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ABSTRACT

The mathematical problem of determining a gambler’s risk of ruin involves analyzing de-

cisions of only one agent, namely the “gambler”. In this work we consider an extension that

introduces two additional players, so called “sellers”. These two new agents can boost the

probability of success for the gambler by selling to him (using a jargon borrowed from the

theory of excited random walks) a “cookie” which is used to increase the probability of moving

forward in the next step. The generalized gambler’s ruin scenario considers an excited random

walk on a finite interval of integer line with two “cookie store” locations and unlimited supply

of cookies at each. Each time when the buyer (walker) visits a store location, he has an oppor-

tunity to decide whether he is willing to consume the cookie or not. We wish to determine the

equilibrium prices and cookie store locations in a formal game associated with this generalized

gambler’s ruin scenario.
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CHAPTER 1. INTRODUCTION

1.1 General background and previous work

Excited random walks (ERW) or random walks in a cookie environment on Zd is a modifica-

tion of the nearest neighbor simple random walk such that in several first visits to each site of

the integer lattice, the walk’s jump kernel gives a preference to a certain direction and assigns

equal probabilities to the remaining (2d− 1) directions. If the current location of the random

walk has been already visited more than a certain number of times, then the walk moves to

one of its nearest neighbors with equal probabilities. The model was introduced by Benjamini

and Wilson in [3] and extended by Zerner in [13]. In the “cookies” jargon, upon first several

visits to every site of the lattice, the walker consumes a cookie providing them a boost toward

a distinguished direction in the next step. Many important aspects of the asymptotic behavior

of excited random walks on Z are by now well-understood [11]. An application of the theory

of excited random walks to the physics of DNA molecular motors is discussed in [1, 4].

This work continues to investigate a class of models introduced in [10]. In [10] several

variations of a two-person (Stackelberg) game between a “buyer” and a “seller”, whose major

component is a random walk of the buyer on a finite interval of integers were considered. The

key element of the game is a gambler’s ruin problem [6, 7], where in contrast to the classical

version, the walker (buyer) has the option of consuming “cookies”, which when used, increase

the probability of moving in the desired direction for the next step. The cookies are supplied to

the buyer by the second player (seller). The ultimate goal is to determine an equilibrium price

policy for the seller and the equilibrium “cookie store” location. The optimization problem

which the seller faces is somewhat similar to that of a monopoly whose market is a spatially

non-homogeneous Hotelling beach with demand curve varying randomly across the population
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[8, 9]. The original Hotelling beach (linear city) model was introduced to illustrate Hotelling’s

law in economics, namely a general paradigm that in many markets it is rational for producers

to make their products as similar as possible.

1.2 Motivation and goals

The game can serve as a simplified model to explore the relationship between economic

agents in a risky environment, for instance a firm in an innovative and competitive segment

of a hi-tech industry and an experienced consulting company. The firm (buyer) seeks to re-

duce uncertainty and increase the expected profit by investing in the consulting service at a

“bottleneck” point of its production line, while the consultant (seller) wants to optimize the

configuration and the price of its service package.

From the probability theory point of view, the models introduced in [10] and in this work

attempt

1. To measure the gain of the walker from exploiting a reinforcing mechanism represented by

“cookies”. It is natural to study this type of problems using a gambler’s ruin scenario and

within a game-theoretic framework, where exact features of the reinforcing mechanism

are determined through the interaction between the walker and sellers. This is in contrast

to the usual excited random walk, where the walker, as a price-taker in a large market,

has no effect on determining the parameters of the cookie environment.

2. To further contribute to the basic understanding of one-dimensional excited random walks

by considering a suitable variation of gambler’s ruin problem. It is well-known, see for

instance [11], that the asymptotic behavior of a random walk can be inferred from the

solution to the corresponding gambler’s ruin problem. In particular, the asymptotic

behavior of excited random walk is largely governed by a single parameter, its average

local drift. Curiously, the main result of this work suggests that the same parameter solely

determines the optimal cookie prices for a fixed store location (see Chapter 2 below).

3. The optimization methods employed in this work are, up to a certain point, methods of

continuous convex optimization. One could expect that, similarly to the Hotelling linear
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city model, the equilibrium configuration will place the cookie stores at the same location.

However, it is easy to see that this solution is not available when the cookie’s prices can

vary and are determined by the sellers. Thus the actual equilibrium design is expected

to be affected by a not-so-intrinsic to the problem discrete optimization. A part of our

initial motivation was to see whether the discrete design can force the risk-neutral buyer

to become effectively risk-adverse. Remarkably, in some particular sense the answer to

this question turns out to be affirmative (see the discussion of the main result in Chapter

3). We are planning to consider in the future an extension of this work to a continuous

time model based on the “excited stochastic process” considered in [12].

1.3 Overview of the model

This thesis introduces a generalization of the model of [10] to a three-person game with

two competing sellers and a buyer. The model is significantly more involved from the technical

point of view and computationally extensive because of the required rather detailed analysis

of the underlying finite-state Markov chain. More specifically, in this work we introduce the

following modification of the classical two-person gambler’s ruin scenario, where the buyer has

the option to consume cookies supplied by the sellers at two different cookie locations. The

cookie serves to instantly increase the probability of moving forward in the next step. Set the

starting point of buyer as n ∈ N located between 0 and b ∈ N, b ≥ 2, and treat the direction

from 0 to b as the forward direction. Assume that the buyer performs a nearest-neighbor

random walk on the integer line with absorbtion at 0 and b. If the buyer reaches the point b

before 0 he is rewarded with R dollars, otherwise he receives a zero payoff. Simultaneously and

independently each of other, two sellers set up the “cookie” stores at integer sites n1 and n2

within the interval (0, b). The two sellers sell the cookies at fixed prices c1 and c2, respectively.

At a regular site, the buyer moves one step forward with a fixed probability p ∈ (0, 1), and

backward with a fixed probability q = 1−p. If he consumes a cookie at the store locations, then

he moves one step forward with a larger probability p+ ε1 ∈ (p, 1) from n1 and p+ ε2 ∈ (p, 1)

from n2. The buyer can choose either accept the cookie for the suggested price or reject it in

order to reach the ultimate purpose, which is maximizing the total revenue at the absorbtion
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time. The goal of this work is to determine an equilibrium price for each cookie and location

for the “cookie” store.

In this work, we are focus on the a special situation, similar to the one-seller counterpart

which is referred to in [10] as a basic game, that is we assume p = q = 1
2 . We use the Markov

property of the underlying excited random walk and a subgame perfect Nash equilibrium to solve

the relationship between the price and location. In Section 2 we treat the location of “cookie”

stores as a fixed variable to find out the equilibrium price, while the contrary situation will be

considered in the Section 3 where the equilibrium store locations are determined. We assume

that the buyer is risk-neutral and maximizes its expected game payoff. The proof of the main

result is concluded in the last section.

1.4 Game description

In this and next sections, we discuss the basic game. We consider the following scenario with

a fixed probability p = q = 1
2 . First fix any b ∈ N, b ≥ 2, and set the forward direction as from

0 to b. Then let the buyer starting the random walk at a fixed point n ∈ N located between 0

and b. On the other hand, the two sellers, who are seeking for the maximum expected revenue,

need to make a decision for the store’s location n1 and n2 and the price of each cookie c1 and

c2 independently. In this scenario, there is no product cost for both of the two sellers and the

number of cookies η that the sellers provided to the buyer can be infinite many. The buyer can

accept the cookie as a instant probability boost strategy, however, he has an option to refuse if

he consider it is not worthwhile. Denote ε1 ∈ (0, 16) and ε2 ∈ (0, 16) as the cookie strategy for the

two sellers separately. If the buyer decides to accept the cookie at the first/second cookie store

(located at n1/n2) he moves forward on Z according to Pn1 = p+ ε1/Pn2 = p+ ε2,otherwise his

motion is based on P = p. Notice that, the buyer can only moves step by step. Once the buyer

arrives any of the sides, the game is end. If the buyer reaches the point b first he is rewarded

with R dollars, in contrast, he gets nothing. Consider the money he paid for cookies as the

cost, the buyer seeks to maximize his expected earnings.

The main purpose of this section is to calculate the explicit result for the value of optimal

price for each cookie.
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Definition 2.1 Game Γn

• Γn is a three-person game based on the Stackelberg model (the first two players take

action independently, the third player observes their action and then decides his own

moves). All of the players in the game need to consider a strategy that maximizes their

corresponding expected payoff given the chosen strategy pf two other players..

• The first two players are the sellers, and the third player is the buyer. The two sellers

move first and inform their action to the buyer separately. Then the buyer determines

his game plan and starts a random walk.

• Let S := [0,∞) × {1, ..., b − 1} be the set of strategies of the two sellers. Each pair

(c1, n1) ∈ S specifies the cookie’s price c1 > 0 and the store’s location n1 ∈ {1, ..., b− 1}

determined by the first seller. Similarly, each pair (c2, n2) ∈ S specifies the cookie’s price

c2 > 0 and the store’s location n2 ∈ {1, ..., b− 1} determined by the second seller. Notice

that, we default n1 ≤ n2 in the whole set.

• Let B := S2 → {en1 , en2} where ek = {0, 1} be the strategy of the buyer. The buyer

can choose to reject the cookie or consume it at the two different stores with the certain

price.

Definition 2.2 The buyer’s random walk

• Let Xk ∈ (0, b) denote buyer’s location on the integer line at time k ∈ Z+.

• Let Mk ∈ Z+ be the number of cookies available at the walk’s current location at time

k ∈ Z+.

• Since the buyer can only move one step at a time, the Markov chain transition kernel of

buyer’s random walk at the “cookie” store n1 is given by
Pn1(Xk+1 = i+ 1,mk+1 = m− 1|Xk = i,Mk = m) = p+ 1i=n1,m>0 · ε

Pn1(Xk+1 = i− 1,mk+1 = m− 1|Xk = i,Mk = m) = q − 1i=n1,m>0 · ε
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• Similarly, the Markov chain transition kernel of buyer’s random walk at the “cookie”

store n2 is given by
Pn2(Xk+1 = i+ 1,mk+1 = m− 1|Xk = i,Mk = m) = p+ 1i=n2,m>0 · ε

Pn2(Xk+1 = i− 1,mk+1 = m− 1|Xk = i,Mk = m) = q − 1i=n2,m>0 · ε

where 1A is the indicator.
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CHAPTER 2. OPTIMAL PRICES c∗1 AND c∗2 FOR A GIVEN STORE

LOCATIONS

The goal of this section is to determine optimal prices.

If the price of each cookie is attractive enough, the buyer will choose to consume it. Indeed, if

the cookies are free, the buyer will definitely want them, and the claim follows by the continuity.

Therefore, the buyer would consume the cookies at both of the two sellers when the price is

optimal (does the optimal exist?).

For n ∈ I, we denote by Rn the expected reward of the buyer who starts their random walk

at the location n ∈ I. By the strong Markov property,

Rn1 = −c1 + (q − ε1)αRn1 + (p+ ε1)βRn1 + (p+ ε1)(1− β)Rn2 ,

where α := Pn1−1(Tn1 < T0) is the probability that the buyer returns to n1 from the backward

direction and β := Pn1+1(Tn1 < Tn2) is the probability that the buyer returns to n1 from the

forward direction.

Similarly,

Rn2 = −c2 + (q − ε2)γRn2 + (q − ε2)(1− γ)Rn1

+ (p+ ε)δRn2 + (p+ ε)(1− δ)R,

where γ := Pn2−1(Tn2 < T0) is the probability that the buyer returns to n2 from the backward

direction and δ := Pn2+1(Tn2 < Tb) is the probability that the buyer returns to n2 from the

forward direction.

The solution to the classical gambler’s ruin problem [6] yields:

α =
n1 − 1

n1
, β =

n2 − n1 − 1

n2 − n1

γ =
n2 − n1 − 1

n2 − n1
, δ =

b− n2 − 1

b− n2
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Therefore,

Rn1 =
(p+ ε1)(1− β)Rn2 − c1

1− (q − ε1)α− (p+ ε1)β
(2.1)

Rn2 =
[(q − ε1)(p+ ε2)(n2 − n1) + (p+ ε1)(p+ ε2)n1)]

(q − ε1)(q − ε2)(b− n2) + (q − ε1)(p+ ε2)(n2 − n1) + (p+ ε1)(p+ ε2)n1
R

− (q − ε2)(b− n2)n1
(q − ε1)(q − ε2)(b− n2) + (q − ε1)(p+ ε2)(n2 − n1) + (p+ ε1)(p+ ε2)n1

c1

− [(q − ε1)(n2 − n1)(b− n2) + (p+ ε1)(b− n2)n1]
(q − ε1)(q − ε2)(b− n2) + (q − ε1)(p+ ε2)(n2 − n1) + (p+ ε1)(p+ ε2)n1

c2

Definition 2.3 Subgame perfect Nash equilibrium[8]

• A subgame perfect Nash equilibrium means that the strategy serves best for each player

and it satisfied that every player is playing in a Nash equilibrium in every subgame.

Since both of the two sellers seek for the maximum profit simultaneously, the optimal c∗1

and c∗2 have to satisfied the following conditions. Without loss of generality, when the first

seller fix the price of each cookie at c∗1, the second seller would not change the price c∗2 for a

bigger benefit.

Therefore,if we fixed n1 and n2, then the revenue Rn1 and Rn2 should be larger if the

buyer consumes at both of the two cookie stores. This condition is equivalent to imposing the

following set of four inequalities.

Rn1(ε1, c1, ε2, c2) > Rn1(0, 0, ε2, c2) (2.2)

Rn1(ε1, c1, ε2, c2) > Rn1(ε1, c1, 0, 0) (2.3)

Rn2(ε1, c1, ε2, c2) > Rn2(0, 0, ε2, c2) (2.4)

Rn2(ε1, c1, ε2, c2) > Rn2(ε1, c1, 0, 0) (2.5)

For convenient, we first rewrite Rn2(ε1, c1, ε2, c2) and Rn2(0, 0, ε2, c2) in (2.4) as

Rn2(ε1, c1, ε2, c2) =
X1R−X2c1 −X3c2

K1

Rn2(0, 0, ε2, c2) =
X1

1R−X1
3c2

K1
1
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with

X1 = (q − ε1)(p+ ε2)(n2 − n1) + (p+ ε1)(p+ ε2)n1 (2.6)

X2 = (q − ε2)(b− n2)n1 (2.7)

X3 = (q − ε1)(n2 − n1)(b− n2) + (p+ ε1)(b− n2)n1 (2.8)

X1
1 = q(p+ ε2)(n2 − n1) + p(p+ ε2)n1 (2.9)

X1
3 = q(n2 − n1)(b− n2) + p(b− n2)n1 (2.10)

K1 = (q − ε1)(q − ε2)(b− n2) + (q − ε1)(p+ ε2)(n2 − n1) (2.11)

+ (p+ ε1)(p+ ε2)n1 (2.12)

> 0 (2.13)

K1
1 = q(q − ε2)(b− n2) + q(p+ ε2)(n2 − n1) + p(p+ ε2)n1 (2.14)

> 0 (2.15)

Then (2.4) can be write as

(X1R−X2c1 −X3c2)K
1
1 − (X1

1R−X1
3c2)K1 > 0

⇒ (X1K
1
1 −X1

1K1)R−X2K
1
1c1 − (X3K

1
1 −X1

3K1)c2 > 0

where

X1K
1
1 −X1

1K1 = (q − ε2)(b− n2)n1 · (p+ ε2)ε1

X2K
1
1 = (q − ε2)(b− n2)n1 · [q(q − ε2)(b− n2) + q(p+ ε2)(n2 − n1) + p(p+ ε2)n1]

X3K
1
1 −X1

3K1 = (q − ε2)(b− n2)n1 · (b− n2)ε1

By algebraic simplification, we get following result:

(p+ ε2)ε1R− [q(q − ε2)(b− n2) + q(p+ ε2)(n2 − n1) + p(p+ ε2)n1]c1 > (b− n2)ε1c2

We then use the method to deal with (2.5), let

Rn2(ε1, c1, ε2, c2) =
X1R−X2c1 −X3c2

K1

Rn2(ε1, c1, 0, 0) =
X2

1R−X2
2c1

K2
1
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with

X2
1 = p(q − ε1)(n2 − n1) + p(p+ ε1)n1 (2.16)

X2
2 = q(b− n2)n1 (2.17)

K2
1 = q(q − ε1)(b− n2) + p(q − ε1)(n2 − n1) + p(p+ ε1)n1 (2.18)

> 0 (2.19)

and X1, X2, X3,K1 has been defined in (2.6),(2.7),(2.8)and(2.11).

Hence,(2.5) is

(X1R−X2c1 −X3c2)K
2
1 − (X2

1R−X2
2c1)K1 > 0

⇒ (X1K
2
1 −X2

1K1)R− (X2K
2
1 −X2

1K1)c1 −X3K
2
1c2 > 0

where

X1K
2
1 −X2

1K1 = [(q − ε1)(n2 − n1 + (p+ ε1)n1](b− n2) · (q − ε1)ε2

X2K
2
1 −X2

1K1 = −[(q − ε1)(n2 − n1) + (p+ ε1)n1](b− n2) · n1ε2

X3K
2
1 = [(q − ε1)(n2 − n1) + (p+ ε1)n1](b− n2)

·[q(q − ε1)(b− n2) + p(q − ε1)(n2 − n1) + p(p+ ε1)n1]

Therefore,

(q − ε1)ε2R+ n1ε2c1 > [q(q − ε1)(b− n2) + p(q − ε1)(n2 − n1) + p(p+ ε1)n1]c2

After solving the last two inequalities (2.4) and (2.5), we need figure out their the relationship

with the first two (2.2) and (2.3).

Plug the value of Rn1 defined in (2.1) into (2.2), we have

(p+ ε1)(1− β)Rn2(ε1, c1, ε2, c2)− c1
1− (q − ε1)α− (p+ ε1)β

>
p(1− β)Rn2(0, 0, ε2, c2)

1− qα− pβ

⇒ (p+ ε1)n1Rn2(ε1, c1, ε2, c2)− (n2 − n1)n1c1
(q − ε1)(n2 − n1) + (p+ ε1)n1

>
pn1

q(n2 − n1) + pn1
Rn2(0, 0, ε2, c2)

⇒ Rn2(ε1, c1, ε2, c2) > Rn2(0, 0, ε2, c2)

Similarly, for (2.3),

(p+ ε1)(1− β)Rn2(ε1, c1, ε2, c2)− c1
1− (q − ε1)α− (p+ ε1)β

>
(p+ ε1)(1− β)Rn2(ε1, c1, 0, 0)− c1

1− (q − ε1)α− (p+ ε1)β

⇒ Rn2(ε1, c1, ε2, c2) > Rn2(ε1, c1, 0, 0)
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Therefore, the inspection of (2.1) shows that in fact the first two inequalities imply the last

two in the above system. By using the closed form expressions for R1 and R2 the system is

reduced to the following set of four inequalities.

l1 :c1 > 0

l2 :c2 > 0

l3 :A1 ·R+B1 · c1 > D1 · c2

l4 :A2 ·R+B2 · c1 > D2 · c2

with

A1 = (p+ ε2)ε1 (2.20)

A2 = (q − ε1)ε2 (2.21)

B1 = −[q(q − ε2)(b− n2) + q(p+ ε2)(n2 − n1) + p(p+ ε2)n1] (2.22)

B2 = n1ε2 (2.23)

D1 = (b− n2)ε1 (2.24)

D2 = q(q − ε1)(b− n2) + p(q − ε1)(n2 − n1) + p(p+ ε1)n1 (2.25)

The set of solutions in the (c1, c2)-plane is non-empty and bounded by two (in general, oblique)

straight straight and two axes. The intersection point of two slanting lines is N(cN1, cN2),

where

cN1 =
A2D1 −A1D2

B1D2 −B2D1
R and cN2 =

A2B1 −A1B2

B1D2 −B2D1
R

Since we are focusing on the p = q = 1
2 , then we can compute out the value of cN1 and cN2.

cN1 =
1
2(12 − ε2)(

1
2 − ε1)ε1b+ (12 − ε1)ε1ε2n2 + (12 + ε2)ε

2
1n1

(12(12 − ε2)b+ ε2n2)(
1
2(12 − ε1)b+ ε1n1) + ε1ε2(b− n2)n1

R (2.26)

=
2ε1R

b
(2.27)

cN2 =
1
2(12 − ε1)(

1
2 − ε2)ε2b+ (12 − ε1)ε

2
2n2 + (12 + ε2)ε1ε2n1

(12(12 − ε2)b+ ε2n2)(
1
2(12 − ε1)b+ ε1n1) + ε1ε2(b− n2)n1

R (2.28)

=
2ε2R

b
(2.29)

For a graphical illustration we refer to Fig. 2 below. Note that for any fixed c2 < cN2 there is

a constant c1 < cl1 such that the value of Rn1 at c1 is bigger then at cl1 (see Fig. 2). Similarly,
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for an arbitrary c1 one can find c′2 < cN2 such that the value of Rn2 at c′2 is bigger then at c2.

Hence, neither of two sellers would benefit form changing the price unilaterally if and only if

c∗1 = cN1 and c∗2 = cN2.

Figure 2.1 The relationship between c1 and c2.

As illustrated in the figure, the plot can be classified into four areas by the straight lines

l3 and l4. Furthermore, the shadows D in the plot represents the price that the buyer would

accept. Otherwise, the buyer would reject the cookies at least one of the two stores. Let point

M be the projection of point N on c1−axis. If the pair of price (c1, c2) lies on l3, then the first

seller can always increase c1 and push the price point into area D. And once (c1, c2) appears

in D, the second seller will definitely choose to rise his price, which leads two results. If the

price point is on the right of NM , then the action would force the point to l4 line. Otherwise,

the two sellers would reach the agreement of price on point N . On the other hand, if the price

point is on l4, increasing the price is reasonable only for the second seller. Finally, turns out

that the only price point satisfied Nash equilibrium for the two sellers is point N = (c∗1, c
∗
2).

Since Rn1 can be treated as a function of Rn2 , then the only thing left in this system is that

we need to check if

Rn2(ε1, c
∗
1, ε2, c

∗
2) > Rn2(0, 0, 0, 0)
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Proof Since c∗1 and c∗2 satisfied the inequality (2.5), then we know that

Rn2(ε1, c
∗
1, ε2, c

∗
2) > Rn2(ε1, c

∗
1, 0, 0)

The only thing left that need to be proved is

Rn2(ε1, c
∗
1, 0, 0) > Rn2(0, 0, 0, 0)

Plug the value of c∗1 into (2.1), we get

Rn2(ε1, c
∗
1, 0, 0) =

(12 − ε1)b+ 2ε1n1

(12 − ε1)b− 2ε1n1

n2R

b

= (1 +
4ε1n1

(12 − ε1)b− 2ε1n1
)
n2R

b

> (1 +
4ε1n1

(12 − 3ε1)b
)
n2R

b

>
n2R

b

= Rn2(0, 0, 0, 0)

Therefore, Rn2(ε1, c
∗
1, ε2, c

∗
2) > Rn2(0, 0, 0, 0).
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CHAPTER 3. OPTIMAL STORE LOCATIONS n∗1 AND n∗2

In this section we continue to investigate the game-theoretic framework introduced some-

where before. The main purpose of this section is to explicitly identify the optimal location for

each cookie store.

In the last section we have figured out the optimal prices c∗1 and c∗2 as a function of the

two store locations. This will be used here to determine the optimal store location n∗1 and n∗2

for the two sellers according to the optimal price. We denote by Wn1 the revenue of the seller

(located at n1) if the buyer starts at n1 (that is, n = n1), and by Wn2 the revenue of the seller

(located at n2) if the buyer starts at n2 (that is, n = n2). Then we can write,

Wn1 = ηn1
n1
· c1 and Wn2 = ηn2

n2
· c2,

where ηxy stands for the number of visits of the buyer to the store located at x when he starts

at y. If the buyer starts at n1, then the strong Markov property implies

ηn1
n1

= 1 + (q − ε1)
n1 − 1

n1
ηn1
n1

+ (p+ ε1)
n2 − n1 − 1

n2 − n1
ηn1
n1

+ (p+ ε1)
1

n2 − n1
ηn2
n1

ηn2
n1

= (q − ε2)
1

n2 − n1
ηn1
n1

+ (p+ ε2)
b− n2 − 1

b− n2
ηn2
n1

+ (q − ε2)
n2 − n1 − 1

n2 − n1
ηn2
n1

Thus we get

ηn2
n1

=
(1− (q − ε1)n1−1

n1
− (p+ ε1)

n2−n1−1
n2−n1

) · ηn1
n1
− 1

p+ε1
n2−n1

We then substitute ηn2
n1

into this equation:

(1− (q − ε2)
n2 − n1 − 1

n2 − n1
− (p+ ε2)

b− n2 − 1

b− n2
) · ηn2

n1
=

q − ε2
n2 − n1

· ηn1
n1

And thus,

ηn1
n1

=
(p+ ε2)(n2 − n1)n1 + (q − ε2)(b− n2)n1

(q − ε1)(p+ ε2)(n2 − n1) + (q − ε1)(q − ε2)(b− n2) + (p+ ε1)(p+ ε2)n1
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Similarly, if the buyer starts at n2,

ηn2
n2

= 1 + (q − ε2)
n2 − n1 − 1

n2 − n1
ηn2
n2

+ (p+ ε2)
b− n2 − 1

b− n2
ηn2
n2

+ (q − ε2)
1

n2 − n1
ηn1
n2

ηn1
n2

= (q − ε1)
n1 − 1

n1
ηn1
n2

+ (p+ ε1)
n2 − n1 − 1

n2 − n1
ηn1
n2

+ (p+ ε1)
1

n2 − n1
ηn2
n2

Then, we have

ηn1
n2

=
(1− (q − ε2)n2−n1−1

n2−n1
− (p+ ε2)

b−n2−1
b−n2

) · ηn2
n2
− 1

q−ε2
n2−n1

Substituted into the equation:

(1− (q − ε1)
n1 − 1

n1
− (p+ ε1)

n2 − n1 − 1

n2 − n1
) · ηn1

n2
=

p+ ε1
n2 − n1

· ηn2
n2

Thus,

ηn2
n2

=
(p+ ε1)(b− n2)n1 + (q − ε1)(n2 − n1)(b− n2)

(q − ε1)(p+ ε2)(n2 − n1) + (q − ε1)(q − ε2)(b− n2) + (p+ ε1)(p+ ε2)n1

Considering this problem in the reality situation, we have the following cases:

Case 1: When the buyer starts at n, where n1 = n < n2

When the buyer starts at n = n1, we first define W 1
n1

as the actual benefit of the first

seller(located at n1) and W 1
n2

as the actual benefit of the second seller(located at n2). Then

we can write:

W 1
n1

= Wn1 = ηn1
n1
c∗1

W 1
n2

= ηn2
n1
c∗2

Hence,

W 1
n1

=
(12 + ε2)(n2 − n1)n1 + (12 − ε2)(b− n2)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε1R

b

W 1
n2

=
(12 − ε2)(b− n2)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε2R

b
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Case 2: When the buyer starts at n, where n1 < n2 = n

When the buyer starts at n = n2, we first define W 2
n1

as the actual benefit of the first

seller(located at n1) and W 2
n2

as the actual benefit of the second seller(located at n2). Therefore

we can write:

W 2
n1

= Wn1 = ηn1
n2
c∗1

W 2
n2

= ηn2
n2
c∗2

We can get the value of ηn1
n2

and ηn2
n2

directly from the above analysis. Therefore,

W 2
n1

=
(12 + ε1)(b− n2)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε1R

b

W 2
n2

=
(12 + ε1)(b− n2)n1 + (12 − ε1)(b− n2)(n2 − n1)

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε2R

b

Case 3: When the buyer starts at n, where n1 < n < n2

When the buyer starts at n, we first define W 3
n1

as the actual benefit of the first seller(located

at n1) and W 3
n2

as the actual benefit of the second seller(located at n2). Therefore we can

write:

W 3
n1

= αnWn1 + (1− αn)βWn1

where αn is the probability that the buyer starts at n and reaches to n1 before n2, and β is the

probability that that the buyer starts from n2 and gets to n1 before b.

W 3
n2

= (1− αn)Wn2 + αn(1− γ)Wn2

where γ is the probability that that the buyer starts from n1 and gets to 0 before n2. Based
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on the property of Markov chain, we know that:

αn =
n2 − n
n2 − n1

β = (p+ ε2)
b− n2 − 1

b− n2
β + (q − ε2)

1

n2 − n1
+ (q − ε2)

n2 − n1 − 1

n2 − n1
β

⇒ β =
(q − ε2)(b− n2)

(q − ε2)(b− n2) + (p+ ε2)(n2 − n1)

γ = (q − ε1)
1

n1
+ (q − ε1)

n1 − 1

n1
γ + (p+ ε1)

n2 − n1 − 1

n2 − n1
γ

1− γ =
(p+ ε1)n1

(q − ε1)(n2 − n1) + (p+ ε1)n1

Therefore,

W 3
n1

=
(12 − ε2)(b− n2)n1 + (12 + ε2)(n2 − n)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε1R

b

W 3
n2

=
(12 − ε1)(n− n1)(b− n2) + (12 + ε1)(b− n2)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε2R

b

In order to figure out the relationship between W 3
n1

and n1, we assume n2 is fixed , then

W 3
n1

=
(12 − ε2)(b− n2)n1 + (12 + ε2)(n2 − n)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε1R

b

=
(12 − ε2)(b− n2) + (12 + ε2)(n2 − n)

( 1
2
−ε1)( 12+ε2)n2+( 1

2
−ε1)( 12−ε2)(b−n2)

n1
+ (12 + ε1)(

1
2 + ε2)

2ε1R

b

Therefore, W 3
n1

is monotonic increasing as n1 < n increased. The trend of W 3
n1

is logically force

the n1 goes to n as close as possible, which force the case 3 into the case 2.

Similarly, if we fixed n1 and focus on W 3
n2

and n2, then

W 3
n2

=
(12 − ε1)(n− n1)(b− n2) + (12 + ε1)(b− n2)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε2R

b

=
(12 − ε1)(n− n1) + (12 + ε1)n1

( 1
2
−ε1)( 12+ε2)(n2−n1)+( 1

2
+ε1)(

1
2
+ε2)n1

b−n2
+ (12 − ε1)(

1
2 − ε2)

2ε2R

b
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Then for the part

Z =
(12 − ε1)(

1
2 + ε2)(n2 − n1) + (12 + ε1)(

1
2 + ε2)n1

b− n2

we can rewrite it as

Z =
(12 − ε1)(

1
2 + ε2)n2 + 2ε1(

1
2 + ε2)n1

b− n2

= −(
1

2
− ε1)(

1

2
+ ε2) +

(12 − ε1)(
1
2 + ε2)b+ 2ε1(

1
2 + ε2)n1

−n2 + b

It it obviously that Z is decreasing as n2 decreased, so that W 3
n2

is monotone increasing as n2

decreased. Then to make W 3
n2

reaches a higher benefit, we want to push n2 to n as close as

possible, which actually turns case 3 into the case 1.

Case 4: When the buyer starts at n, where n1 < n2 < n

When the buyer starts at n, we first define W 4
n1

as the actual benefit of the first seller(located

at n1) and W 4
n2

as the actual benefit of the second seller(located at n2). Therefore we can

write:

W 4
n1

= αnβWn1

where αn is the probability that the buyer starts at n and reaches to n2 before b, and β is the

probability that that the buyer starts from n2 and gets to n1 before b.

W 4
n2

= αnWn2

Here, we have

αn =
b− n
b− n2

and β =
(q − ε2)(b− n2)

(q − ε2)(b− n2) + (p+ ε2)(n2 − n1)

Thus,

W 4
n1

=
(12 − ε2)(b− n)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε1R

b

W 4
n2

=
(12 − ε1)(n2 − n1)(b− n) + (12 + ε1)(b− n)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε2R

b
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Since n1 < n2 < n, we can focus on the relationship between W 4
n2

and n2. Fixed n1, we have,

W 4
n2

=
(12 − ε1)(n2 − n1)(b− n) + (12 + ε1)(b− n)n1

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε2R

b

=
(12 − ε1)n2 + 2ε1n1

2(12 − ε1)ε2n2 + (12 − ε1)(
1
2 − ε2)b+ 2ε1(

1
2 + ε2)n1

2ε2(b− n)R

b

=
( 1

2ε2
+

Z

2(12 − ε1)ε2n2 + (12 − ε1)(
1
2 − ε2)b+ 2ε1(

1
2 + ε2)n1

)2ε2(b− n)R

b

where

Z = − 1

2ε2

(
(
1

2
− ε1)(

1

2
− ε2)b+ 2ε1(

1

2
+ ε2)n1

)
+ 2ε1n1 < 0

This indicates that W 4
n2

is monotone increasing as n2 increased. In order to maximize the

earning of the second seller, we will require n2 goes to n, which turns case 4 into case 2

Case 5: When the buyer starts at n, where n < n1 < n2

When the buyer starts at n, we first define W 5
n1

as the actual benefit of the first seller(located

at n1) and W 5
n2

as the actual benefit of the second seller(located at n2). Therefore we can

write:

W 5
n1

= αnWn1

where αn is the probability that the buyer starts at n and reaches to n1 before 0.

W 5
n2

= αn(1− γ)Wn2

where γ is the probability that that the buyer starts from n1 and gets to 0 before n2. As what

we discussed before,

αn =
n

n1
and 1− γ =

(p+ ε1)n1
(q − ε1)(n2 − n1) + (p+ ε1)n1
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Thus,

W 5
n1

=
(12 − ε2)(b− n2)n+ (12 + ε2)(n2 − n1)n

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε1R

b

W 5
n2

=
(12 + ε1)(b− n2)n

(12 − ε1)(
1
2 + ε2)(n2 − n1) + (12 − ε1)(

1
2 − ε2)(b− n2) + (12 + ε1)(

1
2 + ε2)n1

×2ε2R

b

Since n < n1 < n2, the only thing left is the relationship between W 5
n1

and n1. We then fixed

n2,

W 5
n1

=
−(12 + ε2)n1 + (12 − ε2)b+ 2ε2n2

2(12 − ε1)ε2n2 + (12 − ε1)(
1
2 − ε2)b+ 2ε1(

1
2 + ε2)n1

2ε1nR

b

=
(
− 1

2ε1
+

Z

2(12 − ε1)ε2n2 + (12 − ε1)(
1
2 − ε2)b+ 2ε1(

1
2 + ε2)n1

)2ε1nR

b

where

Z = −(− 1

2ε1
)(2(

1

2
− ε1)ε2n2 + (

1

2
− ε1)(

1

2
− ε2)b) + (

1

2
− ε2)b+ 2ε2n2 > 0

Therefore, W 5
n1

is monotone increasing as n1 decreased. In order to maximize the earning of

the first seller, we will require n1 goes to n., which turns case 5 into case 1

In conclude, case 1 and case 2 are the best choice for the above 5 different cases. And we still

need to consider a following special case.

Special Case: When the buyer starts at n, where n1 = n2 = n

Under this situation, both of the two stores coincide with the starting point,n1 = n2 = n.

Therefore the number of visits to the two stores should be same, write as ηnn. Meanwhile,

define W 6
n1

as the actual benefit of the first seller(located at n1) and W 6
n2

as the actual benefit

of the second seller(located at n2).

ηnn = 1 + (q − ε∗)n− 1

n
ηnn + (p+ ε∗)

b− n− 1

b− n
ηnn

W 6
n1

=
1

2
ηnnc
∗
1

W 6
n2

=
1

2
ηnnc
∗
2

where

ε∗ =
1

2
(ε1 + ε2)
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then, we get

ηnn =
2(b− n)n

b+ (ε1 + ε2)(2n− b)

Therefore,

W 6
n1

=
(b− n)n

b+ (ε1 + ε2)(2n− b)
2ε1R

b

W 6
n2

=
(b− n)n

b+ (ε1 + ε2)(2n− b)
2ε2R

b

In order to find out the best location for the two stores based on the Nash equilibrium, we need

to compare their payoff under case 1 (n1 = n < n2), case 2 (n1 < n2 = n) and special case

(n1 = n = n2). As we have mentioned before, a Nash equilibrium problem is to make both of

the two seller want to stay at their location.

Under case 1,we want to know if the second seller is willing to stay. From the above analysis,

we know that W 1
n2

is increasing as n2 decreased, which indicates that n2 should get as close as

possible to n. Since the location are integers, then the maximum W 1
n2

happens when n2 = n+1.

Hence we want to compare the actual payoff of the second seller when n1 = n, n2 = n+ 1 and

n1 = n2 = n. By substitution and calculation, one can easily show that W 6
n2
> W 1

n2
(n2 = n+1),

which indicates that the second seller would like to move from n2 = n + 1 to n2 = n. This

result force the case 1 to be the special case. However, this special case is actually not a

Nash equilibrium result. Because if the two seller share the same store location, then any one

of them can slightly reduce their price to gain all the trading opportunity with the buyer.

Under case 2, we want to know if the first seller is still want to keep the original location.

As we have discussed before, W 2
n1

increased as n1 increased, which means that the maximum

W 2
n1

happens when n1 = n − 1. Then compare the actual payoff of the first seller when n1 =

n−1, n2 = n and n1 = n2 = n. Through calculation, one can show that W 2
n1

(n1 = n−1) > W 6
n1

,

which indicates that the first seller would like to stay at n1 = n− 1. As for the second seller,

if he move forward to n2 = n+ 1, then the profit of the first seller would decrease, and so that

the first guy would move forward to n1 = n, which is actually stay in the same case. If the

second seller want to move backward to n2 = n − 1, then this situation changes into special

case, which is not a Nash problem. Hence, the second seller would also stay at the original
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setting.

From what we discussed above, we can conclude that the best store location for both of the

two sellers are actually n1 = n− 1 and n2 = n, where n is the starting point of the buyer.
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CHAPTER 4. CONCLUSION

We discussed a 2-dimensional modification gambler’s ruin scenario, which has some common

performances as the excited regular nearest-neighbor random walk on Z,except being localized

to the two certain point. In the whole Markov chain, the states 0 and b are recurrent states (with

the transition probability equal to 1) and other states are transient states(with the transition

probability smaller than 1). General speaking, the deformation of transition kernel at two

different point can be described as two sellers that providing an instantaneously increased

probability(smaller than 1
6) in the forward direction when the buyer visits the stores. In this

game, the goal of the buyer is to maximize his expected earning which can be expressed in

terms of a difference between the revenue and the cost. The cost of the buyer is determined by

the price of a cookie, which has been negotiated between the buyer and the sellers. Through

this paper, we discussed a special situation, a fair moving probability for the buyer when he face

the parts without modification. Based on the analysis, the equilibrium price and the stores’

location are two independent variables. Since the starting point of the buyer can be anywhere

between 0 and b, the sellers need to choose the stores’ location to maximize their expected

benefit. For conclusion, we include all the reasonable relationship between the starting point

and the stores’ location, which turns out that the nash equilibrium store location for the two

sellers are n1 = n − 1 and n2 = n, where n is the starting point of the buyer. However, since

the result is just established on the certain case that p = q = 1
2 and ε1, ε2 <

1
6 , this assumption

may not be true for all the situations. In fact, we do analysis the different situations, and some

results indicates that the equilibrium price is somehow depending on the store’s location. The

further results need an even deeper analysis.
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