge is sent to ensure ps(v) > 0 in all of the above cases. We are left to consider
3 (w).

Suppose p3(u) < 0. Let v1,v2,...,V4eg(u) be the neighbors of u in clockwise order, such
that v = v3. Note that Dz(v) N (D3(u) U Dj(u)) = {v2,v4}, and uvevvy form a 4-cycle with
chord uv. If vg € D3(u), then vy is adjacent to v and hence does not pull charge from u
during (R3). If vo € D3(u), then vy and v; are not adjacent, so v; does not pull charge from
u during (R3). Similarly, vs does not pull charge from u during (R3). It follows that at most
3 (d3(u)+dj(u)) vertices pull charge from u during (R3). So, p3(u) > pa(u) — 15 (ds(u) +dj(u)).
If we return to the integer program and weaken the charge inequality to allow 5-tuples that

satisfy po(u) < 5(ds(u) + d5(u)), we have the solutions given in Table 3.2.

Table 3.2: Cases with negative charge after applying (R3).

case | deg(u) | ds | di | d4 | d
g(w) | ds | ds | du | d5 | p> case | deg(u) | dg | d | da | d5 | p2
1 9 0]6|10]O0 0
10 10 31011210 0
2 10 1 51010 1/2
11| 10 [3]1]0]1]|3/10
3 10 2141010 0
12 10 4 10| 0 1| -1/5
4 10 312010 0
13 11 |3(3]0]o0] 12
) 10 4101010 0
14 11 4 12101]0 0
6 10 | 4|1]0]0]-1/2
15 11 5101010 0
7 10 5101010 -1
16 12 5 1 010 1/2
8 10 s L))o ¥ 17 12 610|010 0
9 10 |4l0|1]o0]-1/2

We can rule out most of these cases by considering reducible configurations. We know
is incident to a degree 3 vertex x, wherein |L(u) N L(z)| > 1 or else a proper L-coloring of
G — ux extends to a proper L-coloring of G, so |L(u)|+ 3 = |L(u)| + |L(x)| = |L(u) U L(z)| +
|L(uw) N L(z)| > 11 and |L(u)| > 8. Recall |L(u)| < deg(u) — 2. This rules out case 1. We

have already established ua(u) > 0, so cases 6, 7, 9, and 12 are ruled out. If deg(u) < 10 and

31

|D3(v) N D3(u)| > 1, then |L(u)| < deg(u) — 3 or else the graph contains C2. In cases 2, 5, 8,
10, and 11, there must be at least one such v with |D3(v) N D3(u)| > 1, so these cases can be
ruled out. If deg(u) < 11 and |D3(v) N D3(u)| = 2, then |L(u)| < deg(u) — 4 or else the graph

contains C2. This rules out case 15. So, we are left with the cases shown in Table 3.3.

Table 3.3: Remaining cases with negative charge after applying (R3).

case | deg(u) | d3 | d5 | da | d5 | po |L(w)|
3 10 2141000 8
4 10 312,010 0 8
13 11 313]01]01]1/2 8or9
14 11 4121010 0 8or9
16 12 511[101]01]1/2]8,9,0r10
17 12 6 0] 0| 0] 0 |89 0rl0

In Table 3.3, we include possible values of |L(u)|. The lower bound, |L(u)| = 8, is fixed.
Lemma 3.2.4 establishes the upper bound. Lemma 3.2.5 ensures |L(u)| # 8 in our remaining

cases. The only cases left are those we have admitted in the theorem. O

32

CHAPTER 4. PACKING COLORING ON INFINITE LATTICES

4.1 Introduction

The United States Federal Communications Commission placed rules and regulations on
radio towers, among which is the requirement that towers that broadcast at the same frequencies
must be far enough apart so that they do not interfere. The distance a broadcast signal reaches
is related to its frequency, so the distance a pair of towers broadcasting the same frequency must
be apart is related to the frequency of the broadcasts. These frequency assignment regulations
have inspired the idea of broadcast coloring [18], which is now known as packing coloring. Radio
towers, particularly cell phone towers, are typically placed in patterns that match the vertices
of a lattice, commonly a hexagonal lattice, so lattices are of particular interest for packing
coloring problems.

Another problem of interest is Question 4.1.1. Of the graphs studied, all planar subcubic
graphs (i.e. planar graphs of maximum degree 3) have had low packing chromatic number. By
contrast, planar graphs of maximum degree 4 with infinite packing chromatic number have

been found; e.g. the infinite 4-regular tree [33].

Question 4.1.1 (R. Skrekovski [14]). Is there an upper bound for the packing chromatic number

of all planar graphs with maximum degree at most 37

In this chapter, we introduce a variety of lattices and explore their packing colorings. Our
goal is to find or improve the upper or lower bounds for their packing chromatic numbers.

For convenience, we let Z? be the vertex set of each two-dimensional lattice. When we
consider three dimensional lattices wherein one dimension has finite order m, such as those in
Figure 1.12, the vertex set is denoted Z2 x {1,2,...,m}. For each 1 < i < m, the subgraph

induced by Z? x {i} is called a layer of the lattice.

33

We provide packing colorings for a lattice in the form of regular patterns. The vertex set
of the lattice is assigned a partition which we call a tiling. Each part is called a tile, and we

provide a color assignment for each tile.

4.1.1 Density on an Infinite Graph

In a partial packing of a graph, it is useful to have a notion of density, i.e. proportion of the
vertices that have been assigned a color. For a finite graph, the definition is trivial. However,
many challenges arise when attempting to define density for an infinite graph. For a graph G,
we provide Definition 4.1.2 to describe the proportion dens(S) of vertices that are covered by
aset S C V(G).

First we introduce the following notation: For a graph G, a vertex v € V(G), and an
integer k > 0, we define Ni(G,v) = {w € V(G) : dist(v,w) = k} and N<j(G,v) = No(G,v) U

Ni(G,v)U---UNg(G,v). When G is clear from context, we instead use Nj(v) and N<g(v).

Definition 4.1.2. Let G be a connected graph such that all vertices in G have finite degree,

and let v be a vertex in G. If

. [Nig1(v)]
lim ST g
k—o00 |N§k(v)|

then we define the density of a set S C V(G) to be

. SN Neg(v)]
dens(S) = limsup ——————+
(5) =i SN o))

We must show that Definition 4.1.2 is well-defined. First notice that if all vertices in G

have finite degree, then |Nj41(v)| and |[N<g(v)| are finite. We also have 0 < %

<1, so
dens(.S) is guaranteed to exist for our choice of v. We include Proposition 4.1.4 to show that if
any vertex satisfies the limit condition, then all vertices satisfy that condition. We then provide
Proposition 4.1.5 to show that dens(S) does not depend on our choice of v. Lemma 4.1.3 is
used in the proofs of the propositions.
Definition 4.1.2 describes the proportion of V(G) that is covered by S. For a finite graph,
5]

this conforms to the expected relation that dens(S) = WSG)I For an infinite graph, we see

that density can be approximated by choosing a vertex and finding density on larger and larger

34

subgraphs centered at that vertex. We use the limit superior for density rather than a limit,
since otherwise we could construct S in such a way that density fluctuates and is not well-
defined. We could define separate notions of upper- and lower-density, but upper-density is
more valuable to us since it provides us the inequality dens(S; US2) < dens(S7) + dens(S2) for
any S1,52 C V(G).

Suppose we have a partial packing of a graph GG. That is, we have color classes X1, Xo, ..., Xi C
V(@) such that for each u,v € X;, dist(u,v) > i. (It is sufficient but not necessary for our
color classes to be disjoint.) We say the density of color i is equal to dens(X;). For our partial
packing to be a complete packing, we must necessarily have dens(X; U Xo U---U X}) = 1. So,
we must have dens(X7) 4+ dens(X3) + - -+ + dens(Xy) > 1. So, it is valuable to find an upper
bound for the density of each color class. We provide Theorem 4.1.6 to give a general upper
bound for a particular color class. Corollary 4.1.7 provides additional specifications for this

upper bound.

Lemma 4.1.3. Let G be a connected graph such that all vertices in G have finite degree, and

[Nig1(uw)| _
[N<i(v)]

let w be a vertex in G. If limg_, 0, then for any positive integer ¢,

i 1V () \N<k (v)]

=0.
k—o0 |N§k(’l))|
Proof: Suppose limy_ |‘]]\\[f:k1(%)|‘ = 0, and let ¢ be a positive integer. For € > 0, choose § > 0
such that 6¢(6 + 1)’ < ¢, and let n be a positive integer such that k > n implies % < 4.
We have
INekre(\Ne (W] _ INewe@I | Newemr @) [Nea (u)]
|N<k(u)] [N<k(u)] |N<k(u)] [N<k(u)
_ ([Nite(w)| [Nprer(w)] |N§k+1(U)\> vy Nea(w)
[Nekse-1(uw)] [Neppr—2(u)l [Nep(u)] |N<k(u)]
|Niye—1(u)| > (’Nkﬂ(u)’))
< (o (Tl) (L)) ks
< (Ngkuz(u)! [Nk (u)]
<SSO+ 460+ 2440
<HO+1) <e
So, limy, o IN<kre@\Ne ()] _ O

[N<k (u)]

35

Proposition 4.1.4. Let G be a connected graph such that all vertices in G have finite degree,

and let u and v be distinct vertices in G. If limp_,o ||]]\<;€<+k1((;"))|l =0, then limy_,oo W =0.

Proof: Let d = dist(u,v). We have by the triangle inequality that for any k > d, Ni11(v) C

<) — IN<—a(u)]
[Niy1(v)]

IN<k(v)]

N§k+d+1(u)\N§k—d(U) and Ngk—d(u) C Ngk(v)- So, “]J\GQ-Q—I(’U)‘ < |N§k+d+1(u)\N§k7d(u)|‘ It
0.

follows by Lemma 4.1.3 that limg_,]

Proposition 4.1.5. Let G be a connected graph such that all vertices in G have finite degree,

INex W _ - Lot and v be distinet vertices in G and
[N< (v)]

and for any vertex v € V(G), limg_ 00

S CV(G). Then

lim sup W = limsup M
k=00 |NSk(u)‘ k—o0 |N§k(v)|

Proof: Let d = dist(u, v), Uy = Nej(u), and Vi, = Nej(v). By Lemma 4.1.3, limy._o, Uil —

Ukl
limp_ o % 11 =1, and limg_,o “{5;(1' — limg o 1 — % — 1. We know Uj_g C
mi Vel ; Vil : Ukl _ ;
Vi C Ugtq, so 1 < liminfg Tr] < limsupy,_, o T <1 and limg_, Vil = 1. Consider the

following;:

|ISNU| SNVl SN Ug| = [SN Vg N (IV&| = [Ux|)|S N V|

|Uk| Vil |Uk| Uk - [Vl
< [S0 U =[S Vi ’(|Vk’_|Uk|)|SﬂVk’
B |Uk| Uk - [Vi|
< 1S 0 ((U\ Vi) U (Vi\Uy))| n |[Ve| — [Ukl|
|Uk| |Uk|
(U UVIN U N Vi)| | | Vil _1‘
- |Uk| |Uk|
‘UkUVk’ B ’UkﬁVM ’Vk| B 1'
Ukl |Uk| |Uk|
< Uk+d| |Uk—d n ‘ Vil
|Uk| |Uk| |Uk|
We have Timy oo | SHEL — SOV < limy o (bt — a4 [PR 1) =114 1 - 1) =0,
so lim sup;_, o wlrl}ig‘k' = limsupy_, o |S|‘ﬁ/7;/|k| O

Theorem 4.1.6. Let G be a graph that satisfies the conditions of Definition 4.1.2. Let i be
a positive integer, and let X; C V(QG) such that dist(u,v) > i for all distinct vertices u,v €

X;. Then dens(X;) < 4, where M = min{|N7%(v)] v € V(G)} if i is even, and M =

36

min{|[N_i-1 (v)| + 2| Nis1 (v)| : v € V(G)} if i is odd and

Sy 1= max{|S| tu € NiJrTl('U),S - N%(u), and wy # wy € S = dist(wy, wa) > z}

Proof: It X; = (), then our result is trivial, so suppose X; is nonempty. Let v be a vertex in
G and k be sufficiently large so that X; N Ni(v) # (. We consider the subgraph of G induced
by N<i(v). Assign initial charge 1 to all vertices in Nj(v). Next, let each vertex send its charge
to the nearest vertex in X, splitting charge equally in the case of a tie. For any vertex = € X
such that Ny i () € Ni(v), we claim that = has charge at least M. Indeed, all vertices in
NL%J () have sent charge 1 to x, and if 7 is odd, then all vertices in N% () have sent charge
at least é to z.

Total charge remains constant, so |[X; N Ny _riq|- M < [N<g(v)|. We have
<k-[3 <

XNl X N(w)] - K D (V@ \N g9

IN<r()] [Nzg(v)| [N<k(v)] ’
. I XsN(N<kg(W\N_, i)l) X,NN.
and by Lemma 4.1.3, limy_, |NSk(U)|Sk 517 — 0, so limsupy,_, H]&%@’jw < ﬁ O

Corollary 4.1.7. Let G be a graph that satisfies the conditions of Definition 4.1.2, i be a
positive odd integer, v a vertex in G, and s, the value defined in Theorem 4.1.6. Then s, <

max{deg(u) : u € N% (v)}.

Proof: Suppose u € Nt (v) and S C Nisi(u) such that any pair of distinct vertices in S
2 2
are at distance greater than ¢ apart. Then each neighbor of u is within distance % of at most
i+l
2

one vertex in S, so u is within distance of at most deg(u) vertices in S. It follows that

S| < deg(u). -

4.2 Hexagonal Lattice

Consider first the hexagonal lattice H introduced in Section 1.3.4 and drawn in Figure 1.10.
Definition 4.2.1 describes H with vertex set Z?, and Figure 4.1 gives a drawing of H with this

vertex set.

Definition 4.2.1. The hexagonal lattice, denoted #, has vertex set Z2. Vertices (z1,y1) and
(z2,y2) with 21 + y1 < z2 + yo2 are adjacent if and only if one of the following conditions is

satisfied.

37

ey =y and g —x; =1
e x1=x0,y2o—y1=1,and 1 +y; =0 mod 2

Figure 4.1: H represented on Z2.

Recall that x,(#) = 7, as established in [14] and [22]. We provide Proposition 4.2.2 and
Corollary 4.2.3 to determine distances between vertices on H, as well as Proposition 4.2.4 to
determine the number of vertices at a given distance from a particular vertex. These results

will be valuable when considering multi-layer versions of H.

Proposition 4.2.2. The distance between vertices v = (0,0) and w = (z,y) in H is given by
the following formula.

x|+ lyl i [x] = |y[;

2|y| if |x| < |y| and z = y mod 2;

dist(v,w) =

2yl —1 if x| <|y|, = #Zymod 2, and y > 0;

2yl +1 if |z| < |y|, * Zymod 2, andy < 0.

Proof: We introduce notation to designate a walk from v in H. Consider Figure 4.1. At each
vertex, we may move left, right, and up or down; we use the letters ¢, r, u, and d to designate
these respective steps. A sequence of these letters designates a walk (e.g. uluru). A sequence
is valid if and only if w only occurs in odd positions and d only occurs in even positions. A
walk ends at vertex (z,y) if z is the number of 7’s minus the number of £’s and y is the number
of u’s minus the number of d’s.

Any walk that ends at w clearly needs |z| instances of r or ¢ and y instances of u or d, so

dist(v,w) > |z|+|y|. Consider |z| > |y|. If x,y > 0, then a walk with y instances of ur followed

38

by x — y instances of r ends at w. If x > 0 and y < 0, then a walk with |y| instances of rd
followed by x — |y| instances of r ends at w. Similar walks exist for < 0 by replacing r with
¢. So in each case, dist(v,w) < |z| + |y| and we can conclude dist(v,w) = |z| + |y|.

Now consider |z| < |y|. Any walk to w must contain |y| instances of u if y > 0 or |y
instances of d if |y| < 0; each instance can only occur in odd or even positions respectively.
Each walk must also contain a number of ¢’s and r’s of the same parity as x. Suppose y > 0.
If x = y mod 2, then a walk that consists of y instances of ux, where each * is r or ¢ with
frequency % and Y5* respectively will end at w. If # y mod 2, then we may remove the
last % from the previous walk and change the frequency of each r and ¢ to ”TH and y_TH,
and the walk will end at w. These are the shortest walks that can both contain the necessary
number of u’s and the necessary parity of *’s, so dist(u,w) = 2|y| and 2|y| — 1 respectively.

If y<0and x =y mod 2, then a walk that consists of y instances of xd, where each *
is r or £ with frequency ?ﬁTx and %5* respectively will end at w. If # y mod 2, then we

. y+z+1
append another * from the previous walk and change the frequency of each r and £ to 5~

y—z+1
2

and , and the walk will end at w. Similar to above, these are the shortest walks that can
both contain the necessary number of u’s and the necessary parity of *’s, so dist(u,w) = 2|y|

and 2|y| + 1 respectively. O

Corollary 4.2.3. Suppose v = (r1,y1) and w = (x2,y2) are vertices in H. Let x = |zg — x|

and y = |ya — y1|. Then

¢

r+y ifx>y;

2y if t <y and x = y mod 2;

2y —1 ifx <y, x Zymod 2, and either yo > y1 and r1 = y; mod 2;
dist(v,w) =

or yo < y1 and x1 # y; mod 2;

2y+1 ifzx <y, x Zymod?2, and either yo < y1 and r1 = y; mod 2;

or yo > y1 and x1 # y; mod 2.

\
Proof: If 1 = y; mod 2, then the function f((x,y)) = (x — 21,y — y1) is an automorphism

of H, so dist(v, w) = dist((0,0), (x2 — z1,y2 — y1)). Otherwise, f((z,y)) = (x —z1,y1 — y) is

39

an automorphism of H and dist(v, w) = dist((0,0), (z2 — x1,y1 — y2)). The result follows from

Proposition 4.2.2.

Proposition 4.2.4. Let v € V(H) and k be a positive integer. The number of vertices of

distance k from v is exactly 3k.

Proof: Without loss of generality, suppose v = (0,0). Consider Proposition 4.2.2. We will
count the number of vertices (x,y) that satisfy dist(v, (z,y)) = k. First suppose £ =0 mod 2.
Then for each 0 < i < %, each pair (£(% + 1), £(4 —4)) satisfies [z > |y| and is at distance k
from v. For each ¢ < %, there are 4 such vertices, and for i = g, there are two such vertices.
So, there are 4(%) + 2 = 2k + 2 vertices at distance k from v satisfying |z| > |y|. If |2 < |y,
then we must have y = j:%, —% <z< %, and x = % mod 2. There are 2(% —1) =k — 2 such
vertices. So, there are 3k vertices at distance k from v.

Now suppose k = 1 mod 2. We first count the number of vertices (z,y) satisfying |z| > |y|

and |z| + |y| = k. We must have z = £(¥ +4) and y = £(552 — i) for some 0 < i < 7L, For

1< %, there are 4 such vertices, and for i = k—gl, there are two such vertices. So, there are

4(%) + 2 = 2k vertices at distance k from v satisfying |x| > |y|. Now suppose |z| < |y|. We

consider y > 0 and y < 0 separately. If y > 0, then y = k—‘gl and we must have —% <z < %

and © # % mod 2. There are k—‘gl such vertices. If y < 0, then y = % and we must have

—% <z < % and r # % mod 2. There are % such vertices. So, there are % + % =k

vertices at distance k from v satisfying |x| < |y| and 3k total vertices at distance k from v. [

4.3 Truncated Square Lattice

The truncated square lattice, like the hexagonal lattice, is a planar 3-regular infinite graph.
We consider it due to its relevance to Question 4.1.1. The origin of its name comes from
geometry, where a truncation is applied to each vertex in the square lattice; this could be
considered in graph theoretic terms as replacing each vertex in & with a 4-cycle. Figure 4.2
gives a typical representation of the lattice. We present a formal definition of the truncated

square lattice with vertex set Z2, as shown in Figure 4.3.

40

Definition 4.3.1. The truncated square lattice, denoted S, has vertex set Z2. Vertices
(z1,y1) and (x9,y2) with 1 + y1 < z2 + y2 are adjacent if and only if one of the following
conditions is satisfied.

ey =1y and xo —x1 =1

e 21 =29, Yy2—y1=1,y1 =0 mod 2, and x =0 or 3 mod 4

e 1 =x0,y2o—y1=1,y1=1 mod2,and z=1or 2 mod 4

Figure 4.2: The truncated square lattice.

Figure 4.3: The truncated square lattice represented on Z2.

In Theorem 4.3.2, we provide initial bounds for x,(Si). Stronger bounds can be found by
using a SAT-solver (see Section 4.7). In fact, a colleague [29] has found that x,(Sy) = 7. Our

initial bounds were found by hand.

Theorem 4.3.2. 5 < x,(Sy) < 11

41

Proof: For the upper bound, we provide an 11-packing of S;,. Figure 4.4 provides a tiling

of the square lattice into 4 x 16 tiles. Figure 4.5 provides a color assignment to each tile.

[[T
[

[[1
[T

[[1

[1

[T

[T

[T

[T
[1
[[1
[1
[T
[T

[
[T
i
[T

[
[T

[
T

[T
1
[
[T
[T

[T
[T
[T
[T
[T

[
[

[
[T

[1 [1 [[[[T [T]
[T [[[[[1 []
[[1 [T [[T [[1]
[[1 [T [[T [[1]
[1 [1 [[[[T [T]
[1 [1 [[[[T [T]

Figure 4.4: The tiling pattern for the truncated square lattice.

Figure 4.5: A colored tile in the truncated square lattice. Each tile is colored identically.

For the lower bound, it suffices to show that the subgraph G shown in Figure 4.6 does not
admit a 4-packing. We use the term inner and outer vertices to denote vertices respectively

on and not on the inner 8-cycle.

Figure 4.6: A subgraph G of Si;.

Suppose we have a 4-packing of G. A maximum packing of color 1 fills 8 vertices in one of
two arrangements that are equivalent by symmetry. In the remaining graph, a maximal filling
of color 4 can cover at most two outer vertices or one inner vertex (20/1¢). Colors 2 and 3 can

each cover at most four outer vertices, two inner vertices, or two outer vertices and one inner

42

vertex (40/2i/201i). There is no combination of these options that fills both four outer vertices
and four inner vertices.

We next consider when color 1 is assigned a maximal packing that does not fill 8 vertices.
Notice that color 1 fills four outer vertices and at most three inner vertices. There are at least
five inner vertices left to fill. In Cg, colors 2 and 3 can fill at most two vertices each, and color
4 can fill at most one. So, the inner vertices must be filled with these maximum packings.
However, color 2 can then fill at most two outer vertices, color 4 at most 1, and color 3 cannot

fill any. So, not all outer vertices are filled and we may conclude that x,(Sir) > xp(G) > 5. O

4.4 Two-layer Hexagonal Lattice

The Two-Layer Hexagonal Lattice is the graph P, [0H. Figure 1.12 gives its typical rep-
resentation in two layers. We say V(P2OH) = Z* x {1,2}, and vertices (x1,y1,21) and
(z2,y2,22) are adjacent if and only if z; = 29 and (z1,y1) and (z2,y2) are adjacent in H,
or if (z1,y1) = (z2,y2) and z1 # zo.

We provide Proposition 4.4.1 to establish an upper bound for the density of a color class

X;.

Proposition 4.4.1. Let i be a positive integer and X; C V(P OH) such that every pair of

distinct vertices u,v € X; satisfies dist(u,v) >i. Let k = |%]|. Then

1
B} ifi=1;
dens(X;) < ; if 2 = 0 mod 2;
3k2 4+ 2 ! ’
1
32 ok +3 ift >1 and i =1 mod 2.

Proof: Let v = (x,y,z) be a vertex in P,JH. First notice that if k& > 1, then Ni(v) =
Ni(H, (2,9)) + Ni—1(H, (2,9)). So, [Na(v)| = [Nk(H, (z,9)] + 2|Ne1 (K, (z,9))] + -+~ +
2|No(H, (2,y))| = 3k+2+23 21 3j = 3k +2+3(k— 1)k = 3k? +2. We also have [Ny41(v)| =
3(k+ 1) + 3k = 6k + 3. Consider Theorem 4.1.6. If i is even or i = 1, our result follows from
the theorem. If ¢ > 1 is odd, it suffices to show that the value s, defined in the theorem is

equal to 3.

43

For any vertex u € V(P, O#H), consider the set S C N i1 (u) wherein any pair of distinct
vertices wi,wy € S satisfy dist(wi,wq) > i. Consider a set of shortest paths from u to the
vertices in S. These paths must be pairwise disjoint, so they must contain distinct neighbors
of u. If one contains the layer-crossing edge incident to u, we may augment it to avoid that
edge. So, there are at most deg(u) — 1 = 3 distinct paths, and it follows that s, = 3. O

Our main goal is to find a packing of P, [1H. With an upper bound on density of a color
class, we may determine an absolute lower bound, as well as an estimate, for the number of
additional colors needed to complete a partial packing. To provide a more accurate estimate,
we constructed individual color classes which we suspect to have the maximum possible density;
these color classes are provided in Remark 4.4.2.

In practice, color classes interfere with each other, so Proposition 4.4.1 does not provide the
expected density for a color class. In particular, it is likely that an optimal packing assigns a
maximum packing to color 1; i.e. a packing where color 1 covers every other vertex. All vertices
not assigned color 1 are then an even distance from each other, so each color 2i behaves like

color 2¢ + 1. Remark 4.4.2 provides color classes for odd colors.

Remark 4.4.2. Let i be a positive odd integer, and let £ = [£]. Let X; C V(P,O%H) be

defined as follows: If ¢ = 1 mod 4, then let
Xi ={(80+1)a—-b,(l+1)a+ (4+1)b+ (20 +1)c,c+1):a,be Z,c € {0,1}}.
If i = 1 mod 4, then let
Xi ={((60+4)a+ (30+2)c,(20+2)b+ (£ +1)c,c+1) :a,be Z,c € {0,1}}.

Observe that for any distinct pair of vertices u,v € X;, dist(u,v) > i. So, X; is a valid color

i—1

class for color i. Furthermore, dens(X;) where k = 5.

1
= 3KZ43k+2°
4.5 Offset Two-Layer Hexagonal Lattice

Another variation for the two-layer hexagonal lattice, denoted Hog, has the layers offset

from one-another, as shown in Figure 4.7. In this variation, only half of the vertices are

44

connected between layers. The vertex set is Z? x {1, 2}, and vertices (z1,y1, 21) and (22, y2, 22)
are adjacent if and only if one of the below conditions is satisfied.

e 21 =2z =1and (z1,y1) and (z2,y2) are adjacent in H.

e 21 =29 =2and (z1 4+ 1,y1) and (2 + 1,y2) are adjacent in H.

o (z1,y1) = (x2,¥2), 21 # 22, and 1 + y; = 1 mod 2.

Figure 4.7: A second variant of the two-layer hexagonal lattice. Large dots represent two
vertices in different layers, joined by an edge.

One major difference between Hog and P [l H is that Hog permits two distinct color classes
for color 1 with density 3. These color classes are X1 = {(2,y,2) € V(Ho) : 2 +y+2 =
0 mod 2} and X| = {(z,y,2) € V(Hos) : © +y = 0mod 2}. Color class X7 is also viable
in P,OH. In both graphs, it causes any pair of remaining vertices to have even distance
apart, causing conflict with even colors. We found that generating colorings starting with X3
produced less dense color classes in Hqg as opposed to P [1H; it is possible that there is no
finite packing of Hog that uses X7. On the other hand, X permits higher density colorings for

even colors. We suspect that with X7, Hog has a reasonably small packing coloring.

4.6 Generating Colorings

Rather than coloring an infinite graph directly, we tiled the graph and generated colorings
of a tile. Each tile is a subgraph with wrap-around to simulate distances to vertices in other
tiles. That is, in a tile of width w, adjacencies between vertices in columns w and w + 1 of

the original graph corresponded to adjacencies between vertices in columns w and 1 in the tile.

45

Wraparound was similarly defined for rows. We also had the requirement that if a vertex was
within distance ¢ of its copy in another tile, then we could not use color ¢ in the tile. So, tiles
had to be sufficiently large to include large colors. We placed copies of a tile next to each other
to construct larger tiles.

With wraparound, we could ensure that a packing of the tile could extend to a packing of
the graph. We could similarly attempt to color a tile without wrap-around. A tile without
wrap-around is a subgraph of the original graph, so if it does not admit a k-packing, then the
original graph does not admit a k-packing. This helps us make conclusions about the lower
bound of the packing chromatic number of the graph.

Whenever a coloring of a tile was generated (primarily with wrap-around), we cross-listed
it with other generated colorings. The graphs we colored were highly symmetrical, so we could
reduce the total number of colorings we needed to consider by only taking one representative
per symmetry group. We also didn’t care what color a vertex was assigned when comparing
colorings, only whether or not it was assigned a color, since only uncolored vertices are of
concern when generating future color classes. Lastly, we only concern ourselves with maximal
colorings, so if the set of colored vertices of one coloring was a subset of the colored vertices of
another, the former coloring need not be considered.

We represented each tile as a multi-dimensional array of integers. Three dimensions sufficed;
these corresponded to rows, columns, and layers. Each coordinate in the array corresponded
to a vertex, and the integer assigned to that vertex was the assigned color. A vertex assigned
value 0 was considered uncolored.

We used Java to generate colorings for various graph families. We defined various objects
in Java: We had an abstract graph object and child objects for each graph family. It was
useful to have a vertex object that stored the coordinates of a vertex; with its own object,
we could more easily iterate on sets of vertices and store extra data in the vertices themselves.
We also had a symmetry object to help us iterate on the symmetries of a graph. We had
various objects for coloring tiles, notably including graphColorer, graphColorerRandom, and

graphColorerLocalRandom. We created many files to store colorings, so we had a fileReader

46

object for reading these files. We also had various classes to run sophisticated coloring experi-
ments.
Three algorithms were used: An exhaustive backtracking algorithm, a random coloring

algorithm, and a priority-based random coloring algorithm.

4.6.1 Backtracking

Backtracking is a general algorithm for considering all solutions for a problem. The algo-
rithm generates partial solutions, one piece at a time, and backtracks when it discovers the
partial solution is not valid. We used backtracking to exhaustively construct all colorings for
a particular range of colors and set of uncolored vertices in a tile. Algorithm 1 is pseudo-code
for this algorithm. The algorithm itself is recursive; starting from the first vertex, it picks a
valid color and moves to the next. This continues until it considers the last vertex, wherein it
checks the coloring. That is, it checks whether or not the coloring is new and maximal versus
all previously generated colorings. If so, it will store the new coloring. The algorithm then

backtracks and considers a different coloring.

Data: A list of vertices {v;}1<i<n, and a list of colors {c;}i1<j<k-
Function ColorNext(v;)
for 1 <j<kdo
if Vertex v; can be assigned color c; then

Assign color ¢; to vertex v;.

if i <n then

| colorNext(v;11)
else

| Check coloring
Assign no color to v;

if i <n then
| ColorNext(v;t1)

else
| Check coloring

Algorithm 1: A recursive function for generating all colorings of a graph. The function is
initialized with ColorNext(vy).

Backtracking allows us to consider all colorings of a tile. It’s useful for generating color

classes for the smaller colors, but for larger tiles and colors, it is infeasible. If we have a range of

47

k colors (k + 1 including the no-color option), and we have n vertices to consider, backtracking

takes at most O((k + 1)") time. In practice, it usually takes much less time.

4.6.2 Random Coloring

A second approach to assigning a color class is to randomly assign vertices until no further
assignment colors may be assigned. In this way, the color class is maximal. We provide

Algorithm 2 to describe this approach.

Data: A list of vertices {v;}1<i<n, and a color c.

while The list of vertices is nonempty do
Choose a random vertex v from the list Assign color ¢ to vertex v for Vertices u in

the list do

if Vertex u is within distance ¢ of v then

| Remove u from the list
Check coloring

Algorithm 2: A random coloring algorithm for a graph.

The main weakness to this approach is that the colorings it produces are rarely optimal. To
fit as many vertices as possible in a color class, it is typically necessary to pick them as close
to each other as possible. This algorithm does not place any priority on picking vertices that
are close to each other, so it has to be run many times to increase the chances of producing
a good coloring. We found that running this algorithm for a long time was sufficient to find

quality colorings, but only when we kept the dimensions of the tiles small.

4.6.3 Priority-Based Random Coloring

To increase the quality of our random coloring algorithm, we used a system that placed
priority on vertices close to already-chosen vertices. We added tokens to each vertex to designate
their priority, and when a new vertex was to be chosen, we would only consider those with
maximum priority. Algorithm 3 demonstrates this method.

Notice that after Algorithm 3 assigns color ¢ to vertex v, it assigns tokens to vertices
at distance between ¢ and 2c¢ of v, wherein closer vertices receive more tokens. The idea is
that we want our next vertex u to be chosen such that u causes relatively few vertices to be

removed from L. Vertices in N<.(v) have already been removed, so we attempt to maximize

48

Data: A list L = {v; }1<i<n of vertices, and a color c.
Initially set O tokens on each vertex in L

Create a list P = () of vertices with priority

while L # () do

if P # () then
| Randomly choose a vertex v from P

else
| Randomly choose a vertex v from L

Assign color ¢ to vertex v
Set P =10
for Vertices w in L do
if Vertexr u is within distance ¢ of v then
| Remove u from the L
else if Vertex u is within distance 2c of v then
Add 2¢ — dist(u, v) tokens to u
if u has more tokens than those in P (or P is empty) then
| Set P ={u}
else if u has an equal amount of tokens as those in P then

| Add wto P
Check coloring

Algorithm 3: A random coloring algorithm that places priority on vertices close to already-
chosen vertices.

N<c(v) N N<c(u) by minimizing dist(u,v). Vertices are ranked by their distance from v, and
tokens are assigned by their rank. If u is at distance > 2¢ from v, then N<.(v) N N<.(u) = 0,
so we have a cutoff wherein no tokens are assigned to vertices at distance > 2¢ from v. Once
tokens have been assigned, only vertices with the maximum number of tokens (i.e. maximum
rank) are considered for the next vertex chosen.

A vertex may receive tokens from multiple previously assigned vertices. The goal remains
the same that a newly chosen vertex u should cause relatively few vertices to be removed from
L, so u should still be close to previously assigned vertices. Our strategy for assigning tokens
prioritizes vertices that are close to many previously chosen vertices, but it isn’t necessarily clear
that ranking by simply taking the sum of tokens from chosen vertices is optimal. Depending
on the graph, there may be better ways to rank vertices. However, in practice Algorithm 3 is

fast and produces good results.

49

4.6.4 Checking Colorings

The main difficulty in finding a packing of a graph is determining what constitutes a good
color class. The simplest approach is to generate color classes one-at-a-time and only carry over
the colorings with the highest density. In practice however, color classes with lower density
may allow higher density for later color classes.

For the graphs we considered, optimal density of color classes dropped off dramatically
after the first few colors. So, it was vital to have high combined density for lower colors.
Algorithm 3 wouldn’t necessarily consider the highest combined density colorings, so we only
used it to generate color classes for higher-value colors. We primarily used Algorithm 1 for the
lower-value colors. We also ran various experiments of generating color classes individually and
merging them.

In each of Algorithms 2, and 3; we had to check a coloring and decide whether or not to
store and carry it over to the next set of colors. The first property to check was density. We
generated multiple colorings for a color class and kept track of the maximum discovered density.
We had a threshold that the density for each particular color class had to be at least 95% of
maximum. If a newly generated color class didn’t meet this threshold, we would discard it.
If the maximum density increased, we would update our list of graphs and discard those that
didn’t meet the threshold.

After considering density, we placed a limit on the number of colorings we would carry over
to the next color. If we already had more than a particular number of colorings, we would only
store more if they had higher density than previously generated colorings. This limit scaled

with the dimensions of the tiles, providing a rough limit on file size for the files that stored

1,600,000

Width x height colorings, or at most two if dimensions

colorings. More precisely, we allowed at most
were sufficiently large. We also allowed at most half of our limit to contain colorings at density
strictly below the maximum. This resulted in a rough file size of 8Mb for our stored colorings.
With a limit on number of colorings, we could spend less time checking colorings that met our

maximum density and more on generating colorings that may improve it. In addition, we had

a manageable number of colorings to carry over and use as base cases for higher colors.

50

The last property we would consider for a coloring was whether or not it was a repeat. If
the set of uncolored vertices was equivalent to that of another coloring by some symmetry, we

would discard the coloring.

4.6.5 Choosing Dimensions

Before generating colorings, we must decide on the dimensions of the tile. A smaller tile
can be colored more quickly, so its optimal coloring can be found quickly with much higher
probability. However, larger tiles may allow for better colorings. For the initial colors, we
generated colorings for graphs with various dimensions and chose those with the highest density
to continue coloring. For later colors, we generated new color classes on the original tiles as
well as tiles formed by placing copies of the original tiles next to each other to form larger tiles.
We generated colorings on these tiles with various dimensions for a short amount of time each,
chose the dimensions that had the highest density colorings, and ran our coloring algorithms

for longer on those dimensions.

4.7 SAT Solvers

A boolean expression is a composition of boolean variables, each of which can be TRUE or
FALSE, with operators and parentheses on those variables. Many operators exist, but it suffices
to use the operators AND (A), OR (V), and NOT (—). A boolean satisfiability problem (SAT)
is the problem of determining whether or not a boolean expression has an assignment that
renders the expression TRUE. Satisfiability problems are fundamental to computer science, so
SAT-solvers have received a large amount of attention. Many good SAT-solvers exist, so if
a mathematical problem can be represented as a reasonably-sized satisfiability problem, the
problem can be run on a SAT-solver to produce results.

B. Martin, Raimondi, Chen, and J. Martin introduced the idea of using a SAT-solver to
approach packing coloring problems [28]. For input in a SAT-solver, they represent a satisfia-
bility problem as a list of clauses which are combined with the AND operator. In each clause,
there is a list of variables with the NOT operator allowed only on the variables themselves, and

the variables are combined with the OR operator.

51

The satisfiability problem asked is whether or not there exists a k-packing of a tile with
particular dimensions. For each vertex v and color 4, there is a boolean variable x, ; wherein
Ty, is TRUE if and only if v is assigned color 7. The clauses in the satisfiability problem are of
two types. The first type is 2,1 V @y 2 V - -+ V 24 1, wherein we must have that v is assigned at
least one color. It is not necessary for v to be assigned at most one color, since with multiple
colors, we could choose any available color for a particular packing. There is a clause of this
type for every vertex. The second type of clause is x,; V x,; for particular vertices u and v.

There is a clause of this type for every u,v and i that satisfy dist(u,v) < i.

4.8 Results

The main graph we colored was P, [1H. Bohm, Lansky, and Lidicky had initially provided
the bound that x, (P> O%H) < 526, and our main goal was improving that bound. Our result is
given in Theorem 4.8.1. The result was found by beginning with a 48 x 48 tile that had colors
1 through 15 already filled. We then applied our priority-based random coloring algorithm for
the remaining colors, one color at a time. At every other color, we generated colorings on tiles
with various multiples of the original tile’s dimensions, and carried over the colorings with the
highest density. We stopped allowing the dimensions of the tile to increase when it reached a

width by height of 1152 x 1536 at color 90. The tiling is provided at [31].
Theorem 4.8.1. x, (P 0O%H) <205

A 205-packing was found on the fifth attempt at coloring P, [0H. Tables 4.1 and 4.2
summarize the densities of colors in these attempts. Notice that the main discrepancy was in
colors 4 and 5. A higher density at these colors allowed for our result. We suspect that with
further improvements, we may be able to lower the upper bound even further.

In addition to coloring P, [17H, we ran our algorithms on H.g. While we didn’t find a finite
packing, we found our algorithms to be effective at quickly assigning adequate color classes for
higher colors. We are confident that with more time and using an alternate color class for color

1, we will be able to find a finite packing of Hg-.

52

Table 4.1: Density of color i for 1 < ¢ < 80 in five attempts at packing P, [(JH. Attempt 5

resulted in a 205-packing.

Color Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5
1 0.5 0.5 0.5 0.5 0.5
2 0.125 0.125 0.125 0.125 0.125
3 0.125 0.125 0.125 0.125 0.125
4 0.03125 0.03125 0.03472222222222221 0.03472222222222221 0.04166666666666663
5 0.03125 0.03125 0.03472222222222221 0.03472222222222221 0.04166666666666674
6 0.02083333333333337 0.02083333333333337 0.02083333333333337 0.02083333333333337 0.02083333333333326
7 0.02083333333333326 0.02083333333333326 0.02083333333333337 0.02083333333333337 0.02083333333333337
8 0.01171875 0.01171875 0.01388888888888884 0.01388888888888884 0.01388888888888884
9 0.01171875 0.01171875 0.01388888888888884 0.01388888888888884 0.01388888888888895
10 0.00716145833333337 0.0078125 0.006944444444444531 0.00868055555555558 0.00868055555555558
11 0.0078125 0.0078125 0.00694444444444442 0.00868055555555558 0.00868055555555547
12 0.00504557291666663 0.005859375 0.0060763888888888395 0.0060763888888888395 0.0056423611111111605
13 0.00520833333333337 0.005859375 0.006076388888888951 0.006076388888888951 0.00542534722222221
14 0.00406901041666663 0.00520833333333337 0.005208333333333259 0.00520833333333337 0.00520833333333337
15 0.00390625 0.00520833333333337 0.00520833333333337 0.004918981481481399 0.00499131944444442
16 0.0028076171875 0.00390625 0.00347222222222221 0.00361689814814814 0.0035445601851852304
17 0.0028889973958333703 0.00390625 0.00347222222222221 0.00361689814814814 0.00347222222222221
18 0.0023600260416666297 0.0029296875 0.003038194444444531 0.0027488425925926707 0.002676504629629539
19 0.0023193359375 0.0029296875 0.0030381944444444198 0.0028935185185184897 0.0027488425925926707
20 0.001953125 0.00244140625 0.00238715277777779 0.0023148148148147696 0.0023148148148147696
21 0.001953125 0.00244140625 0.00238715277777779 0.0023148148148148806 0.0023148148148148806
22 0.001708984375 0.0020345052083332593 0.0021701388888888395 0.0023148148148147696 0.0020254629629629095
23 0.0016682942708333703 0.0020345052083333703 0.0021701388888888395 0.00224247685185186 0.0020254629629630205
24 0.00146484375 0.001708984375 0.0016818576388889506 0.00166377314814814 0.0016276041666666297
25 0.0014241536458333703 0.001708984375 0.0016818576388888395 0.0016276041666667407 0.0016276041666666297
26 0.0012613932291666297 0.00146484375 0.0014105902777777901 0.0014467592592591894 0.0014105902777777901
27 0.0012613932291666297 0.00146484375 0.0014105902777777901 0.0014467592592593004 0.0014105902777777901
28 0.0011393229166667407 0.0013020833333333703 0.0013020833333333703 0.0013020833333333703 0.0013020833333333703
29 0.0010986328125 0.0013020833333332593 0.0013020833333332593 0.0013020833333332593 0.0013020833333332593
30 9.765625E-4 0.0013020833333333703 0.0011935763888889506 0.0010850694444444198 0.0010850694444445308
31 9.765625E-4 0.001220703125 0.0011257595486110494 0.0010730131172840274 0.0011031539351851194
32 8.544921875E-4 9.765625E-4 0.0010036892361111605 9.645061728394966E-4 9.403935185184897E-4
33 8.544921875E-4 9.765625E-4 9.901258680555802E-4 9.645061728394966E-4 9.31351273148251E-4
34 7.731119791666297E-4 8.951822916666297E-4 8.816189236110494E-4 9.042245370369795E-4 8.680555555554692E-4
35 7.731119791666297E-4 8.951822916667407E-4 8.816189236111605E-4 8.921682098765871E-4 8.590133101852304E-4
36 7.32421875E-4 7.9345703125E-4 7.866753472222099E-4 7.716049382715529E-4 7.32421875E-4
37 7.32421875E-4 7.9345703125E-4 7.731119791666297E-4 7.836612654321673E-4 7.233796296296502E-4
38 6.917317708333703E-4 7.32421875E-4 7.32421875E-4 6.872106481481399E-4 6.691261574073293E-4
39 6.917317708333703E-4 7.32421875E-4 7.32421875E-4 6.550604423868345E-4 6.600839120370905E-4
40 6.103515625E-4 6.306966145832593E-4 6.510416666667407E-4 6.148726851852304E-4
41 6.103515625E-4 6.306966145833703E-4 6.510416666666297E-4 6.239149305554692E-4
42 5.696614583332593E-4 5.696614583333703E-4 5.967881944444198E-4 5.787037037037202E-4
43 5.289713541667407E-4 5.696614583332593E-4 5.967881944444198E-4 5.787037037037202E-4
44 4.8828125E-4 5.086263020833703E-4 5.741825810186008E-4 5.425347222222099E-4
45 4.475911458332593E-4 5.086263020833703E-4 5.764431423610494E-4 5.154079861111605E-4
46 4.4759114583337034E-4 5.086263020832593E-4 4.910441583075853E-4 4.7923900462953917E-4
47 4.4759114583337034E-4 5.086263020833703E-4 4.701967592593004E-4
48 4.0690104166662966E-4 4.6793619791662966E-4 4.340277777777901E-4
49 4.0690104166662966E-4 4.679361979167407E-4 4.295066550925597E-4
50 3.662109375E-4 4.0690104166662966E-4 3.9785879629627985E-4
51 3.662109375E-4 4.0690104166662966E-4 3.9333767361116045E-4
52 3.2552083333337034E-4 3.8655598958337034E-4 3.662109375E-4
53 3.2552083333337034E-4 3.8655598958337034E-4 3.662109375E-4
54 3.255208333332593E-4 3.662109375E-4 3.4360532407406996E-4
55 3.2552083333337034E-4 3.662109375E-4 3.481264467593004E-4
56 3.2552083333337034E-4 3.255208333332593E-4 3.255208333332593E-4
57 3.255208333332593E-4 3.2552083333337034E-4 3.2552083333337034E-4
58 3.2552083333337034E-4 3.2552083333337034E-4 3.119574652777901E-4
59 3.2552083333337034E-4 3.255208333332593E-4 3.029152199074403E-4
60 3.255208333332593E-4 3.2552083333337034E-4 2.7578848379627985E-4
61 3.2552083333337034E-4 3.2552083333337034E-4 2.7578848379627985E-4
62 2.8483072916662966E-4 3.255208333332593E-4 2.599645543981399E-4
63 2.848307291667407E-4 3.2552083333337034E-4 2.6448567708337034E-4
64 2.2379557291662966E-4 2.44140625E-4 2.464011863425597E-4
65 2.13623046875E-4 2.44140625E-4 2.464011863425597E-4
66 2.0345052083337034E-4 2.44140625E-4 2.2831669560186008E-4
67 2.0345052083325932E-4 2.44140625E-4 2.2831669560186008E-4
68 1.9327799479174068E-4 2.2379557291662966E-4 2.1701388888895057E-4
69 1.9327799479162966E-4 2.2379557291674068E-4 2.2605613425918936E-4
70 1.8310546875E-4 2.0345052083325932E-4 2.0797164351848973E-4
71 1.8310546875E-4 2.0345052083337034E-4 2.1023220486116045E-4
72 1.8310546875E-4 1.8310546875E-4 1.944082754629095E-4
73 1.8310546875E-4 1.8310546875E-4 1.9440827546302053E-4
74 1.8310546875E-4 1.8310546875E-4 1.8310546875E-4
75 1.8310546875E-4 1.8310546875E-4 1.8310546875E-4
76 1.7293294270837034E-4 1.8310546875E-4 1.7858434606476958E-4
77 1.7293294270825932E-4 1.8310546875E-4 1.7632378472220989E-4
78 1.6276041666674068E-4 1.8310546875E-4 1.6502097800930038E-4
79 1.6276041666662966E-4 1.8310546875E-4 1.6502097800930038E-4
80 1.52587890625E-4 1.7293294270837034E-4 1.5371817129627985E-4

Table 4.2: Density of colors 1 through i for 1 < ¢ < 80 in five attempts at packing P, [JH.

Attempt 5 resulted in a 205-packing.

53

Color Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5
1 0.5 0.5 0.5 0.5 0.5
2 0.625 0.625 0.625 0.625 0.625
3 0.75 0.75 0.75 0.75 0.75
4 0.78125 0.78125 0.7847222222222222 0.7847222222222222 0.7916666666666666
5 0.8125 0.8125 0.8194444444444444 0.8194444444444444 0.8333333333333334
6 0.8333333333333334 0.8333333333333334 0.84027777TTTTTTT8 0.84027777TTTTTTTT8 0.8541666666666666
7 0.8541666666666666 0.8541666666666666 0.8611111111111112 0.8611111111111112 0.875
8 0.8658854166666666 0.8658854166666666 0.875 0.875 0.8888888888888888
9 0.8776041666666666 0.8776041666666666 0.8888888888888888 0.8888888888888888 0.90277777TTTTT7T8
10 0.884765625 0.8854166666666666 0.8958333333333334 0.8975694444444444 0.9114583333333334
11 0.892578125 0.8932291666666666 0.902777TTTTTTTTT8 0.90625 0.9201388888888888
12 0.8976236979166666 0.8990885416666666 0.9088541666666666 0.9123263888888888 0.92578125
13 0.90283203125 0.9049479166666666 0.9149305555555556 0.9184027777TTTTTT8 0.9312065972222222
14 0.9069010416666666 0.91015625 0.9201388888888888 0.9236111111111112 0.9364149305555556
15 0.9108072916666666 0.9153645833333334 0.9253472222222222 0.9285300925925926 0.94140625
16 0.9136149088541666 0.9192708333333334 0.9288194444444444 0.9321469907407407 0.9449508101851852
17 0.91650390625 0.9231770833333334 0.9322916666666666 0.9357638888888888 0.9484230324074074
18 0.9188639322916666 0.9261067708333334 0.9353298611111112 0.9385127314814815 0.951099537037037
19 0.9211832682291666 0.9290364583333334 0.9383680555555556 0.94140625 0.9538483796296297
20 0.9231363932291666 0.9314778645833334 0.9407552083333334 0.9437210648148148 0.9561631944444444
21 0.9250895182291666 0.9339192708333334 0.9431423611111112 0.9460358796296297 0.9584780092592593
22 0.9267985026041666 0.9359537760416666 0.9453125 0.9483506944444444 0.9605034722222222
23 0.928466796875 0.93798828125 0.9474826388888888 0.9505931712962963 0.9625289351851852
24 0.929931640625 0.939697265625 0.9491644965277778 0.9522569444444444 0.9641565393518519
25 0.9313557942708334 0.94140625 0.9508463541666666 0.9538845486111112 0.9657841435185185
26 0.9326171875 0.94287109375 0.9522569444444444 0.9553313078703703 0.9671947337962963
27 0.9338785807291666 0.9443359375 0.9536675347222222 0.9567780671296297 0.9686053240740741
28 0.9350179036458334 0.9456380208333334 0.9549696180555556 0.958080150462963 0.9699074074074074
29 0.9361165364583334 0.9469401041666666 0.9562717013888888 0.9593822337962963 0.9712094907407407
30 0.9370930989583334 0.9482421875 0.9574652777777778 0.9604673032407407 0.9722945601851852
31 0.9380696614583334 0.949462890625 0.9585910373263888 0.9615403163580247 0.9733977141203703
32 0.9389241536458334 0.950439453125 0.9595947265625 0.9625048225308642 0.9743381076388888
33 0.9397786458333334 0.951416015625 0.9605848524305556 0.9634693287037037 0.9752694589120371
34 0.9405517578125 0.9523111979166666 0.9614664713541666 0.9643735532407407 0.9761375144675926
35 0.9413248697916666 0.9532063802083334 0.9623480902777778 0.9652657214506173 0.97699652777TTTTT8
36 0.9420572916666666 0.9539998372395834 0.963134765625 0.9660373263888888 0.9777289496527778
37 0.9427897135416666 0.9547932942708334 0.9639078776041666 0.966820987654321 0.9784523292824074
38 0.9434814453125 0.9555257161458334 0.9646402994791666 0.9675081983024691 0.9791214554398148
39 0.9441731770833334 0.9562581380208334 0.9653727213541666 0.968163258744856 0.9797815393518519
40 0.9447835286458334 0.9568888346354166 0.9660237630208334 0.9803964120370371
41 0.9453938802083334 0.95751953125 0.9666748046875 0.9810203269675926
42 0.9459635416666666 0.9580891927083334 0.9672715928819444 0.9815990306712963
43 0.9464925130208334 0.9586588541666666 0.9678683810763888 0.982177734375
44 0.9469807942708334 0.95916748046875 0.9684425636574074 0.9827202690972222
45 0.9474283854166666 0.9596761067708334 0.9690190067997685 0.9832356770833334
46 0.9478759765625 0.9601847330729166 0.9695100509580761 0.9837149160879629
47 0.9483235677083334 0.960693359375 0.9841851128472222
48 0.94873046875 0.9611612955729166 0.984619140625
49 0.9491373697916666 0.9616292317708334 0.9850486472800926
50 0.9495035807291666 0.9620361328125 0.9854465060763888
51 0.9498697916666666 0.9624430338541666 0.98583984375
52 0.9501953125 0.96282958984375 0.9862060546875
53 0.9505208333333334 0.9632161458333334 0.986572265625
54 0.9508463541666666 0.9635823567708334 0.9869158709490741
55 0.951171875 0.9639485677083334 0.9872639973958334
56 0.9514973958333334 0.9642740885416666 0.9875895182291666
57 0.9518229166666666 0.964599609375 0.9879150390625
58 0.9521484375 0.9649251302083334 0.9882269965277778
59 0.9524739583333334 0.9652506510416666 0.9885299117476852
60 0.9527994791666666 0.965576171875 0.9888057002314815
61 0.953125 0.9659016927083334 0.9890814887152778
62 0.9534098307291666 0.9662272135416666 0.9893414532696759
63 0.9536946614583334 0.966552734375 0.9896059389467593
64 0.95391845703125 0.966796875 0.9898523401331019
65 0.954132080078125 0.967041015625 0.9900987413194444
66 0.9543355305989584 0.96728515625 0.9903270580150463
67 0.9545389811197916 0.967529296875 0.9905553747106481
68 0.9547322591145834 0.9677530924479166 0.9907723885995371
69 0.954925537109375 0.9679768880208334 0.9909984447337963
70 0.955108642578125 0.9681803385416666 0.9912064163773148
71 0.955291748046875 0.9683837890625 0.9914166485821759
72 0.955474853515625 0.96856689453125 0.9916110568576388
73 0.955657958984375 0.96875 0.9918054651331019
74 0.955841064453125 0.96893310546875 0.9919885706018519
75 0.956024169921875 0.9691162109375 0.9921716760706019
76 0.9561971028645834 0.96929931640625 0.9923502604166666
77 0.9563700358072916 0.969482421875 0.9925265842013888
78 0.9565327962239584 0.96966552734375 0.9926916051793981
79 0.956695556640625 0.9698486328125 0.9928566261574074
80 0.95684814453125 0.9700215657552084 0.9930103443287037

54

CHAPTER 5. CONCLUSION

In this dissertation, we introduced choosability with union separation and explored a va-
riety of problems that arise naturally from its extension from choosability and its relation to
intersection choosability. In particular, we showed that all planar graphs are (3,11)- and (4, 9)-
choosable. We also explored the challenges that arise when using a discharging argument to
consider (3, 10)-choosability of planar graphs. We believe discharging will be sufficient to prove
(3,10)-choosability, though larger reducible configurations will likely need to be considered.
Further problems regarding union choosability include finding the smallest k£ such that all pla-
nar graphs are (3, k)-choosable or the smallest k such that all planar graphs are (4, k)-choosable.
We also asked whether or not there is a function f(k,t) such that (k, k + t)-choosability of a
graph implies (k, k — t)-choosability.

We also explored packing coloring and packing chromatic numbers. We surveyed the hexag-
onal lattice and multi-layered versions of it. We applied a variety of algorithms to attempt to
find an upper bound for the packing chromatic number of two different two-layer hexagonal
lattices. With one interpretation, we improved the upper bound on the packing chromatic
number from 526 to 205. We suspect that the packing chromatic number is lower with the
other interpretation, but further work is required. For both versions, we believe that exploring
the lower bound to the packing chromatic number will lead to more promising results.

We also directed attention towards the problem of finding 3-regular planar graphs with large
packing chromatic numbers. In doing so, we explored the truncated square lattice and found its
packing chromatic number to be the same as that of the hexagonal lattice. For future work, we
wish to consider other 3-regular subgraphs of the square lattice, or more pertinently, 3-regular
graphs obtained by performing augmentations to other graphs. The overarching question here

is whether there exists an upper bound to the packing chromatic number of 3-regular planar

55

graphs, or there exist such graphs with arbitrarily high and possibly infinite packing chromatic

number.

56

APPENDIX A. (3,11)-CHOOSABILITY

List of Tuples

The following list of tuples (ds,d3, ds,ds) satisfy inequality (2.3). Recall that d(v) > 6,
ds > 0 implies d(v) > 9, d5 + d4 > 0 implies d(v) > 10, and d3 > 0 implies d(v) > 11. After
these implications are applied, we find that the tuple (ds,d3,ds,ds,d(v)) violates inequality
(2.1).

0,2,0,2) fails (2.1) for d(v) > 10. (1,1,0,1) fails (2.1) for d(v
0,2,1,0) fails (2.1) for d(v) > 10. (1,1,0,2) fails

0,2,2,0) fails (2.1) for d(v) > 10.

0,3,0,0

0,4,0,1

0,5,0,0

()

()

(0,)

()

()

(0,3,0,1)

(O,)

(0,4,0,0)

()
>10. (0,4,1,0) fails

()

(1,0,0,0)

(1,0,0,1)

(1,0,0,2)

(1,)

(1,0,1,1)

(1,)

()

(1,0,3,0)

(,0)

(2,1,1,0) fails (2.1) for d(v) > 11. (3,0,0,1) fails (2.1) for d(v) > 11. (4,0,0,0) fails (2.1) for d(v) > 11.
(2,2,0,0) fails (2.1) for d(v) > 11. (3,0,1,0) fails (2.1) for d(v) > 11 (4,0,0,1) fails (2.1) for d(v) > 11
(2,2,0,1) fails (2.1) for d(v) > 11. (3,1,0,0) fails (2.1) for d(v) > 11. (4,0,1,0) fails (2.1) for d(v) > 11
(2,2,1,0) fails (2.1) for d(v) > 11. (3,1,0,1) fails (2.1) for d(v) > 11 (4,1,0,0) fails (2.1) for d(v) > 11
(2,3,0,0) fails (2.1) for d(v) > 11. (3,1,1,0) fails (2.1) for d(v) > 11 (5,0,0,0) fails (2.1) for d(v) > 11.
(3,0,0,0) fails (2.1) for d(v) > 11. (3,2,0,0) fails (2.1) for d(v) > 11

58

APPENDIX B. SOURCE CODES

The following source codes were developed in Java to generate packing colorings.

B.1 Objects

B.1.1 Graph

The graph object is abstract and sets vertices to be coordinates in a 3-dimensional integer
array. Child classes primarily need to define distances between vertices, symmetries of the

graph, and the largest -value color that can fit in the graph (in case it is part of a tiling).

package GraphPacking;
import java.io.File;
import java.io.FileWriter;
import java.io.lOException;
import java.util.ArrayList;
/%
x* An abstract graph
* @author Kevin Moss
*/
public abstract class graph {
protected int [][][] array;
protected int width, height, layers;
graph [][][] distanceGraphs;
/%%
x Performs modular arithmetic. Ensures output is not negative.
* @param number integer a in a%b
* @param base integer b in a%b
* @return number%base within range [0,base)
*/
protected int mod(int number, int base){
int temp = number % base;
temp = (temp < 0)? temp+base : temp;
return temp;

}
/

*

o

Creates a 3D integer array corresponding to the vertices of a graph
@param width Width of the array

@param height Height of the array

@param layers number of layers in the array

* K ¥ *

59

*
/
public graph(int width, int height, int layers){
array = new int[height][width][layers];
this.width = width;
this.height = height;
this.layers = layers;
}
/%%
x Creates a 3D integer array corresponding to the vertices of a graph.
% @param array A 3D integer array.
*/
public graph(int []J[][] array){
this.array = array;
width = array [0].length;
height = array.length;
layers = array [0][0]. length;
}
/%%
x Creates a 3D integer array corresponding to the vertices of a graph.
% This constructor is useful for changing the graph type.
x @param g
*/
public graph(graph g){
array = g.getArray ()
width = g.getWidth ()
ht
rs

7();
()

height = g.getHeig
layers = g.getLaye
}
/%%
x Distance between any pair of vertices
% @param vl A vertex
x @param v2 A vertex
* @return Distance between vertex vl and vertex v2
*/
public int distance(vertex vl, vertex v2){
return (distance(vl,v2,width, height 6 layers));

}

/%%

x Distance between any pair of vertices on a graph of the given size.

* Useful for graphType. Otherwise use the shorter distance method.

x @param v1 A vertex

x @param v2 A vertex

x @return Distance between vertex vl and vertex v2

*/

public abstract int distance(vertex vl, vertex v2, int width, int height,
layers);

/%%

x Returns width of the array

x @return width of the array

*/

public int getWidth (){
return width;

}

/%%

* Returns height of the array

% @return height of the array

*/

public int getHeight (){

int

60

return height;
}
/%%
* Returns number of layers in the array
% @return number of layers in the array
*/
public int getLayers(){
return layers;
}

/%%

x Returns the array. Use getArrayClone if you need a separate duplicate of the
array .

x @return the array

*/

public int [J[][] getArray(){
return array ;

}

/%%
* Returns a duplicate of the array. Changing the duplicate will not change the
original .
* @return A duplicate of the array.
*
/
public int [][][] getArrayClone ()
int [][][] arrayCopy = new int [height]|[width][layers];
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
for(int k = 0; k < layers; k++){
arrayCopy [1][j][k] = array[i]]][k]:
}
}
}
return arrayCopy;
}
public int getNumVertices (){
return widthxheightxlayers;

}
/

* %
x Sets a value in the array

* @param xPos horizontal position from the left
x @param yPos vertical position from the top

% @param zPos layer number

x @param color The value to be set
*/
public void setArrayVal(int xPos, int yPos, int zPos, int color){
array [yPos|[xPos][zPos] = color;
}

/%%

x Sets a value in the array

% @param v vertex to color

* @param color The value to be set

*
/

public void setArrayVal(vertex v, int color){
array [v.getY ()][v.getX ()][v.getZ ()] = color;

}

/%%

x Gets a value in the array

* @param xPos horizontal position from the left
x @param yPos vertical position from the top

61

* @param zPos layer number
% @return The value at the given position
*/
public int getArrayVal(int xPos, int yPos, int zPos){
return array [yPos][xPos][zPos];
}

/%%
* Gets a value in the array
x @param v Vertex for which the value should be returned
¥ @return The value at the given position
*/
public int getArrayVal(vertex v){
return array[v.getY ()][v.getX()][v.getZ()];
}

/%%
* Prints an array using a FileWriter
x @param out A FileWriter
x @throws [OException
y
public void printArray(FileWriter out) throws IOException{
for(int i = 0; i < height; i++){
String line = "7}
for (int layer = 0; layer < layers —1; layer++){
for (int j = 0; j < width; j++){
line += array[i][j][layer];
line +=" 7}
}
line 4= 7: 7}
}
for(int j = 0; j < width — 1; j++){
line += array[i][j][layers — 1];
line +=" 7;
}
line += array[i][width — 1][layers — 1];
out.write(line);
out.write (System.lineSeparator ());
}
out.write (System.lineSeparator());
}
/%%
x Appends the array to the end of a File
* Q@param f A File
x @throws [OException
*/
public void printArray(File f) throws IOException{
FileWriter out = new FileWriter (f, true);
printArray (out);
out .close () ;

}
/%%

x Appends the array to the end of a File with the given fileName

% @param fileName The name of a File

x @throws [IOException

*/

public void printArray(String fileName) throws IOException{
FileWriter out = new FileWriter (fileName, true);
printArray (out);
out.close ();

62

}
/%%
* Prints an array to the console
*/
public void printArray ()
for(int i = 0; i < height; i++){
String line = "7}
for (int layer = 0; layer < layers —1; layer++){
for (int j = 0; j < width; j++){
line += array[i][j][layer];
line +=" 7;
}
line +=": 7;
}
for (int j = 0; j < width — 1; j++){
line += array[i][j][layers — 1];
line +=" 7;
}
line += array[i][width — 1][layers — 1];
System.out.println (line);
}
System.out.println () ;
}
/%%
x Prints the graph array to the console after applying the symmetry
* @Qparam s A symmetry
/
public void printArray (symmetry s){
printArray (getArray(s));
}

/%%
% Returns the proportion of the array values that are not less than minColor
or greater than maxColor
* @param minColor The lower bound for colors not outside the range
% @param maxColor The upper bound for colors not outside the range.
* @return The proportion of the array values that are not less than minColor
or greater than maxColor
*/
public double density(int minColor, int maxColor){
int numOutOfRange = 0;
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
for (int k = 0; k < layers; k++){
if (array[i][j][k] < minColor || array[i][j][k] > maxColor){
numOutOfRange ++;
}

}
}

}

return 1 — (double) (numOutOfRange) /(widthxheight«layers);
}
/%%

x+ Returns the proportion of array values that are nonzero
% @return the proportion of array values that are nonzero
*/
public double density (){

int numZeros = 0;

for(int i = 0; i < height; i++){

63

for (int j = 0; j < width; j++){
for(int k = 0; k < layers; k++){
if (array [1][j][k] = 0){
numZzeros —+-;
}

}
}
}
return 1 — (double) (numZeros) /(widthxheight«layers);
}
/%%
* Returns the density of a given array
x @param graphArray A graph array
* Qreturn
*/
public static double density(int [][][] graphArray){
int numZeros = 0;
int height = graphArray.length;
int width = graphArray[0].length;
int layers = graphArray [0][0]. length;
for (int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
for(int k = 0; k < layers; k++){
if (graphArray [i][j][k] = 0){
numZzZeros -++;
}

}
}

}

return 1 — (double) (numZeros) /(widthxheight*layers);
}
/%%

* Gets the minimum distance from a vertex to a copy of itself in another tile.

x Used to ensure a color is not used in too small a tile.

% @return An integer distance

o
public abstract int getTileDiameter () ;
/%%

* Returns an array of symmetries for the current graph.

x This method should be overwritten to include more than the trivial symmetry.
% @return A list of symmetries for the current graph.

*/
public symmetry [] symmetryList (){

return symmetryList (width, height, layers);

}
/%%
* Returns an array of symmetries for the current graph type, given new
dimensions.
% This method should be overwritten to include more than the trivial symmetry.
x @return A list of symmetries for the current graph type.
*/
public abstract symmetry[] symmetryList(int width, int height, int layers);
/%%
x Gets the graph array after applying the symmetry
x @param s a symmetry
x @return the array after applying the symmetry

*/

64

public int [][][] getArray (symmetry s){
int [][][] a = new int [height][width][layers];
for (int y = 0; y < height; y++){
for (int x = 0; x < width; x++){
for(int z = 0; z < layers; z++){
aly][x][z] = s.getArrayVal(this, x, y, z);

return a;

}
/%%

* Checks if the current graph has precisely the same uncolored vertices as
those in another graph.
* @param h The other graph.
¥ @return True if the graph arrays are zero at the same set of entries.
*
/
public boolean arraysMatch(graph h){
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
for (int k = 0; k < layers; k++){
if (array[i][j][k] = 0 ~ h.getArrayVal(j, i, k) = 0){
return false;
}
}
}
}
return true;
}
/%%
* Checks if the current graph has precisely the same uncolored vertices as
those in another graph array.
* @param graphArray The other graph array.
% @return True if the graph arrays are zero at the same set of entries.
*
/
public boolean arraysMatch(int [][][] graphArray){
for (int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
for(int k = 0; k < layers; k++){
if (arvay [1][j][k] = 0 - graphArray [i][j][k] = 0){
return false;
}
}
}
}
return true;
}
/%%

x Checks if the current graph has precisely the same uncolored vertices as
those in another graph array after applying the symmetry.
* @param graphArray The other graph array.
* @param s A symmetry.
x @return True if the graph arrays are zero at the same set of entries.
*
/
public boolean arraysMatch(int [][][] graphArray, symmetry s){
return s.arraysMatch (graphArray, this);
}

/%%

65

x Appends a graph array to the end of a file.
x @param graphArray
* Qparam f
x @throws [OException
*/
public static void printArray(int [J[][] graphArray, File f) throws IOException{
FileWriter out = new FileWriter (f, true);
int height = graphArray.length;
int width = graphArray[0].length;
int layers = graphArray [0][0]. length;
for(int i = 0; i < height; i++){
String line = 77
for (int layer = 0; layer < layers —1; layer++){
for(int j = 0; j < width; j++){
line 4= graphArray[i][]j][layer];
line 4= " 7;
}
line += ": 7
}
for(int j = 0; j < width — 1; j++){
line += graphArray[i][]j][layers — 1];
line 4= " 7;
}
line 4= graphArray[i][width — 1][layers — 1];
out.write(line);
out.write (System.lineSeparator ());
}
out.write (System.lineSeparator());
out.close ();

}
/%

* Prints the graph array to the console.
% @param array A graph array.
*/
public static void printArray(int [][][] array){
int height = array.length;
int width = array [0].length;
int layers = array [0][0].length;
for(int i = 0; i < height; i++){
String line = 77
for (int layer = 0; layer < layers —1; layer++){
for(int j = 0; j < width; j++){
line += array[i][]j][layer];
line 4= " 7;
}

line += ": 7
}

for(int j = 0; j < width — 1; j++){
line += array[i][j][layers — 1];
line +=" 7;
}
line += array[i][width — 1][layers — 1];
System.out . println (line);
}
System.out. println () ;
}
/%%

66

Returns an array where every other entry is 1.
@param width Width of the array
@param height Height of the array
@param layers Number of layers in the array
@param firstEntrylsOne True if the array should start with 1.
* @Qreturn an integer array: int[height][width][layers]

*

/
public static int [][][] alternatingOnesArray(int width, int height, int layers,
boolean firstEntryIsOne){
int [][][] a = new int[height][width][layers];
for (int y = 0; y < height; y++){

for(int x = 0; x < width; x++){

for(int z = 0; z < layers; z++){
if ((x4+y+2)%2 = 0 ~ !firstEntryIsOne){
alyl[x][z] = 1;

* Xk K X X

}
}
}
return a;

}
/

* %
* Returns an array where every other entry is 1. The first entry will be 1.
* @param width Width of the array

x @param height Height of the array

% @param layers Number of layers in the array

* Qreturn an integer array: int[height][width][layers]
*/
public static int [][][] alternatingOnesArray(int width, int height, int layers)

{

return alternatingOnesArray (width, height, layers, true);
}

/%%
* Returns a new copy of an array with all instances of one value replaced by
another value.
* @param graphArray A graph array.
x @param oldColor The value to be replaced.
% @param newColor The new value.
* @return A new graph array.
*
/
public static int [][][] replaceColor(int [][][] graphArray, int oldColor, int
newColor) {
int [][][] newArray = new int[graphArray.length][graphArray[0].length]]
graphArray [0][0]. length];
for(int y = 0; y < graphArray.length; y++){
for(int x = 0; x < graphArray [0].length; x++){
for(int z = 0; z < graphArray [0][0].length; z++){
if (graphArray[y][x][2z] = oldColor){
newArray[y][x][z] = newColor;
} else {
newArray [y][x][z] = graphArray[y][x][z];
}
}
}
}
return newArray;
}
/%%

67

* Replaces all instances of one value in the current graph array with a new
value .
x @param oldColor The old value.
x @param newColor A new value.
*
/
public void replaceColor(int oldColor, int newColor){
for(int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
for (int z = 0; z < layers; z++){
if (array[y][x][z] = oldColor){
array [y][x][z] = newColor;
}

}

I
[x

}
}
}
/%
* Returns an array of all vertices in the graph.
x @return An array of vertices
*/
public vertex [] getVertices(){
vertex [] vertices = new vertex|[widthxheightxlayers];
for (int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
for(int z = 0; z < layers; z++){
vertices [z + xxlayers + yxwidthxlayers] = new vertex(x,y,z);
}
}
}
return vertices;
}
/%
* Generates a list of all vertices in the graph that are uncolored.
x @return A list of vertices.
*/
public vertex[] getZeros(){
ArrayList<vertex> zeros = new ArrayList<vertex >();
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
for (int k = 0; k < layers; k++){
if (array [i][][k] = 0){
zeros .add (new vertex(j,i,k));
}

}
}
}

return zeros.toArray(new vertex|[zeros.size()]);

}
/%%
Expands an array by adding duplicates of it

@param oldArray The original array

@param verticalCopies Number of vertical copies to produce

@param horizontalCopies Number of horizontal copies to produce

@param layerCopies Number of layer copies to produce

x @return The larger array

*/

public static int [][][] expandArray(int [][][] oldArray, int verticalCopies, int
horizontalCopies, int layerCopies){

EE S U

68

int newHeight = oldArray.length*xverticalCopies;
int newWidth = oldArray [0].length*horizontalCopies;
int newLayers = oldArray [0][0].lengthx*layerCopies;

int [][][] newArray = new int [newHeight|[newWidth][newLayers];
for (int y = 0; y < newHeight; y++){
for(int x = 0; x < newWidth; x++){
for(int z = 0; z < newLayers; z++){
newArray [y][x][z] = oldArray[y%oldArray.length |[x%oldArray [0].length][z
%oldArray [0][0]. length |;

}
}
return newArray ;
}
public static int [][][] expandArray(int [][][] oldArray, int verticalCopies, int
horizontalCopies){
return expandArray(oldArray, verticalCopies, horizontalCopies, 1);

}
/%
x Generates an expanded graph of the same type as the given one. Expands the
array by creating duplicates of it.
@param g A graph
@param verticalCopies Number of vertical copies to produce
@param horizontalCopies Number of horizontal copies to produce
@param layerCopies Number of layer copies to produce
% @return An expanded graph
*/
public static graph expandGraph(graph g, int verticalCopies, int
horizontalCopies , int layerCopies){
int [][][] newGraphArray = expandArray(g.getArray (), verticalCopies,
horizontalCopies , layerCopies);
return g.makeNewGraph(newGraphArray) ;
}

/%%

* Generates expanded versions of all graphs in the array. Preserves graph
types.

x @param graphs An array of graphs

x @param verticalCopies Number of vertical copies to produce

x @param horizontalCopies Number of horizontal copies to produce

x @param layerCopies Number of layer copies to produce

x @return An array of expanded graphs.

*/

public static graph[] expandGraphs(graph[] graphs, int verticalCopies, int
horizontalCopies, int layerCopies){
graph [] newGraphs = new graph|[graphs.length];
for(int i = 0; i < graphs.length; i++){

newGraphs[i] = expandGraph(graphs[i], verticalCopies, horizontalCopies,

layerCopies);
}

return newGraphs;

* K K X

}
/%%
* Returns a new graph of the same type with the given graph array. Useful for
generating the proper type of graph.
x @param graphArray The graph array.
x @return A graph of the same type.

*/

69

public abstract graph makeNewGraph(int [][][] graphArray);
/%%
x Returns a new graph of the same type with the given dimensions. Useful for
generating the proper type of graph.
% @param width The graph’s width.
x @param height The graph’s height.
* @param layers The graph’s number of layers.
x @return A graph of the same type.
*
/
public abstract graph makeNewGraph(int width, int height, int layers);
/%
* Checks that the packing is valid; i.e. that two vertices in color class i
are at distance >i apart.
* @return True if the packing is wvalid.
*/
public boolean validateDistanceColoring (){
ArrayList<ArrayList<vertex>> vPos = new ArrayList<ArrayList<vertex>>();//list
of color classes
for (int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
for (int z = 0; z < layers; z++){
vertex v = new vertex(x,y,z);
int vVal = getArrayVal(v);
if (vval = 0){
while (vVal > vPos.size ()){
vPos.add (new ArrayList<vertex >());
}
vPos. get (vVal—1).add(v);
}
}
}
}
for(int i = 0; i < vPos.size(); i++){
ArrayList<vertex> vertices = vPos.get(i);
for(int j = 0; j < vertices.size(); j++){
for(int k = j+1; k < vertices.size(); k++){
if (distance(vertices.get(j), vertices.get(k)) <= i+1){
return false;
}

}
}

}
return true;
}
/%%
x Checks that a particular color class is wvalid; i.e. that any pair of
vertices in the color class
x are at distance greater than the color apart
% @param color
* Qreturn
*/
public boolean validateDistanceColoring(int color){
ArrayList<vertex> vertices = new ArrayList<vertex >();
for(int y = 0; y < height; y++){
for (int x = 0; x < width; x++){
for(int z = 0; z < layers; z++){
vertex v = new vertex(x,y,z);

70

int vVal = getArrayVal(v);

if (vVal = color){
vertices.add(v);

}

}
}
}
for(int i = 0; i < vertices.size(); i++){
for(int j = i4+1; j < vertices.size(); j++){
if (distance(vertices.get (i), vertices.get(j)) <= color){
return false;

}
}
}
return true;
}
/%
x This optional method is intended to print some sort of message regarding the
graph’s value.
% @param color The largest color currently used in the graph.
*/
public void printProgress(int color){};
/%%
x Makes a separate copy of the graph.
x @return A copy of the graph.
*/
public graph makeCopy (){
graph g = makeNewGraph(width, height, layers);
vertex [| vertices = getVertices();
for (vertex v: vertices){
g.setArrayVal (v, getArrayVal(v));
}
return g;
}
/%
x Gets the max density from an array of graphs
% @param graphs An array of graphs
% @return Max density from the graphs in the array
*
/
public static double findMaxDensity (graph[] graphs){
double maxDensity = 0;
for (graph g : graphs){
double density = g.density ();
if (density > maxDensity){
maxDensity = density;
}

}

return maxDensity;

71

B.1.2 Vertex

The vertex object is simple but fundamental. It is used to simplify iterating on coordi-
nates in graph arrays, as well as to add flexibility by storing extra information on the vertices

themselves.

package GraphPacking;

/%
x Stores 2D or 3D points with integer coordinates
x @author Kevin Moss
*/
public class vertex {
private int x = 0, y = 0, z = 0;
private int tokens = 0;//used for skewed choosing when choosing randomly
private int tempTokens;//used for graphColorerMaximal
private int vertexNum;//used to store a vertex’s index
/%
* Initializes 2D point
% @param x the x coordinate
* @param y the y coordinate
*/
public vertex(int x, int y){
this.x = x;
this.y = y;
}
/%%
* initializes 3D point
% @param x the x coordinate
% @param y the y coordinate
* @param z the z coordinate
*
/

public vertex(int x, int y, int z){

this.x = x;
this.y = y;
this.z = z;

}

public int getX(){
return x;

}

public int getY (){
return y;

}

public int getZ () {
return z;

}

public int getTokens(){
return tokens;

}

public void setTokens(int tokens){

72

this.tokens = tokens;

}

public void resetTokens (){
tokens = 0;

}

public void addTokens(int newTokens){
tokens += newTokens;
}

public void setTempTokens(int tokens){
tempTokens = tokens;
}

public void setTempTokens(){
tempTokens = tokens;
}

public void removeTokens(int tokens){
tempTokens —= tokens;
}

public int getTempTokens(){
return tempTokens;
}

public void setVertexNum (int num){
vertexNum = num;
}

public int getVertexNum (){
return vertexNum;
}

/%%
* Checks if this vertex has the same coordinates as that of another
x+ @param v A vertex
% @return True if coordinates match
+/
public boolean is(vertex v){
return x=v.getX () && y=v.getY () && z=—v.getZ();
}

}

B.1.3 Symmetry

The symmetry object, similar to vertex, is simple but useful. It is used to simplify iterating

on the symmetries in a graph.

package GraphPacking;

/%%

* Stores a graph symmetry.

* xShift is to the right, yShift down, and zShift 0—>1, 1->2 etc.
* Performs the flips centered at (0,0,0); then performs the shifts.
x Lastly performs the x—y flip on the new diagonal, if necessary.
* Shift values should be non—negative.

* @author Kevin Moss

*/
public class symmetry {
private int xShift = 0, yShift = 0, zShift = 0;

73

private boolean xFlip = false;
private boolean yFlip = false;
private boolean zFlip = false;
private boolean

public symmetry (){

swapXY = false;//for the square grid;

rotating 90 degrees

}
public symmetry(int xShift, int yShift){
this.xShift = xShift; this.yShift = yShift;
}
public symmetry(int xShift, int yShift, int zShift){
this.xShift = xShift; this.yShift = yShift; this.zShift = zShift;
}
public symmetry(int xShift, int yShift, boolean xFlip){
this.xShift = xShift; this.yShift = yShift;
this.xFlip = xFlip;
}
public symmetry(int xShift, int yShift, int zShift, boolean xFlip){
this.xShift = xShift; this.yShift = yShift; this.zShift = zShift;
this.xFlip = xFlip;
}
public symmetry(int xShift, int yShift, int zShift, boolean xFlip, boolean
yFlip){
this.xShift = xShift; this.yShift = yShift; this.zShift = zShift;
this.xFlip = xFlip; this.yFlip = yFlip;
}
public symmetry(int xShift, int yShift, int 2zShift, boolean xFlip, boolean
yFlip, boolean zFlip){
this.xShift = xShift; this.yShift = yShift; this.zShift = zShift;
this.xFlip = xFlip; this.yFlip = yFlip; this.zFlip = zFlip;
}
public symmetry(int xShift, int yShift, int zShift, boolean xFlip, boolean
yFlip, boolean zFlip, boolean swapXY){
this.xShift = xShift; this.yShift = yShift; this.zShift = zShift;
this.xFlip = xFlip; this.yFlip = yFlip; this.zFlip = zFlip;
this .swapXY = swapXY;
}
public int getXShift (){
return xShift;
}
public int getYShift (){
return yShift;
}
public int getZShift (){
return zShift;
}
public boolean getXFlip (){
return xFlip;
}
/%%
x+ Returns an an array value in a graph after applying the symmetry.

* The array value returned
after

*
* @param g A graph.

% @param xPos The x position

is

the that of the new position of the coordinate

applying the symmetry to the original graph.

of the array value.

74

x @param yPos The y position of the array value.
% @param zPos The z position of the array value.
* @return The array value after applying the symmetry.
*
/
public int getArrayVal(graph g, int xPos, int yPos, int zPos){
int width = g.getWidth();
int height = g.getHeight ();
int layers = g.getLayers();
int xNew = xFlip? (xShift — xPos + width)%width : (xShift + xPos + width)%
width ;
int yNew = yFlip? (yShift — yPos + height)%height : (yShift + yPos + height)%
height ;
int zNew = zFlip? (zShift — zPos + layers)%layers : (zShift + zPos + layers)%
layers;
if (swapXY){
int temp = xNew;
xNew = yNew;
yNew = temp;
}

return g.getArrayVal (xNew, yNew, zNew);

—

EE S S R

Returns an array value in a graph after applying the symmetry.

The array value returned is the that of the new position of the vertex after

applying the symmetry to the original graph.

@param g A graph.

@param v A vertex in the graph.

x @return An array value.

*/

public int getArrayVal(graph g, vertex v){
return getArrayVal(g, v.getX (), v.getY ()

}

/%%

* Checks if the graph array is zero at precisely the same locations as the
shifted graph.

* @param fixedGraphArray

x @param shiftGraph

* Qreturn

*/
public boolean arraysMatch(int [][][] fixedGraphArray, graph shiftGraph){

for(int y = 0; y < shiftGraph.getHeight (); y++){

for(int x = 0; x < shiftGraph.getWidth(); x++){
for(int z = 0; z < shiftGraph.getLayers(); z++){
if (fixedGraphArray [y][x][z] == 0 ~ getArrayVal(shiftGraph, x, y, z) =

» vegetZ());

0){
return false;
}
}
}

}

return true;
}
/%%

* Checks if the symmetry is the default symmetry.
x @return True if there is no shifting , flipping, or swapping.
*/
public boolean isDefault (){

75

return xShift = 0 && yShift = 0 && zShift = 0 && !xFlip && !yFlip && !
zFlip && !swapXY;
}
}

B.1.4 Graph Colorer

The graphColorer object primarily implements backtracking, but also stores some infor-

mation for other coloring objects.

package GraphPacking;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.lOException;
import java.util.ArrayList;
/%
x+ A backtracking graph coloring algorithm. Recursively generates colorings of a
graph.
x @author Kevin Moss
*/
public class graphColorer {
private graph g;
private int minColor, maxColor;
public static String directory = 7./offsetGraphOutput”;//directory can be
changed before running algorithm
private File outFile;
private int width, height, layers;
private ArrayList<vertex >[][][][] neighborhoods; //[<= color][y][x][z]
private double densityThreshold = 0;
static final double EPSILON = 0.00000000000001;//A sufficiently small value.
Used for comparing doubles.
private boolean maxDensityOnly = false;//True if only the graphs with maximum
density should be stored.
symmetry [|] symmetries;

boolean keepCandidatesInMem = false;
ArrayList<graph> candidates = new ArrayList<graph>();

public graphColorer(graph g, String graphName, int minColor, int maxColor)
throws IOException{

this (g, graphName, minColor, maxColor, false, false);
}

/%%

x Instantiates a graphColorer object and runs the backtracking algorithm.

¥ The coloring algorithm runs upon instantiation of this object, so the object
may be discarded after running.

* @param g The graph on which to run the algorithm.

x @param graphName Part of the name of the file to be generated and written on

x @param minColor The minimum value among the range of colors to use.

* @param maxColor The maximum value among the range of colors to use.

x @param maxDensityOnly True if only graphs with the maximum density should be
recorded .

76

x @param keepCandidatesInMem True to keep all recorded graphs in memory.
Speeds up cross—checking at the cost of space.
x @throws IOException
*/
public graphColorer (graph g, String graphName, int minColor, int maxColor,
boolean maxDensityOnly, boolean keepCandidatesInMem) throws IOException{
if (minColor <= 0){
throw new IllegalArgumentException(”minColor must be at least 17);
} else if (minColor > maxColor){
throw new IllegalArgumentException (”minColor cannot be greater than
maxColor”) ;
} else if(g.getTileDiameter () <= maxColor) {
throw new IllegalArgumentException (”Graph dimensions are too small to fit
maxColor”) ;

}

this.g = g;
this . minColor = minColor;
this.maxColor = maxColor;

width = g.getWidth () ;

height = g.getHeight () ;

layers = g.getLayers();

File fileDir = new File(directory);

fileDir . mkdir () ;

String outFileName = graphName + 7C” + maxColor + "D” 4+ height + "x” 4+ width
+ 7x” + layers + 7 .txt”7;

outFile = new File(directory + ”7/” + outFileName);

outFile.createNewFile () ;

symmetries = g.symmetryList () ;

this.keepCandidatesInMem = keepCandidatesInMem ;
if (keepCandidatesInMem) {
fileReader fr = new fileReader (outFile);
while (fr . hasNextGraph ()){
graph tempGraph = g.makeNewGraph(fr.getNextGraphArray());
candidates .add (tempGraph) ;
}

fr.close();

}

if (maxDensityOnly) {
this.maxDensityOnly = true;
densityThreshold = findMaxDensity (outFile);

}

neighborhoods = generateNeighborhoods () ;
colorNext (new vertex (0,0,0));

if (maxDensityOnly){
deleteSparseColorings (outFile ,1);
}

/%%

x Finds the maximum density of a graph within the file.
x @param file A file.

% @return A density.

7

*
/
public static double findMaxDensity (File file){
double densityThreshold = 0;
fileReader f;
try{
f = new fileReader (file);
while (f.hasNextGraph ()){
int [][][] graphArray = f.getNextGraphArray();
double tempDensity = graph.density (graphArray);
densityThreshold = densityThreshold < tempDensity ? tempDensity
densityThreshold;

f.close();
} catch(Exception e) {
}
return densityThreshold;
}
/%%
x* A recursive algorithm. For each possible color of the current vertex,
chooses that color
* and moves the algorithm to the next color.
x If at the last vertex in the graph, checks and possibly stores the coloring.
x @param v1 A vertex.
x @throws [OException
+/
private void colorNext(vertex vl) throws IOException{
if (vl.getY () >= g.getHeight ()){
if (! keepCandidatesInMem) {
if (checkColoring ()){
g.printArray (outFile);

}
} else {
if (checkColoring(candidates)){
candidates .add(g.makeCopy ())
g.printArray (outFile);

)

}
}
} else {

vertex v2 = nextVertex(vl);
if(g.getArrayVal(vl) = 0){
for (int ¢ = minColor; ¢ <= maxColor; c++){
boolean canUseColor = true;
search :

for (int c¢Temp = minColor; cTemp <= c¢; cTemp++){
for (vertex v : mneighborhoods[cTemp — minColor|[vl.getY ()][vl.getX()]]
vi.getZ()]){
if (g.getArrayVal(v) = c){
canUseColor = false;
break search;

}
}

}
if (canUseColor){
g.setArrayVal(vl, c¢);

colorNext (v2)

}
}

g.setArrayVal(vl, 0);

78

}

colorNext (v2);
}
}
/%%
x Determines the next vertex in the list of uncolored vertices.
x @param v A vertex
x @return A vertex
*/
private vertex nextVertex(vertex v){
if (v.getZ() < layers — 1){
return new vertex(v.getX(),v.getY(),v.getZ() + 1);

if (v.getX() < width — 1){
return new vertex(v.getX () + 1, v.getY(), 0);
}
return new vertex (0, v.getY() + 1, 0);
}//To make the algorithm simpler and more efficient , we could iterate on the
list of uncolored vertices rather than all vertices.
/%%
* Determines whether or not a coloring should be stored.
x First checks that the density meets the required threshold.
* Then checks if the coloring is maximal (no more colors can be added).
* Finally cross—checks the coloring with other stored colorings.
x @return True if the coloring should be stored.
* @throws FileNotFoundException
*
/
private boolean checkColoring () throws FileNotFoundException{
if (maxDensityOnly) {
if (g.density () < densityThreshold — EPSILON){
return false;
}

if (!maximal ()){
return false;
}
fileReader f = new fileReader (outFile);
while (f.hasNextGraph ()) {
int [][][] graphArray = f.getNextGraphArray () ;

for (symmetry s : symmetries){
if (g.arraysMatch (graphArray, s)){
f.close();

return false;

}

}

}
f.close();

return true;

*

—~—

* Kk K K K K X X

Determines whether or not a coloring should be stored.

First checks that the density meets the required threshold.

Then checks if the coloring is maximal (no more colors can be added).
Finally cross—checks the coloring with other stored colorings.
@param graphs The graphs to be cross—checked with.

@return True if the coloring should be stored.

@throws FileNotFoundException

79

*/
private boolean checkColoring(ArrayList<graph> graphs){
if (maxDensityOnly) {

if(g.density () < densityThreshold — EPSILON) {

return false;

}

if (!maximal()){
return false;

}

for (graph h : graphs){

for (symmetry s symmetries){
if (g.arraysMatch (h.getArray (), s))

return false;

return true;

/%

x To save time at the cost of space, a list of the vertices within a certain
of each vertex is generated.

iterated on rather than checking pairwise distance for

each

distance

x* The lists are
in

vertex .
of vertices within a certain distance of each vertex

x @return An arraylist
the graph.

*/

private ArrayList<vertex >[][][][]
@SuppressWarnings (" unchecked”)
neighborhoods =

ArrayList<vertex > [][][][]
ArrayList [maxColor — minColor + 1][height][width][layers];

i < height; i++){

generateNeighborhoods () {

(ArrayList<vertex > [][][][]) new

for (int 1 = 0;
for(int j = 0; j < width; j++){
for (int k = 0; k < layers; k++){
vertex vl = new vertex(j,i,k);
for (int ¢ = minColor; ¢ <= maxColor; c++){
neighborhoods [c—minColor |[i][j][k] = new ArrayList<vertex >();

}
for (int i2 = 0; i2 < height; i24+){
for(int j2 = 0; j2 < width; j2++){
for (int k2 = 0; k2 < layers; k24++){
vertex v2 = new vertex(j2,i2,k2);
int distTemp = g.distance(vl, v2);

if (distTemp <= maxColor) {

distTemp < minColor ? minColor distTemp ;

distTemp =
neighborhoods [distTemp — minColor][i][j][k].add(v2)

return neighborhoods;

}
IEE:

80

* Checks if the graph has a maximal coloring. That is,
the range can be added.

* @return True if the coloring is maximal.

*/
private boolean maximal () {

for (int y = 0; y < height; y++){

for (int x = 0; x < width; x++){
for(int z = 0; z < layers; z++){

no more colors within

if (g.getArrayVal(x, y, z) = 0){
boolean [] unusableColors = new boolean[maxColor — minColor + 1];
boolean vertexIsColorable = true;
int largestUnfoundColor = maxColor; //usableColors|[k] = true for all
k > largestUnfoundColor
searchVertex:
for (int ¢ = minColor; ¢ <= maxColor; c++){

if (¢ > largestUnfoundColor){
return false;

}

for (vertex v : mneighborhoods[c—minColor]|[y][x][z]){
if(g.getArrayVal(v) >= ¢ && g.getArrayVal(v) <=
largestUnfoundColor){
if (unusableColors[g.getArrayVal(v)—minColor] == false){
unusableColors [g. getArrayVal(v)—minColor] = true;
int temp = 0;
for (int i = minColor; i <= largestUnfoundColor; i++){
if (! unusableColors[i — minColor]) {
temp = i;
}

}
if (temp = 0){
vertexIsColorable = false;
break searchVertex;//continue searching next vertex

}
largestUnfoundColor = temp;
}
}
}
}
if (vertexIsColorable){
return false;

}
}
}
}

return true;

}

/%%

x Deletes all colorings in a file that do not
threshold .

x @param graphFile A file
x @param densityThreshold A density threshold
* @throws IOException
*/
public static void deleteSparseColorings (File graphFile, double
densityThreshold) throws IOException{
if (! graphFile.getName () .endsWith(”.txt”)){
throw new IllegalArgumentException (”Graph file must be of type .txt”);

meet or exceed the density

81

}
String filePath = graphFile.getAbsolutePath();

String outputName = filePath.substring (0, filePath.length() — 4);
File temp = new File (outputName+’temp.txt”);
temp. createNewFile () ;
fileReader r = new fileReader (graphFile);
while (r.hasNextGraph ()){
int [][][] graphArray = r.getNextGraphArray () ;
if (graph.density (graphArray) >= densityThreshold — EPSILON) {
graph.printArray (graphArray , temp);
}

r.close () ;
graphFile.delete () ;
temp .renameTo (graphFile);

}
/%
x Generates colorings with a static method (for convenience) by creating a
graphColorer object.
% @param g The graph on which to run the algorithm.
* @param graphName Part of the name of the file to be generated and written on

* @param minColor The minimum value among the range of colors to use.

x @param maxColor The maximum value among the range of colors to use.

* @param maxDensityOnly True if only graphs with the maximum density should be
recorded .

x @param keepCandidatesInMem True to keep all recorded graphs in memory.
Speeds up cross—checking at the cost of space.

* @throws [OException

*/

public static void generateColorings(graph g, String graphName, int minColor,
int maxColor, boolean maxDensityOnly, boolean keepCandidatesInMem) throws
IOException{
@SuppressWarnings (" unused”)
graphColorer ¢ = new graphColorer (g, graphName, minColor, maxColor,
maxDensityOnly, keepCandidatesInMem) ;

}

public static void generateColorings(graph g, String graphName, int minColor,
int maxColor) throws IOException{
@SuppressWarnings (" unused”)
graphColorer ¢ = new graphColorer (g, graphName, minColor, maxColor, false
false);

}
/%%
x Counts the number of graphs in a file that meet or exceed the density
threshold.
x @param f A file.
* @param densityThreshold A density.
x @return An integer.
* @throws FileNotFoundException
*
/
public static int countGraphs(File f, double densityThreshold) throws
FileNotFoundException{
fileReader r = new fileReader(f);
int numGraphs = 0;
if (densityThreshold = 0){
while (r.hasNextGraph ()){
r.getNextGraphArray () ;

82

numGraphs++;
}
} else {
while (r.hasNextGraph ()){
double tempDensity = graph.density (r.getNextGraphArray());
if (tempDensity >= densityThreshold — EPSILON) {
numGraphs++;
}
}
}
return numGraphs;
}
IEE:
% Checks if a graph array is maximal. That is, there is no other vertex for
which the graph exists.
x @param graphArray
% @param graphType
x @Qreturn
*/
public static boolean isMaximal(int [][][] graphArray, graph graphType){
ArrayList<Integer> colorsInGraph = new ArrayList<Integer >();
ArrayList<vertex> zeros = new ArrayList<vertex >();

int width = graphArray[0].length;

int height = graphArray.length;

int layers = graphArray [0][0].length;
boolean isMaximal = true;

for(int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
for (int z = 0; z < layers; z++){
if (graphArray [y][x][2] — 0){
zeros .add (new vertex(x,y,z));
} else {
boolean newColor = true;
for (int i : colorsInGraph){
if (i = graphArray[y][x][z]){
newColor = false;
break ;

}

if (newColor) {
colorsInGraph .add (graphArray [y][x][z]) ;
}

}

}
}
}

for (int color : colorsInGraph){
@SuppressWarnings (” unchecked”)
ArrayList<vertex> tempZeros = (ArrayList<vertex>) zeros.clone();
for(int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
for (int z = 0; z < layers; z++){
if (graphArray[y][x][z] = color){
vertex v = new vertex(x,y,z);
int i = tempZeros.size();
while (i > 0){

83

i__.

if (graphType.distance (v, tempZeros.get (i), width, height, layers)

<= color){
tempZeros.remove(1i);

if (tempZeros.isEmpty ()){
isMaximal = false;

}
}

return isMaximal;

B.1.5 Local Random Graph Colorer

The graphColorerLocalRandom object implements a priority-based random coloring algo-

rithm. Once a vertex is colored, priority is given to nearby vertices.

package GraphPacking;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Random;

/%%

x Class for coloring large grids randomly.
x @author Kevin Moss

*/

public class graphColorerLocalRandom {
//private String graphName;
protected graph g;
protected double startDensity;
protected int color;
protected File outFile;
protected int width, height, layers;
public static double densityThreshold = 0;
protected static double densityMax = 0;
public final static double proportionOfMaxAllowed = 0.95;
protected static int numDenseGraphs = 0;
protected vertex[| zerosBase;
protected Random seed ;

/%

* Instantiates a graphColorerLocalRandom object.

x* A separate method runs an iteration of the colorer; it may be used multiple

times .

* Q@param g A graph that the object will color.

x @param graphName Name of the graph.

% @param color The color class that will be generated.
x @throws IOException

84

*
/
public graphColorerLocalRandom (graph g, String graphName, int color) throws
IOException{
//Static variables should be initialized first with initializeDensityVars if
if (color <= 0){
throw new IllegalArgumentException (”minColor must be at least 17);
} else if(g.getTileDiameter () <= color){
throw new IllegalArgumentException (”Graph dimensions are too small to fit
maxColor”) ;
}
this.g = g;
this.color = color;
width = g.getWidth () ;
height = g.getHeight () ;
layers = g.getLayers();
seed = new Random () ;

File fileDir = new File(graphColorer.directory);

fileDir . mkdir () ;

String outFileName = graphName + ”"C” + color + ”"D” + height + "x” + width + ”
x” + layers 4+ 7 .txt”;

outFile = new File(graphColorer.directory + 7/” + outFileName);
outFile.createNewFile () ;

startDensity = g.density ();
zerosBase = g.getZeros () ;

}
/%%

* Instantiates a graphColorerLocalRandom object with a preset density
threshold .

x A separate method runs an iteration of the colorer; it may be used multiple
times .

@param g A graph that the object will color.

@param graphName Name of the graph.

@param color The color class that will be generated.

@param density A density threshold.

x @throws [OException

*/
public graphColorerLocalRandom (graph g, String graphName, int color, double
density) throws IOException{

this (g, graphName, color);

densityMax = density > densityMax ? density : densityMax;

if (startDensity < densityMax) {

densityThreshold = (densityMax — startDensity)*proportionOfMaxAllowed +

startDensity ;

} else {

densityThreshold = startDensity;

}

* K ¥ %

}
/

*

Initializes static variables, particularly numDenseGraphs.

If we have a set (>= 1) of graphColorerLocalRandom objects

(different graphs, but same dimensions and working color class),

then this method should be run before generating colorings with the objects.
@param graphName The prefix associated with the working file.

@param color The current working color.

@param startDensity The initial density threshold (in case the working file
is empty or a higher density is desired).

EE I U O A

85

* @param height Height of the graphs in the working set.
x @param width Width of the graphs in the working set.
x @param layers Layers of the graphs in the working set.
x @throws [OException
*/
public static void initializeDensityVars(String graphName, int color, double
startDensity , int height, int width, int layers) throws IOException{
String outFileName = graphName + ”"C” 4+ color + ”"D” 4+ height + "x” + width + ”
x” + layers 4+ 7 .txt”;
File outFile = new File(graphColorer.directory + 7/” 4+ outFileName);
if (outFile.createNewFile()){
densityMax = 0;
numDenseGraphs = 0;
densityThreshold = startDensity;
1 oelse {
densityMax = graphColorer.findMaxDensity (outFile);
if (startDensity < densityMax) {
densityThreshold = (densityMax — startDensity)*proportionOfMaxAllowed +
startDensity ;

} else {
densityThreshold = startDensity;
}

numDenseGraphs = graphColorer.countGraphs (outFile, densityThreshold);

}

}
/%%
x Generates a coloring of the graph, checks and possibly records the coloring,
then resets the graph.
x* Static variables densityMax, densityThreshold, and numDenseGraphs are
updated as needed.
* @return True if the graph generated has higher density than the previous max

* @throws IOException
*/
public boolean colorGraph() throws IOException{
ArrayList<vertex> zeros = new ArrayList<vertex >();
for (vertex v: zerosBase){
zeros .add(v);
}

ArrayList<vertex> priority = new ArrayList<vertex >();
int priorityNum = 0;

int numZeros = zeros.size ();

while (! zeros.isEmpty ()){
vertex choice;
if (priority .isEmpty()){
choice = zeros.get((int)(zeros.size ()*Math.random()));
} else {
choice = priority.get((int)(priority.size ()*Math.random()));
}
priority.clear ();
priorityNum = 0;

g.setArrayVal(choice, color);

86

numzZeros ——;
for(int i = 0; i < zeros.size(); i++){
vertex v = zeros.get(i);

int distance = g.distance(choice, v);//TODO: use a pre—generated distance
graph to save time
if (distance <= color){
zeros .remove (1) ;
i——;
1 else {
if (distance < 2xcolor){
v.addTokens (2« color — distance);
if (v.getTokens () > priorityNum) {
priorityNum = v.getTokens () ;
priority.clear ();
}
if (v.getTokens () = priorityNum){
priority .add(v);

boolean densitylmprovement = false;

double density = 1 — (double) (numZeros) /(widthxheight*layers);
boolean checkCol = true;

if (density < densityThreshold — graphColorer .EPSILON) {
checkCol = false;
} else if(density > densityMax + graphColorer .EPSILON) {
//densityThreshold should be updated after every graph
densityMax = density;
densityThreshold = (densityMax — startDensity)*proportionOfMaxAllowed +
startDensity ;
densitylmprovement = true;
} else if(density < densityMax — graphColorer .EPSILON && numDenseGraphs >
800000/(g.getHeight () *g.getWidth ()) && numDenseGraphs > 0){
checkCol = false;//too many graphs at or above this density
} else if (numDenseGraphs > 1600000/(g.getHeight ()*g.getWidth()) &&
numDenseGraphs > 1){
checkCol = false;//too many graphs at this density
}
if (checkCol){
numDenseGraphs ++;
g.printArray (outFile);

}

for (vertex v : zerosBase){
g.setArrayVal(v, 0);
v.resetTokens () ;

}

return densitylmprovement ;

/%%
* Runs the color generating algorithm a set number of times.
* @param numTrials Number of times to run the algorithm.

87

* @Qthrows IOException
*
/
public void colorGraph(int numTrials) throws IOException{
for(int i = 0; i < numTrials; i++){
if (colorGraph ()){
numDenseGraphs = 1;
graphColorer. deleteSparseColorings (outFile ,densityThreshold);

}

}
}
/%%

x A static method that generates a graphColorerLocalRandom object and runs it
the desired number of times.

Also returns a status update:

0:no new graphs,

1:new graphs,

2:too many graphs already at current density ,

3:new graphs with density improvement

@param g A graph

@param graphName The prefix associated with the working file for the graph.
@param color The color class to be generated

@param numTrials Number of times to run the color generation algorithm.
@return A status update in the form of an integer.

@throws IOException

¥ OK K K KX X X X K

*

*
/
public static int generateColorings(graph g, String graphName, int color, int
numTrials) throws IOException{
graphColorerLocalRandom gclr = new graphColorerLocalRandom (g, graphName,
color);
int numGraphs = numDenseGraphs;
int progress = 0;
gclr . colorGraph (numTrials) ;
if (numDenseGraphs > 1600000/ (g. getHeight () *g.getWidth()) && numDenseGraphs >
0){
progress = 2;
} else if(numDenseGraphs > numGraphs) {
progress = 1;
} else if (numDenseGraphs < numGraphs) {
progress = 3;
}

return progress;

}
/%%

x Gives access to the graph this colorer is coloring.

* @return A graph.

*/
public graph getGraph(){

return g;
}
/%%

x Generates colorings from an already—initialized colorer. Also returns a
status update:

0:no new graphs,

1:new graphs,

2:too many graphs already at current density,

3:new graphs with density improvement

@param gclr A graph colorer

@param numTrials Number of times the colorer should be run.

88

x @return A status update, in the form of an integer.
* @throws [OException
*/
public static int generateColorings (graphColorerLocalRandom gclr, int numTrials
) throws IOException{
int numGraphs = numDenseGraphs;
int progress = 0;
gclr . colorGraph (numTrials) ;
if (numDenseGraphs > 1600000/(gclr.getGraph () .getHeight ()*gclr.getGraph().
getWidth ()) && numDenseGraphs > 0){
progress = 2;
} else if(numDenseGraphs > numGraphs) {
progress = 1;
} else if (numDenseGraphs < numGraphs) {
progress = 3;
}

return progress;

B.1.6 Naive Random Graph Colorer

The graphColorerNaiveRandom object implements a simple random coloring algorithm.

Vertices are colored entirely at random until no further vertices can be assigned the given color.

package GraphPacking;

import java.io.lOException;

import java.util.ArrayList;

/%%

* Creates a random maximal packing of a color in a graph array.

« This is not the original random—colorer object. For simplicity ,

x it is extended from graphColorerLocalRandom.

x @author Kevin Moss

*/

public class graphColorerNaiveRandom extends graphColorerLocalRandom {

public graphColorerNaiveRandom (graph g, String graphName, int color) throws
IOException{//make call to initializeDensityVars before making this object
super (g, graphName, color);

}

public graphColorerNaiveRandom (graph g, String graphName, int color, double
density) throws IOException{
super (g, graphName, color, density);

}

public static void initializeDensityVars(String graphName, int color, double
startDensity , int height, int width, int layers) throws IOException{
graphColorerLocalRandom . initializeDensityVars (graphName, color, startDensity ,
height , width, layers);

}

/%%

% This method randomly picks a vertex from all available vertices, rather than
only those nearby (with priority).

89

*
/
public boolean colorGraph() throws IOException{
ArrayList<vertex> zeros = new ArrayList<vertex >();
for (vertex v: zerosBase){
zeros .add(v);
}

int numZeros = zeros.size ();

while (! zeros.isEmpty ()){
vertex choice = zeros.get ((int)(zeros.size ()*Math.random()));

g.setArrayVal(choice, color);

numZzZeros ——;
for(int i = 0; i < zeros.size(); i++){
vertex v = zeros.get(i);

int distance = g.distance(choice, v); //TODO: use a pre—generated
distance graph to save time
if (distance <= color){
zeros .remove (1) ;
==
}
}

}

boolean densitylmprovement = false;

double density = 1 — (double) (numZeros) /(widthxheight=*layers);
boolean checkCol = true;

if (density < densityThreshold — graphColorer.EPSILON) {
checkCol = false;
} else if(density > densityMax + graphColorer .EPSILON){
//densityThreshold should be updated after every graph
densityMax = density;
densityThreshold = (densityMax — startDensity)*proportionOfMaxAllowed +
startDensity ;
densitylmprovement = true;
} else if(density < densityMax — graphColorer .EPSILON && numDenseGraphs >

800000/(g.getHeight () xg.getWidth ()) && numDenseGraphs > 0){
checkCol = false;//too many graphs at or above this density
} else if (numDenseGraphs > 1600000/(g.getHeight ()*g.getWidth()) &&
numDenseGraphs > 1){
checkCol = false;//too many graphs at this density

}

if (checkCol){
numDenseGraphs ++;
g.printArray (outFile);

}

for (vertex v : zerosBase){
g.setArrayVal(v, 0);

}

return densitylmprovement ;

}

public static int generateColorings(graph g, String graphName, int color, int
numTrials) throws IOException{

90

graphColorerNaiveRandom gcnr = new graphColorerNaiveRandom (g, graphName,
color);
int numGraphs = numDenseGraphs;
int progress = 0;
genr . colorGraph (numTrials) ;
if (numDenseGraphs > 1600000/(g.getHeight () *g.getWidth()) && numDenseGraphs >
0){
progress = 2;
} else if(numDenseGraphs > numGraphs) {
progress = 1;
} else if (numDenseGraphs < numGraphs) {
progress = 3;
}

return progress;

}

public static int generateColorings(graphColorerNaiveRandom gcnr, int numTrials
) throws IOException{
int numGraphs = numDenseGraphs;
int progress = 0;
genr . colorGraph (numTrials) ;
if (numDenseGraphs > 1600000/ (gcnr . getGraph (). getHeight () *genr. getGraph () .
getWidth ()) && numDenseGraphs > 0){
progress = 2;
} else if (numDenseGraphs > numGraphs) {
progress = 1;
} else if(numDenseGraphs < numGraphs) {
progress = 3;
}

return progress;

B.1.7 File Reader

The fileReader object, not to be confused with java.io.FileReader, is used to read and

extract graph arrays from a file.

package GraphPacking;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class fileReader {

private Scanner sc;

boolean scAtEnd = false;

public fileReader (File f) throws FileNotFoundException {
sc = new Scanner(f);

}

public boolean hasNextGraph (){

91

return sc.hasNextLine () ;

}

public hexGrid getNextGrid (){
hexGrid h = new hexGrid (4,4);
if (sc.hasNextLine()){
ArrayList<int[]> tempList = new ArrayList<int[]>();
String line = sc.nextLine();
while (! line .isEmpty ()){
String [] lineArray = line.split(” 7);
int [] intArray = new int[lineArray.length];
for (int i = 0; i < lineArray.length; i++){

intArray[i] = Integer.parselnt(lineArray[i]);

}

tempList.add(intArray);

line = sc.nextLine();
}
int listSize = tempList.size();
int [][] tempArray = new int[listSize |[tempList.get(0).length];
for(int i = 0; i < listSize; i++){

tempArray[i] = tempList.get(i);

}

h.setArray (tempArray) ;
return h;

} else {

throw new IllegalArgumentException (” There are no more grids to be read.”);
}

}

public hexGridP2 getNextGridP2(){
hexGridP2 h = new hexGridP2(4.,4);
if (sc.hasNextLine ()){
ArrayList<int[]> tempList = new ArrayList<int[]>();
String line = sc.nextLine();
while (! line .isEmpty ()){
String [] line2 = line.split(”: 7);
String [] lineArray = line2 [0].split(” 7);
String [] lineArray2 = line2[1].split(” 7);
int [] intArray = new int[lineArray.length];
int [] intArray2 = new int[lineArray2.length];
for(int i = 0; i < lineArray.length; i++){

intArray[i] = Integer.parselnt(lineArray[i]);
}
for(int i = 0; i < lineArray2.length; i++){
intArray2[i] = Integer.parselnt(lineArray2[i]);
}

tempList.add(intArray);
tempList.add(intArray2);
line = sc.nextLine () ;

}

int listHeight = tempList.size()/2;//should always be even
int listWidth = tempList.get (0).length;
int [][][] tempArray = new int[listHeight |[listWidth|[2];
for(int i = 0; i < listHeight; i++){
for(int j = 0; j < listWidth; j++){
for (int k = 0; k < 2; k++){
tempArray [i][j][k] = tempList.get(2xi + k)[j];

}

92

}
}

h.setArray (tempArray) ;
return h;

} else {

throw new IllegalArgumentException (” There are no more grids to be read.”);
}

}

public int []J[][] getNextGraphArray () {
if (sc.hasNextLine ()){
ArrayList<int [][] > tempList = new ArrayList<int[][] >();

String line = sc.nextLine();
while (! line . isEmpty ()){
String [] rows = line.split(”: 7);
String [] row0 = rows[0].split(” 7);
int [][] lineToInt = new int [row0.length|[rows.length];
for (int j = 0; j < row0.length; j++){
lineToInt [j][0] = Integer.parselnt(row0[j]);
}

for(int i = 1; i < rows.length; i++){
String [] thisRow = rows[i].split(” 7);
for(int j = 0; j < thisRow.length; j++){
lineTolnt[j][i] = Integer.parselnt (thisRow([j]);

}

}
tempList.add(lineTolInt);
line = sc.nextLine();
int []J[][] graphArray = tempList.toArray(new int[tempList.size ()][][]) ;
return graphArray;
} else {

throw new IllegalArgumentException (” There are no more graphs to be read.”);

}
}

public dummyGraph getNextGraph () {
return new dummyGraph(getNextGraphArray ());
}

public hexGridP2v2 getNextGridP2v2 ()
hexGridP2v2 h = new hexGridP2v2(4,4);
if (sc.hasNextLine ()){
ArrayList<int[]> tempList = new ArrayList<int[]>();
String line = sc.nextLine();
while (! line .isEmpty ()){
String [] line2 = line.split(”: 7);
String [] lineArray = line2 [0].split(” 7);
String [] lineArray2 = line2[1].split(” 7);
int [] intArray = new int[lineArray.length];
int [] intArray2 = new int[lineArray2.length];
for(int i = 0; i < lineArray.length; i++){
intArray[i] = Integer.parselnt(lineArray[i]); //maybe use try—catch?

for(int i = 0; i < lineArray2.length; i++4){
intArray2[i] = Integer.parselnt (lineArray2[i]); //maybe use try—catch?
}

tempList.add(intArray);

93

tempList.add(intArray2);
line = sc.nextLine();
}

int listHeight = tempList.size()/2; //should always be even
int listWidth = tempList.get (0).length;
int [][][] tempArray = new int[listHeight |[listWidth][2];
for(int i = 0; i < listHeight; i++){
for(int j = 0; j < listWidth; j++){
for(int k = 0; k < 2; k++){
tempArray[i][j][k] = tempList.get (2xi + k) [j];
}
}
}

h.setArray (tempArray) ;
return h;

} else {

throw new IllegalArgumentException (” There are no more grids to be read.”);
}

}

public void close (){
sc.close () ;

}

public static graph[] readDoc(File f, graph graphType) throws
FileNotFoundException{
fileReader fr = new fileReader(f);
ArrayList<graph> graphs = new ArrayList<graph>();
while (fr . hasNextGraph ()){
int [][][] graphArray = fr.getNextGraphArray () ;
graphs.add (graphType . makeNewGraph(graphArray)) ;
}
fr.close();
return graphs.toArray(new graph[graphs.size()]);
}
/%%
x Parses a fileName and gets the color and dimensions in an integer array.
x The file should be of the type [prefix]C[color]D[height]|x[width]|x[layers].
txt
* @param f A file
* @Qreturn An integer array. int[0] color, int[l] = height, int[2] = width, int
[3] = layers.
*/
public static int[] parseName(File f){
String s = f.getName();
String pattern = 7 (.+)C(\\d+)D(\\d+)x(\\d+)x(\\d+)\\. txt”;
Pattern r = Pattern.compile(pattern);
Matcher m = r.matcher(s);
if (m.find ()){
int [] out = new int [4];

out [0] = Integer.parselnt (m.group(2));
out [1] = Integer.parselnt (m.group(3));
out [2] = Integer.parselnt (m.group(4));
out [3] = Integer.parselnt (m.group(5));

return out;

} else {

return null;

94

B.2 Additional Methods

Beyond the above objects, a variety of other objects and methods were written. A selection

of them are included here.

B.2.1 Distances

Each graph type has a distance method. Alternatively, we could write a neighbors method
to determine if two vertices are adjacent, and do a breadth-first search to find the distance
between two vertices. We could pre-compute the distance between any pair of vertices and
store them in an array to prevent loss of time-efficiency. We recommend this procedure if many
distance methods are to be made.

In this section, we include both distance methods and other methods that must be over-

written.

B.2.1.1 Hexagonal Lattice

public int distance(vertex vl, vertex v2, int width, int height, int layers) {
int horizontal = mod(v2.getX () — vl.getX(), width); //horizontal distance,
right from x1
int vertical = mod(v2.getY () — vl.getY (), height); //vertical distance, down

from yl1
boolean goUp = false; // initially assume path goes down
boolean efficient = false;
/ *

* The grid is bipartite; the distance between two points can be determined
entirely by horizontal and vertical
x differences if the points are in the same part or if the horizontal
difference is at least as great as the vertical
* difference. If the distance is nontrivial, there are two cases, which I
denote efficient and non efficient.
*/
if (horizontal > width/2){
horizontal = width — horizontal;
//distance behaves the same going left or right, since the graph is
horizontally symmetric from any point
}
if (vertical > height/2){
vertical = height — vertical;
goUp = true; // shorter path goes up
} else if(vertical = height /2){

95

efficient = true; // up or down, one of the two paths is efficient

}

if (horizontal >= vertical){
return horizontal + vertical;

} else if ((horizontal + vertical)%2 = 0){ //vertices are in the same part
return 2xvertical;
} else {
if (!(goUp = ((vl.getX()+vl.getY ())%2 != 0))){
efficient = true;

}
return efficient? 2xvertical — 1: 2xvertical + 1;
}
}
public int getTileDiameter () {
return width > 2xheight ? width : 2xheight;
}

public symmetry [] symmetryList(int width, int height, int layers) {//assumes the
graph has alternating 1’s
symmetry [] symList = new symmetry [widthxheight];
for(int x = 0; x < width; x++){
for(int y = 0; y < height; y++){
() %2 = 0){
symList [x + y*xwidth] = new symmetry(x,y, false);
} else {

symList [x + yx*width] = new symmetry ((x+width—1)%width ,y, true);
}

}
}

return symList;

}

B.2.1.2 Truncated Square Lattice

public int distance(vertex vl, vertex v2, int width, int height, int layers) {//

TODO: more

int x1 = vl.getX(), x2 = v2.getX (), yl = vl.getY (), y2 = v2.getY ();

switch ((2x(y1%2)4+x1)%4){//four types of vertices for vl; using symmetry to
reduce it to one type

case 0://original

break;

case 1:

x1l = width — 1 — x1; x2 = width — 1 — x2;//flip both vertical and horizontal
yl = height — 1 — yl1; y2 = height — y2;

break ;

case 2:

yl = height — 1 — yl1; y2 = height —
break;

case 3:

x1 = width — 1 — x1; x2 = width — 1
break;

}

int x = (x2 — x1 + width) % width;

int y = (y2 — yl + height) % height;

//The graph has been translated so that one vertex is at (0,0) and the other at
(x,y)

int dist = 0;

I
—_

—_

— y2;//flip vertical

x2;//flip horizontal

96

int h, w;

if (height / 2 < y){
h = height — y 4+ 1;
dist4+= height — y;

if (width / 2 <= x){
w = width — x — 1;
dist += width — x

} oelse {

w = X;
dist+= x;

}

int plus = 2«h — w > 3 7 ((int)((2xh — w)/4))*2 : 0;

return dist + plus;

}
public int getTileDiameter () {

return width < 2xheight ? width : 2xheight;

}

B.2.1.3 Two-Layer Hexagonal Lattice

public int distance(vertex cl, vertex c¢2, int width, int height, int layers) {

int horizontal = mod(c2.getX () — cl.getX (), width); //horizontal distance,
right from x1

int vertical = mod(c2.getY () — cl.getY (), height); //vertical distance, down
from yl

int zDir = (c2.getZ() > cl.getZ())?7c2.getZ() — cl.getZ() : cl.getZ() — c2.getZ
0

boolean goUp = false; // initially assume path goes down

boolean efficient = false;

/ %

x The grid is bipartite; the distance between two points can be determined
entirely by horizontal and vertical

x differences if the points are in the same part or if the horizontal
difference is at least as great as the vertical

* difference. If the distance is nontrivial , there are two cases, which I
denote efficient and non efficient.

*/

if (horizontal > width/2){
horizontal = width — horizontal;
//distance behaves the same going left or right, since the graph is
horizontally symmetric from any point

}
if (vertical > height /2){

vertical = height — vertical;
goUp = true; // shorter path goes up
} else if(vertical = height /2){
efficient = true; // up or down, one of the two paths is efficient

if (horizontal >= vertical){
return horizontal + vertical + zDir;

} else if((horizontal + vertical)%2 = 0){ //vertices are in the same part
return 2xvertical + zDir;

97

} oelse {
if (1(goUp = ((cl.getX()+cl.getY ())%2 != 0))){
efficient = true;
}

return efficient? 2xvertical — 1 + zDir: 2xvertical + 1 + zDir;
}
}
public int getTileDiameter () {
return width > 2xheight ? width : 2xheight;
}

public symmetry [] symmetryList(int width, int height, int layers){//assumes the
graph has alternating 1’s
symmetry [] s = new symmetry [widthxheight |;
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
boolean xFlip = ((i+j)%2 = 1);
int xShift = xFlip 7 (j+1)%width : j;
int yShift = i;
s[j + width*i] = new symmetry(xShift, yShift, xFlip);
}
}

return s;

}

B.2.1.4 Offset Two-Layer Hexagonal Lattice

public int distance(vertex vl, vertex v2, int width, int height, int layers) {
/ %
Each vertex is adjacent to the vertices horizontal to it.
Vertex (0,0,0) is adjacent to the vertex directly below it.
Vertex (1,0,0) is ajdacent to the vertex directly above it. etc.
Only half of the vertices are adjacent to those in the other layer. Vertex

(0,0,0) is not.

The second layer is offset for vertical adjacencies.
*/
int x1 = vl.getX(), yl = vl.getY(
int x2 = v2.getX (), y2 = v2.getY(
int horizontal = mod(x2—x1, width
int vertical = mod(y2—yl, height)

), z1 = vl.getZ();

), z2 = v2.getZ();

);//horizontal distance, right from x1
; //vertical distance, down from yl

boolean goUp = false; // initially assume path goes down; use only when
vertical != 0,height/2
boolean efficient = false;//efficient if path goes down and has edge down from

vl (or up and up respectively)
if (horizontal > width/2){

horizontal = width — horizontal;

//distance behaves the same going left or right, since the graph is
horizontally symmetric from any point

if (vertical > height /2){

vertical = height — vertical;
goUp = true; // shorter path goes up
} else if(vertical = height/2){
efficient = true; // up or down, one of the two paths is efficient

}

int samelayerDistance;
if (horizontal >= vertical){

98

samelayerDistance = horizontal + vertical;

} else if ((horizontal + vertical)%2 = 0){ //vertex projections onto single
layer are in the same part
samelayerDistance = 2xvertical;

} else {

if (!((goUp) "~ ((x14yl4z1)%2 != 0))){ //z1==1 flips vertical behavior of grid

efficient = true;

}

samelayerDistance = efficient? 2xvertical — 1: 2xvertical + 1;

if(z1 = 2z2){
return samelayerDistance;
} else {
boolean evenl = (x14yl1)%2 = 0 ? true : false;
boolean even2 = (x2+y2)%2 = 0 ? true : false;
if (levenl && !even2)({
return samelayerDistance + 1;
}

if(vertical = height /2){
if (evenl && even2 && vertical > horizontal){
return samelLayerDistance — 1;

1 else {
return samelayerDistance + 1;
}
}

boolean z1lisO = (z1 = 0) ? true : false;
if (vertical > horizontal){
if (even2 && (z1isO0 " goUp)){
return samelLayerDistance — 1;
}
}
if (vertical >= horizontal){

if ((even2 && (!z1is0 "~ goUp)) || vertical = 0){
return samelayerDistance + 3;
}

}
return samelLayerDistance + 1;
}
}

public int getTileDiameter () {
return width < 2xheight ? width : 2xheight;
}

public symmetry [|] symmetryList(){//assumes the graph has alternating 1’s
symmetry [] s = new symmetry|[width+height];
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
boolean xFlip = ((i+j)%2 = 1);
int xShift = xFlip ? (j4+1)%width : j;
int yShift = ij;
s[j + width*i] = new symmetry(xShift, yShift, xFlip);

return s;

99

B.2.2 Graph Experiments

In this section, we include necessary methods to run both singleColorExperiment and
expansionColorExperiment; methods that were used directly from the main method to gen-

erate colorings.

/%%
x Runs graphColorerLocal for the graphs in a file for a given duration.
x @param graphType A graph of the type used for the experiment.
x @param color The color class assigned in the experiment.
x @param inGraphPrefix The prefix for the files to scan before choosing a file
to input.
x @param outGraphPrefix The prefix for the file used to record new graphs.
x @param widthExp Copies of the input graph to be placed next to each other
horizontally .
x @param heightExp Copies of the input graph to be placed next to each other
vertically .
x @param numMinutes Number of minutes to run the experiment.
x @param crossCheck True to cross—check a graph with other graphs in the series.
Use True for small graphs, and False for large graphs to save time
x @param largeGraphs Should be True. The other method is deprecated.
x @throws [OException
*/
public static void singleColorExperiment (graph graphType, int color, String
inGraphPrefix, String outGraphPrefix, int widthExp, int heightExp, int
numMinutes, boolean crossCheck, boolean largeGraphs) throws IOException{
graphTest.printDate (true);
File candidate = graphTest.colorExpGetBestFile(color —1, inGraphPrefix);
graph [] graphs = fileReader .readDoc(candidate, graphType);
graphs [0]. printProgress (color —1);

if (widthExp != 1 || heightExp != 1){
for(int i = 0; i < graphs.length; i++){
graphs[i] = graph.expandGraph(graphs[i], heightExp, widthExp, 1);

}

}

System.out . println (” Generating graphs for color 74color+”. Dimensions: "+graphs
[0].getHeight ()4+"x"+graphs [0]. getWidth ()+”. Best old density: "+graphs[0].
density ());

graphTest.generateRanColorings (graphs, color, outGraphPrefix, numMinutes,
crossCheck , largeGraphs);

graphTest . printDate (true);

/%

x+ Runs an expansion coloring experiment. Colors the graph for varying expansion

(tile enlarging) settings, and prints the results.

@param graphType A graph of the type used for the experiment.

@param color The color class assigned in the experiment.

@param graphName The prefix for the input files.

@param testName The prefix for the output files. There will be one for each

pair of dimensions.

@param widthMaxExp The range for width expansion. Should be small (<10).

* @param heightMaxExp The range for height expansion. Should be small (<10)

x @param numMinutesExpandTest Number of minutes to run each pair of dimensions
in the test.

ESE S S

*

100

x @param crossCheck True to cross—check new graphs with previous graphs. Should
be true for small graphs, and false for large graphs.
x @param largeGraphs Should be True. The other method is deprecated.
* @return An integer array with the best expansion results. [1] for width, [0]
for height.
x @throws [OException
*/
public static int[] expansionColorExperiment (graph graphType, int color, String
graphName, String testName, int widthMaxExp, int heightMaxExp, int
numMinutesExpandTest, boolean crossCheck, boolean largeGraphs) throws
IOException{
File candidate = graphTest.colorExpGetBestFile(color —1, graphName) ;
graph [] originalGraphs = fileReader.readDoc(candidate, graphType);
graph [] graphs;
double originalDensity = 0;
for (graph g originalGraphs){
double temp = g.density ();
originalDensity = temp > originalDensity? temp originalDensity;
}
double startDensity = 0;
try{
File f = graphTest.colorExpGetBestFile(color, testName);
System.out . println (f.getName());
startDensity = graphColorer.findMaxDensity (f);
} catch(Exception e){
startDensity = 0;
}
graphTest . printDate (false);
System.out.println (” Start density: "+startDensity);
System.out.println (?”Running expansion test for color "+color+”. Generating
graphs.”);
double [][] densities = new double[heightMaxExp] [widthMaxExp];

for (int x = 1; x <= widthMaxExp; x++){
for (int y = 1; y <= heightMaxExp; y++){
graphs = null;
System . gc () ;
graphTest . printDate(false);
System.out.println (” Running test 74y+’'x"4+x+":7);
graphs = graph.expandGraphs(originalGraphs, y, x,
try{
densities [y—1][x—1] = graphTest.generateRanColorings (graphs, color,
testName, startDensity , numMinutesExpandTest, crossCheck, largeGraphs);
} catch (OutOfMemoryError e){
System.out.println (”?Out of memory.

1)

Skipping test.”);
}
}
}
graphTest . printDate (true);
int [] best = {0,0};
double bestSoFar = 0;
System.out. println (” Results:”);

for (int x = 1; x <= widthMaxExp; x++){
for(int y = 1; y <= heightMaxExp; y++){
double temp = densities [y—1][x—1] — originalDensity ;
System.out. println (y+'x"+x+": "+densities [y —1][x—1]+" ("+temp+")") ;

101

if (densities [y—1][x—1] > bestSoFar + graphTest .EPSILON || (densities]|
y—1][x—1] >= bestSoFar — graphTest.EPSILON && y#*x < best [0]xbest [1])){
bestSoFar = densities [y—1][x—1];
best [0] = y;
best [1] = x;
}
}
}
System.out.println (" Best: "+best[0]+”"x"+best [1]) ;
return best;

}

//Part of the graphTest object

/%

x Generates random colorings from an array of graphs for a given duration.
@param graphs An array of graphs

@param color The new color to be added

@param graphName The prefix for the current graph family

@param density Initial max density. Can be 0.

@param numMinutes number of minutes the method should run for

* KX X X X X

@param crossCheck True if cross—checking symmetries (increases generation time
)

x @param largeGraphs Should be set to true. The other method is deprecated.

* @throws [OException

*/

public static double generateRanColorings(graph[] graphs, int color, String
graphName, double density, int numMinutes, boolean crossCheck, boolean
largeGraphs) throws IOException{

double returnDensity = 0;

long startTime = System.currentTimeMillis ();
boolean atDuration = false;

int numTrialsEach = 1;

int numlterations = 0;

graphColorerLocalRandom [] gclrs = new graphColorerLocalRandom [graphs.length];
graphColorerRandom [|] gcrs = new graphColorerRandom [graphs.length |;
if (largeGraphs){
double startDensity = graph.findMaxDensity (graphs);
graphColorerLocalRandom . initializeDensityVars (graphName, color, startDensity
graphs [0]. getHeight (), graphs[0].getWidth (), graphs[0].getLayers());
for(int i = 0; i < graphs.length; i++){

gclrs[i] = new graphColorerLocalRandom (graphs[i], graphName , color,
density);
}
} else {
for(int i = 0; i < graphs.length; i4++){
gcrs [i] = new graphColorerRandom (graphs[i], graphName , color);

}
}

startTime = System.currentTimeMillis();//resetting start time since
generating the gclrs/gers may take a minute

while (! atDuration){
numlterations —+-;
long currentDuration = System.currentTimeMillis() — startTime;
if (currentDuration /60000 >= numMinutes) {
atDuration = true;

102

}

int progress = 0;
for(int i = 0; i < graphs.length; i4++){
int temp;

if (!largeGraphs){//TODO: Only instantiate a single graphColorer object ...
temp = graphColorerRandom. generateColorings(gcrs[i], numTrialsEach,
crossCheck) ;
} else {

temp = graphColorerLocalRandom . generateColorings(gclrs[i], numTrialsEach)

}
progress = (temp > progress) 7 temp : progress;
}
String progressString = 7.7,
switch (progress){
case O0:
progressString = 7.7,
break ;
case 1:
progressString = "+47;
break ;
case 2:
progressString =
break ;
default :
progressString = "7 "7,
break ;

}

System.out.print (progressString);

if (numIterations %100 = 0){//increase number of trials per iteration
if (numTrialsEach = 1){
numTrialsEach = 10;
} else if(numTrialsEach < 1000){
numTrialsEach += 10;

}
}

if (numlIterations %20 = 0){
System.out.print (7 7);
}

if (numlIterations %100 = 0 || atDuration){ //print progress density
graph tG = graphs[0];
File outFile = new File(graphColorer.directory+”/”4+graphName+’C"+
color+"D"+tG . getHeight ()+"x"+tG. getWidth ()4’ x”+tG. getLayers ()47 . txt”);
double startDensity = tG.density () ;
double endDensity = graphColorer.findMaxDensity (outFile);
double diff = endDensity — startDensity;
System.out . println (endDensity + 7 (+7+diff4+”) "+graphColorer.countGraphs (
outFile, 0)4” graphs”);
returnDensity = endDensity;
}

}

return returnDensity;

}

‘//Part of the graphTest object

103

/%

* From the working directory , scans all files with the given prefix and color
x specification and finds the file with the graph that has the maximum density .
* @param color An integer designating a color.

x @param graphName A String designating a file prefix.

x @Qreturn A File.
*/
public static File colorExpGetBestFile(int color, String graphName) {
ArrayList<File> inFiles = new ArrayList<File >();
File directory = new File(graphColorer.directory);
for (File f: directory.listFiles ()){
if (f.getName().startsWith (graphName + "C’+color+"D")) {
inFiles.add(f);
}
¥

double bestDensity = 0
if (inFiles.size () = 0
return null;
}
File candidate = inFiles.get(0);
int [] canDim = fileReader .parseName(candidate);
for (File f : inFiles){
double temp = graphColorer.findMaxDensity (f);
if (temp > bestDensity+EPSILON){
candidate = f;
bestDensity = temp;
canDim = fileReader .parseName(f);
} else if(temp >= bestDensity — EPSILON) {
int [] tempDim = fileReader.parseName(f);
if (tempDim [1]*tempDim [2]*tempDim [3] < canDim [1]*canDim [2]*canDim [3]) {
candidate = f;
bestDensity = temp;
canDim = tempDim;

)

}
}

return candidate;

}

//Part of the graphTest object
/%
x* Prints the current date and time
x @param newLine Set TRUE to start a new line after printing the date
*
/
public static void printDate(boolean newLine){
DateFormat dateFormat = new SimpleDateFormat (”yyyy/MM/dd HH:mm: ss”) ;
Date date = new Date();
if (newLine){
System.out.println (dateFormat.format (date));
} else {
System.out.print (dateFormat . format (date));
}
}

[1]

8]

104

BIBLIOGRAPHY

K. Appel and W. Haken. Every planar map is four colorable. Bulletin of the American

Mathematical Society, 82:711-712, 1976.

Z. Berikkyzy, C. Cox, M. Dairyko, K. Hogenson, M. Kumbhat, B. Lidicky, K. Messer-
schmidt, K. Moss, K. Nowak, K. F. Palmowski, and D. Stolee. (4, 2)-choosability of planar

graphs with forbidden structures, 2015. Available as arXiv:1512.03787 [math.CO].

O. Borodin, A. Glebov, and A. Raspaud. Planar graphs without triangles adjacent to

cycles of length from 4 to 7 are 3-colorable. Discrete Mathematics, 310:2584-2594, 2010.

O. V. Borodin. Colorings of plane graphs: a survey. Discrete Mathematics, 313(4):517-539,

2013.

O. V. Borodin and A. O. Ivanova. Planar graphs without triangular 4-cycles are 4-

choosable. Sib. Elektron. Mat. Izv., 5:75-79, 2008.

B. Bresar, S. Klavzar, and D. F. Rall. On the packing chromatic number of Cartesian
products, hexagonal lattice, and trees. Discrete Applied Mathematics, 155:2303-2311,

2007.

I. Choi, B. Lidicky, and D. Stolee. On choosability with separation of planar graphs with

forbidden cycles. Journal of Graph Theory, 81:283-306, 2016.

V. Cohen-Addad, M. Hebdige, D. Kral, Z. Li, and E. Salgado. Steinberg’s conjecture is

false. Journal of Combinatorial Theory, Series B, 122:452-456, 2017.

D. Cranston and D. B. West. A guide to the discharging method. Available as

arXiv:1306.4434 [math.CO].

[10]

[11]

[14]

[15]

[18]

[19]

105
J. Ekstein, J. Fiala, P. Holub, and B. Lidicky. The packing chromatic number of the
square lattice is at least 12. Available as arXiv:1003.2291 [cs.DM].

D. Eppstein. Twenty proofs of Euler’s formula: V-E+F=2. http://www.ics.uci.edu/

~eppstein/junkyard/euler/. Accessed: 2016-12-14.

P. Erdés, A. L. Rubin, and H. Taylor. Choosability in graphs. Congr. Numer, 26:125-157,

1979.

B. Farzad. Planar graphs without 7-cycles are 4-choosable. SIAM Journal of Discrete
Mathematics, 23(3):1179-1199, 2009.

J. Fiala, S. Klavzar, and B. Lidicky. The packing chromatic number of infinite product

graphs. FEuropean Journal of Combinatorics, 30:1101-1113, 2009.

G. Fijavz, M. Juvan, B. Mohar, and R. Skrekovski. Planar graphs without cycles of specific

lengths. Furopean Journal of Combinatorics, 23(4):377-388, 2002.

A. S. Finbow and D. F. Rall. On the packing chromatic number of some lattices. Discrete

Applied Mathematics, 158:1224-1228, 2010.

Z. Fiiredi, A. Kostochka, and M. Kumbhat. Choosability with separation of complete

multipartite graphs and hypergraphs. Journal of Graph Theory, 76(2):129-137, 2014.

W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Harris, and D. F. Rall. Broadcast

chromatic numbers of graphs. Ars Combin., 86:33-49, 2008.

H. Grotzsch. Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz fiir dreikreisfreie

Netze auf der Kugel (German). Math.-Nat. Reihe, 8:109-120, 1959.
T. Jensen and B. Toft. Graph Coloring Problems. Wiley Interscience, 1995.

H. Kierstead and B. Lidicky. On choosability with separation of planar graphs with lists

of different sizes. Discrete Mathematics, 339(10):1779-1783, 2015.

D. Korze and A. Vesel. On the packing chromatic number of square and hexagonal lattice.

ARS Mathematica Contempranea, 7:13-22, 2014.

http://www.ics.uci.edu/~eppstein/junkyard/euler/
http://www.ics.uci.edu/~eppstein/junkyard/euler/

[23]

[24]

[31]

32]

106

J. Kratochvil and Z. Tuza. Algorithmic complexity of list colorings. Discrete Applied
Mathematics, 50(3):297-302, 1994.

J. Kratochvil, Z. Tuza, and M. Voigt. Brooks-type theorems for choosability with separa-

tion. Journal of Graph Theory, 27(1):43-49, 1998.

M. Kumbhat, K. Moss, and D. Stolee. Choosability with union separation, 2016. Available

as arXiv:1512.07847 [math.CO)].

P. Lam, B. Xu, and J. Liu. The 4-choosability of plane graphs without 4-cycles. Journal
of Combinatorial Theory, Series B, 76:117-126, 1999.

B. Lidicky. Packing coloring and grids, 2011. Presented at the 7th
Slovenian International Conference on Graph Theory. Slides available at

http://orion.math.iastate.edu/lidicky /slides/2011-bled.pdf.

B. Martin, F. Raimondi, T. Chen, and J. Martin. The packing chromatic number of the

infinite square lattice is between 13 and 15, 2015. Available as arXiv:1510.02374 [cs.DM].
K. Messerschmidt. personal communication, 2017.

M. Mirzakhani. A small non-4-choosable planar graph. Bulletin of the Institute of Com-

binatorics and its Applications, 17:15-18, 1996.

K. Moss. A 205-packing of the two-layer hexagonal lattice. http://kmoss.public.

iastate.edu/assets/tiling205D1536x1152.txt. Accessed: 2017-03-08.

R. Skrekovski. A note on choosability with separation for planar graphs. Ars Combinatoria,

58:169-174, 2001.
C. Sloper. An eccentric coloring of trees. Australas. J. Combin., 29:309-321, 2004.

R. Soukal and P. Holub. A note on packing chromatic number of the square lattice. The

Electronic Journal of Combinatorics, 17:N17, 2010.

C. Thomassen. Every planar graph is 5-choosable. Journal of Combinatorial Theory,

Series B, 62(1):180-181, 1994.

http://kmoss.public.iastate.edu/assets/tiling205D1536x1152.txt
http://kmoss.public.iastate.edu/assets/tiling205D1536x1152.txt

107

[36] V. G. Vizing. Coloring the vertices of a graph in prescribed colors. Diskret. Analiz, 29:3-10,
1976. (In Russian).

[37] M. Voigt. List colourings of planar graphs. Discrete Mathematics, 120(1):215-219, 1993.

[38] M. Voigt. A not 3-choosable planar graph without 3-cycles. Discrete Mathematics, 146(1-

3):325-328, 1995.

[39] W. Wang and K. Lih. Choosability and edge choosability of planar graphs without five

cycles. Applied Mathematics Letters, 15(5):561-565, 2002.

	2017
	Coloring problems in graph theory
	Kevin Moss
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. GENERAL INTRODUCTION
	1.1 Introduction
	1.2 Basic Definitions
	1.3 Planar Graphs
	1.3.1 Graph Coloring
	1.3.2 List Coloring and Choosability
	1.3.3 Intersection and Union Separation
	1.3.4 Packing Coloring

	1.4 The Discharging Method

	2. CHOOSABILITY WITH UNION SEPARATION
	2.1 Introduction
	2.1.1 Notation

	2.2 Non-(k,t)-Choosable Graphs
	2.3 Reducible Configurations
	2.4 Sparse Graphs
	2.5 (4,t)-choosability
	2.6 (3,11)-choosability

	3. TOWARDS (3,10)-CHOOSABILITY
	3.1 Introduction
	3.2 (3,10)-Choosability
	3.2.1 Reducible Configurations
	3.2.2 Proof of Theorem 3.2.2

	4. PACKING COLORING ON INFINITE LATTICES
	4.1 Introduction
	4.1.1 Density on an Infinite Graph

	4.2 Hexagonal Lattice
	4.3 Truncated Square Lattice
	4.4 Two-layer Hexagonal Lattice
	4.5 Offset Two-Layer Hexagonal Lattice
	4.6 Generating Colorings
	4.6.1 Backtracking
	4.6.2 Random Coloring
	4.6.3 Priority-Based Random Coloring
	4.6.4 Checking Colorings
	4.6.5 Choosing Dimensions

	4.7 SAT Solvers
	4.8 Results

	5. CONCLUSION
	A. (3,11)-CHOOSABILITY
	B. SOURCE CODES
	B.1 Objects
	B.1.1 Graph
	B.1.2 Vertex
	B.1.3 Symmetry
	B.1.4 Graph Colorer
	B.1.5 Local Random Graph Colorer
	B.1.6 Naive Random Graph Colorer
	B.1.7 File Reader

	B.2 Additional Methods
	B.2.1 Distances
	B.2.2 Graph Experiments

	BIBLIOGRAPHY

