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ABSTRACT

We exhibit a set of three related Gaussian Lorentzian lattices with “Coxeter-like” root

diagrams. These root diagrams possess a point of symmetry in complex hyperbolic space,

similar to the Weyl vector for positive-definite Z-lattices. For two of the three lattices, this

point of symmetry is used to show that the reflections in the diagram roots generate the lattice’s

reflection group. It is shown for all three lattices that the lattice’s reflection group has finite

index in its automorphism group.
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CHAPTER 1. INTRODUCTION

The theory of lattices and their symmetry groups has application in many branches of math-

ematics: Lie theory (via root lattices and Weyl groups), geometry of numbers (via Minkowski

theory), finite group theory (sporadic groups related to interesting lattices), sphere packings,

and so on. They also have applications in areas outside pure mathematics, like coding theory

and molecular structures in chemistry [CS].

Lie groups and Lie algebras are rich subjects and powerful tools in areas such as geometry,

differential equations, and physics. In Lie theory, lattices arose as positive-definite root lattices

over Z, associated with the adjoint representation of a simple Lie algebra. Being linear, a Lie

algebra is often easier to study than its associated Lie Group. The the idea of a “root” was

introduced in the work of Wilhelm Killing and Élie Cartan, aimed at classifying simple Lie

algebras over C [Bou]. In this context, a “root” is a functional on the Cartan subalgebra of

a Lie algebra; these roots index the invariant subspaces of the adjoint representation of this

Lie algebra [FH]. Understanding the representations of arbitrary Lie algebras is tantamount to

understanding those of solvable Lie algebras and semisimple Lie algebras; the representation

theory for solvable Lie algebras is relatively straightforward, while the story for semisimple

Lie algebras is more complicated. However, it reduces to the case of simple Lie algebras, since

every semisimple Lie algebra is a direct sum of simple Lie algebras. In turn, simple Lie algebras

are characterized by irreducible root systems, which form Coxeter-Dynkin diagrams and can

be used to recover the associated Lie algebra [FH]. These irreducible root systems are of type

An, Bn, Cn, Dn, E6, E7, E8, F4, and G2 [Hum].

In this thesis we investigate a phenomenon in complex Lorentzian lattices which has an

analogy with positive-definite root lattices over Z. Namely, any positive-definite integral root

lattice embedded in Rn has a set of roots called simple roots, whose reflections (called simple
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reflections) generate the Weyl group of L. The mirrors of these roots are equidistant (in the

spherical metric) from the Weyl vector, which is half the sum of the positive roots. It also turns

out that the mirrors of the simple roots are those closest to the Weyl vector. The simple roots

can be placed in a graph called the Coxeter diagram where each vertex in the graph represents

a simple root. In the case of a simply-laced root system, an edge exists between roots r and r′

exactly when the reflections in r and r′ braid with each other. Such diagrams originated in Lie

theory and are essential to the classification of Lie groups and Lie algebras. In addition to the

study of Lie groups and Lie algebras, simply-laced Coxeter-Dynkin diagrams appear in several

other classification problems such as: simple surface singularity, finite type quiver, and finite

subgroups of SU(2) [HHSV]. Denote by S the positive-definite root lattices over Z. The L ∈ S

with simply laced diagrams have the advantage that distinct L have distinct reflection groups

[CS]. Such L fall into five classes of lattices: An, Dn, E6, E7, and E8; this explains why the

classification problems noted above are called ADE classification problems.

At this point we mention a very special positive-definite integral Z-lattice, the Leech lattice,

which we will call Λ here. We say an integral Z-lattice L is even if |v|2 is even for all v ∈ L;

otherwise L is said to be odd. The Leech lattice has rank 24, and is the unique even unimodular

lattice that has rank < 32 and no roots [CS]. I.e., its reflection group is trivial, even though its

automorphism group is quite large. Another indicator of the significance of Λ is that L. Griess

used it to construct the “monster,” the largest sporadic finite simple group [CS]. The method

used in this dissertation to show Ref(L) is finitely generated, for the L’s we consider, is based

on Conway’s modification of an algorithm due to E. B. Vinberg. Conway used this algorithm

to determine the generators for Ref(Λ⊕H), where H is a hyperbolic cell [CS].

The simple reflections for positive definite root lattices over Z have the following uniform

description: the mirrors of the simple reflections are the walls of a connected component of the

complement of the mirrors in the underlying vector space of L. This connected component is

the Weyl chamber. Because the mirrors in a complex vector space have real codimension 2, for

complex lattices we have no direct analog to the Coxeter chambers partitioning the ambient

space, and a nice uniform geometric description of the generating reflections is missing. Shep-

hard and Todd [ST] were able to fully classify finite complex reflection groups using ad-hoc
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diagrams similar to Coxeter-Dynkin diagrams. Although the general theory is absent, some

of these diagrams seem to have geometric properties [BMR]. These diagrams give deep infor-

mation about their associated complex reflection groups, such as their invariant degrees and

the weak homotopy type of the associated discriminant complement [Be1]. Our work finds and

investigates similar diagrams for some infinite complex hyperbolic reflection groups.

Given an integral Z-lattice of even rank L, it is possible to construct a lattice over G ⊆ C

(the Gaussian integers) with the same underlying set as L whenever the following is satisfied:

There is a ψ ∈ Aut(L) of order 4 for which ψ, ψ2, and ψ3 are fixed-point free. Likewise, we can

construct a lattice over E ⊆ C (the Eisenstein integers) from L with the same underlying set if

there exists an order-3 automorphism ψ ∈ Aut(L) which is fixed-point free [CS]. For example

[Al1],

E8 =
1

2
{(x1, . . . , x8) ∈ Z8 | xj ≡ xk(mod 2),

∑
xj ∈ 4Z}

EG
8 =

1

1 + i
{(x1, . . . , x4) ∈ G4 | xj ≡ xk(mod 1 + i),

∑
xj ∈ 2G}

Another example is

D4 = {(x1, . . . , x4) ∈ Z4 |
∑

xj ≡ 0(mod 2)}

DG
4 = {(x1, x2) ∈ G2 | x1 + x2 ≡ 0(mod p)}

The literature contains many examples of reflection groups which have nice sets of gener-

ators. For instance, almost all finite Euclidean reflection groups: in particular, the aforemen-

tioned Weyl groups. Many finite complex reflection groups also furnish examples. This includes

all the finite complex reflection groups defined over Gaussian or Eisenstein numbers. Like Weyl

groups, they have nice sets of generators that correspond to the vertices of a “complex dia-

gram,” and there is a point in the complex vector space which is a sort of point-of-symmetry of

the mirror arrangement. The generators are precisely the reflections whose mirrors are closest

to this point.

The analogy we explore in this thesis for a complex Lorentzian lattice L can be described

as follows. We seek a small set of roots R (analogous to the simple roots) with “Coxeter-like

diagram” D, whose reflections generate the reflection group of L. The projective points of
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Table 1.1 Three triplets of lattices

Expository Source This Thesis [Ba2] [Ba1]

Ring R G H E
L1 DG

4 EH
8 EE

8

Diagram for L1 ⊕H A4 A4 A6

Diagram for 2L1 ⊕H Octagon Octagon 12-gon

Diagram for 3L1 ⊕H P2(F2) P2(F2) P2(F3)

V := L⊗C with negative squared norm can be considered as points in complex hyperbolic CHn.

The reflection group of L naturally acts on CHn. The mirrors in roots ofR are equidistant from,

and the closest mirrors to, a point τ ∈ CHn. This point has a simple geometric characterization

relative to these mirrors: they are exactly the mirrors closest to τ . The mirrors in the roots

of R form an undirected version of the diagram D. For this undirected diagram, it is also

often true that τ is the unique point in hyperbolic space fixed by a group G ≤ Aut(L), where

G acts as the undirected diagram’s automorphism group. Such configurations of roots were

found in [Ba1] and [Ba2] for two “triplets” of three lattices related to the Leech lattice. One

triplet consists of the sequence of lattices EE
8 ⊕H ⊂ 2EE

8 ⊕H ⊂ 3EE
8 ⊕H. The other triplet

is EH
8 ⊕ H ⊂ 2EH

8 ⊕ H ⊂ 3EH
8 ⊕ H, which are lattices are over H (the Hurwitz integers).

For these lattices the ambient vector space is over the quaternions H. (As of this writing, the

author of [Ba2] has not verified the statements about EH
8 ⊕ H and 2EH

8 ⊕ H, but strongly

believes them to be true.) This thesis deals with a third such triplet of lattices, this time over

the Gaussian integers G, namely DG
4 ⊕H ⊂ 2DG

4 ⊕H ⊂ 3DG
4 ⊕H. (The author of this thesis

did not prove that reflections in the diagram roots generate the reflection group of 3DG
4 ⊕H,

although there is much empirical evidence supporting that conclusion.) A comparison of these

3 triplets is summarized in Table 1.

Furthermore, there is a noteworthy connection between one such root configuration in the

Eisenstein Lorentzian Leech lattice, and the monster simple group [Ba1], [Al2].

Now we describe in more detail the results in this thesis. Unless otherwise stated L will

stand for any one of the lattices DG
4 ⊕H, 2DG

4 ⊕H, or 3DG
4 ⊕H. Likewise, B := CHk (complex

hyperbolic space of dimension k), where k = 3, 5, or 7 according to L, so that Aut(L) acts
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on B. Let R be a set of roots in L, and let S := {r⊥ | r ∈ R} be the set of corresponding

mirrors. We define the root diagram of R to be the graph whose nodes are the roots of R, and

which has a directed edge (r1, r2) iff 〈r1, r2〉 = p := 1 + i. An edge between r1 and r2 indicates

the i-reflections in these roots braid, i.e. φir1φ
i
r2φ

i
r1 = φir2φ

i
r1φ

i
r2 , while absence of an edge

indicates they commute. Here, we define the mirror diagram of S to be the undirected graph

corresponding to the root diagram of R, where the nodes are now the roots’ corresponding

mirrors.

For each lattice L considered above, we exhibit a small set of roots R whose root diagram

forms a “Dynkin Diagram” with appealing symmetry. There is a G ≤ Aut(L) which acts as

the graph automorphism group for the mirror diagram of S. There is a point τ in the complex

hyperbolic space that is equidistant from the mirrors in S. The mirrors in the set S play the

role of the simple mirrors for Weyl groups while the point τ plays the role of the Weyl vector.

These diagrams are A4 (for DG
4 ⊕H), an octagon (for 2DG

4 ⊕H), and the incidence graph of

P2(F2) (for 3D
G
4 ⊕H). These diagrams also appear in the quaternionic Lorentzian Leech lattice

and corresponding sublattices [Ba2].

We have the following results:

Theorem. The mirrors in S are precisely those closest to τ . For L := 2DG
4 ⊕H or 3DG

4 ⊕H,

the action of G on S is transitive and τ is the unique point in B fixed by G.

Theorem. The complex reflections in the mirrors of S generate Ref(L). (This has the status

of “expected theorem” for 3DG
4 ⊕H.)

Theorem. The group Ref(L) has finite index in Aut(L). In particular, Ref(L) is arithmetic.
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CHAPTER 2. PRELIMINARIES

2.1 Background on Lattices

Let the ring R be Z, G := Z[i] (the Gaussian integers), or E := Z[e2πi/3] (the Eisenstein

integers). An R-lattice (or lattice over R) L is a free R-module of finite rank. We define the

underlying vector space of L to be V := L ⊗ K, where K := R or C depending on R. We

can then choose a hermitian form 〈x, y〉 : V × V → C; we will assume throughout this thesis

that all hermitian forms are conjugate-linear in the first argument. We define the norm of

v ∈ V to be |v|2 := 〈v, v〉. When the quadratic form induced by 〈·, ·〉 is positive-(semi)definite,

negative-(semi)definite, or indefinite, we give L the same designation. An automorphism of L

is simply a linear-automorphism of L which preserves 〈·, ·〉. The automorphism group of L is

denoted by Aut(L). If 〈x, y〉 ∈ R for all x, y ∈ L we say L is an integral R-lattice. The dual

lattice of an integral lattice L is L∨ := {v ∈ V | 〈v, x〉 ∈ R for all x ∈ L}. For an r ∈ R, we say

L is r-modular if L∨ = 1
rL. A lattice is unimodular if L∨ = L.

If L is positive-definite, we can define the covering radius of L to be supv∈V (inf l∈L |v − l|).

This is the smallest r, such that the collection of closed balls of radius r centered at the points

of L covers V . The covering radius therefore gives an idea of the “density” of a lattice.

Suppose L is an R-lattice of rank n, with ordered R-basis B := {xj} and a hermitian

form 〈·, ·〉 that takes values in K. Let V := L ⊗ K be the underlying vector space of L.

For any (v1, . . . , vj) ∈ V j , we can form the matrix gram(v1, . . . , vj) := (〈vk, vl〉), called the

Gram matrix of (v1, . . . , vj). In particular, we can form M := gram(B); then for all x, y ∈ V

expressed as column vectors with respect to B, we have 〈x, y〉 = x∗My. Note that if we have a

linear-automorphism ψ of L, with matrix S with respect to B, then ψ ∈ Aut(L) is equivalent

to S∗MS =M . If 〈·, ·〉 is degenerate, then gram(B) is singular for any R-basis B of L. In this
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case we call L a singular lattice. If 〈·, ·〉 is nondegenerate, we can find a T ∈Mn(K) such that

T ∗MT = D, a diagonal matrix with l 1’s and m −1’s, where l +m = n. Sylvester’s Law of

Inertia assures us that l and m are unique, and we call (l,m) the signature of L.

Choose 1 6= ξ ∈ R∗, a unit in R. For r ∈ L with |r|2 6= 0, we call the automorphism of V

given by

φξr(x) := x− (1− ξ)〈r, x〉
|r|2

r

the ξ-reflection in r. For any l ∈ L, we say l is primitive if l = r·l′ for some r ∈ R and l′ ∈ L ⇒

r ∈ R∗. I.e., l is primitive if l is not a non-unit multiple of a lattice vector. If φξr preserves L

(i.e., is an automorphism of L) and r has norm 2, we call r a root of L. (If the superscript is

omitted we assume ξ = −1.) If L is generated as an R-module by a set of roots, L is called a

root lattice.

For a lattice L with sublattices L1, L2 such that L = L1 + L2, we write L = L1 ⊕ L2 if

L1 ∩ L2 = {0} and 〈l1, l2〉 = 0 for all l1 ∈ L1, l2 ∈ L2. A lattice is called even if all its norms

are even integers. One of the simplest examples of lattices, positive-definite even root lattices

over Z have been studied extensively and their structure is well-understood. Such a lattice L

has a canonical direct-sum decomposition L = L1⊕L2⊕ · · · ⊕Lk, where this decomposition is

unique up to isomorphism and order of the summands, and each Lj is isomorphic to a lattice

of type An, Dn, E6, E7, or E8 [Hum].

A positive-definite integral Z-lattice has a reflection group (or Weyl group), denoted Ref(L).

This reflection group has a pleasing characterization, which we now describe. Let Φ be the

collection of roots in L, and note that Φ satisfies the following two properties:

For all r ∈ Φ,

1. φr(Φ) = Φ.

2. Rr ∩ Φ = {+r,−r}.

If we choose any vector v0 in V := L ⊗ R which is not perpendicular to any of the roots, we

can define the positive roots Φ+ of L as

Φ+ := {r ∈ Φ | 〈v0, r〉 > 0}.
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Note that exactly half the roots in Φ are positive. We next define the Weyl vector to be

w :=
1

2

∑
r∈Φ+

r.

Finally, we define the set ∆ of simple roots to be those roots r ∈ Φ+ for which the “spherical

distance” from the mirror r⊥ to w is minimized, i.e. for which |〈r, w〉| is minimized. Then we

have the following [Hum]:

Theorem 2.1.1. The reflection group Ref(L) is generated by reflections in the roots of ∆.

Note that ∆ is not uniquely determined for a given L, and ultimately depends on our choice

of v0 above. However, it is also a theorem that any two such ∆’s are conjugate under Ref(L).

Suppose dimV (= rankL) is n. The mirrors r⊥ in the roots r ∈ Φ partition Rn−
⋃
r∈Φ r

⊥ into

connected components called chambers. The chamber whose boundary is
⋃
r∈∆ r

⊥ contains

the Weyl vector w and is called the Weyl chamber. These mirrors in the simple roots (the

simple mirrors) are precisely the mirrors closest to w in the spherical metric. It is noteworthy

that Theorem 2.1.1 can be proved using a “height-reduction argument.” The basic idea is to

define the “height” of a root r ∈ L to be |〈r, w〉|, essentially the spherical distance from r⊥ to

w, and show that the height of (the image of) r can be reduced by reflections in the simple

mirrors until it has minimal height. Because the roots of minimal height are precisely (unit

multiples of) the simple roots, the conjugation formula

φφu(v) = φuφvφu

shows φr can be expressed as a product of simple reflections (reflections in simple mirrors), as

desired.

The simple roots r ∈ ∆ form a Coxeter Diagram, a graph whose vertices are the r’s and

whose edges are determined and labeled thusly: For any r, s ∈ ∆, we know (φrφs)
m = 1 for

some minimal m ∈ Z+ because φr and φs generate a dihedral group. If m = 1 then r = s so

no edge is possible. If m = 2 then φrφs = φsφr (the reflections commute) and we do not draw

an edge between r and s. If m = 3 then φrφsφr = φsφrφs (the reflections braid) and we draw

a single edge between r and s, and either label this edge with a 3 or omit the label. For any

other m we draw an edge labeled with m [Hum].
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2.2 Complex Hyperbolic Space CHn

(Unpublished notes of Dr. Tathagata Basak were used as a resource for this section.)

Suppose W is a C-vector space equipped with a Hermitian form 〈·, ·〉. We define rad(W ) :=

W⊥, and note that W is nonsingular whenever radW = 0. In this case, W has a signature as

defined above. If w 6= 0 has norm 0 we say w is a null vector. We define W≤ := {w ∈ W :

|w|2 ≤ 0}. Define W< and W> similarly.

Let Cn,1 be the space whose underlying set is Cn+1 with Hermitian form 〈·, ·〉 given by

〈(x0, x1, . . . , xn), (y0, y1, . . . , yn)〉 = x0y0 + · · ·+ xn−1yn−1 − xnyn.

Note that Cn,1 is a Lorentzian space (i.e., it has signature (n, 1)); throughout this section we

will set V := Cn,1.

Define the projective space of V by P(V ) := {P(v) | v ∈ V }, where P(v) := {av | a ∈

C − {0}} for v ∈ V . We call the image P(v) of a null vector v in projective space a cusp. If

U is the group of isometric automorphisms of V , we can set PU := {P(g) | g ∈ U}, where

P(g)P(v) = P(gv).

It will be convenient to define c : P(V<)×P(V<)→ R given by c(P(v),P(w)) =
√

〈v,w〉〈w,v〉
〈v,v〉〈w,w〉 .

We can define a function V< × V< → R using the same formula, which we also denote by c.

Now we show that P(V<) can be made into a metric space with the PU -invariant metric given

below; we call this the n-dimensional complex hyperbolic space CHn. Each lattice L, of the

three which are the central objects of study in this thesis, has signature (m, 1) for some m.

This means L’s underlying vector space V is isomorphic to Cm,1, so Aut(L) acts on CHm.

Theorem 2.2.1. The function d : P(V<)×P(V<)→ R≥ defined below is a PU -invariant metric

on P(V<):

d(P(v),P(w)) = cosh−1 (c(P(v),P(w))) (2.1)

Proof. It is clear that c (and hence d) is well-defined, and that d is PU -invariant. The symmetric

and non-negativity properties of a metric are also apparent. Now suppose d(P(v),P(w)) = 0;

then without loss of generality we may assume |v|2, |w|2 = −1, and we thus have |〈v, w〉|2 = 1.
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But then gram(v, w) is singular, so v and w are linearly dependent and P(v) = P(w). It only

remains to verify the triangle inequality.

Let v1, v2, v3 ∈ V<, and set α := 〈v1, v2〉, β := 〈v3, v1〉, γ := 〈v2, v3〉. Without loss of

generality assume each |vj |2 = −1. We next observe that each span{vj , vk} either is singular or

has signature (1, 1), which yields |α|2, |β|2, |γ|2 ≥ 1. Now set M := gram(v1, v2, v3); then M is

singular or has signature (2, 1), whence

0 ≤ − detM = −

∣∣∣∣∣∣∣∣∣∣
−1 α β

α −1 γ

β γ −1

∣∣∣∣∣∣∣∣∣∣
= 1− |α|2 − |β|2 − |γ|2 − 2Reαβγ

≤ 1− |α|2 − |β|2 − |γ|2 + 2|αβγ| = (|α|2 − 1)(|β|2 − 1)− (|γ| − |αβ|)2 ⇒

|γ| ≤
√
|α|2 − 1

√
|β|2 − 1 + |α||β|

Let A = cosh−1 (|α|), B = cosh−1 (|β|), C = cosh−1 (|γ|), so this becomes

cosh (C) ≤ sinh (A) sinh (B) + cosh (A) cosh (B) = cosh (A+B)⇒

cosh−1 (|γ|) ≤ cosh−1 (|α|) + cosh−1 (|β|)⇒ d(v2, v3) ≤ d(v2, v1) + d(v1, v3).

To simplify notation we will sometimes write d(v, w) instead of d(P(v),P(w)), etc.

2.2.2. Projections and more distance formulas. For x ∈ V define hx : P(V<)→ R≥ by

hx(P(v)) =
|〈x, v〉|2

−|v|2
.

Note that hx(P(v)) is closely related to d(P(x),P(v)), and that hx(P(v1)) < hx(P(v2)) ⇔

d(P(x),P(v1)) < d(P(x),P(v2)) whenever x ∈ P(V<). Now suppose y ∈ P(V<) and A ⊆ P(V<).

We define the projection of y onto A, denoted prA(y), to be the unique point a0 ∈ clA that

minimizes the function a 7→ d(a, y), if such a0 exists.

Lemma 2.2.3. Let W be a Lorentzian subspace of V , and suppose a ∈ W<. Then any x ∈

P(W<) can be represented as P(a+ w), where w ∈ {0} ∪W> and 〈a,w〉 = 0.
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Proof. Note that a⊥ ⊆ W has signature (k, 0) for some k, so a can be extended to a basis

of W given by a = a0, a1, . . . , ak with {a1, . . . , ak} ⊆ a⊥ ⊆ W>. Then any x ∈ W< has

x =
∑k

j=0 cjaj , for some c’s ∈ C with c0 6= 0. Thus x
c0

= a+
∑k

j=1
cj
c0
aj , and P(x) can be given

the desired form.

Theorem 2.2.4. Let W be a Lorentzian subspace of V . Suppose x ∈ V and that either of the

following is true:

(i) |x|2 ≤ 0 and x /∈W , or

(ii) |x|2 > 0 and P(x⊥≤) ∩ P(W≤) = ∅

Then we have

(a) (Cx+W⊥) ∩W is a 1-dimensional space of signature (0, 1)

(b) hx restricted to P(W<) has a unique minimum at P((Cx+W⊥) ∩W )

Proof. (a) From (i) and (ii), x⊥ has no negative norm vector, or x⊥ ∩W< = ∅. Thus W * x⊥,

so x /∈ W⊥, whence dim (Cx+W⊥) = dim (W⊥) + 1. Because W⊥ is definite, V = W ⊕W⊥,

so dim ((Cx+W⊥) ∩W ) = dim (Cx+W⊥) + dim (W ) − dim ((Cx+W⊥) +W ) = 1. Then

(Cx+W⊥)∩W contains a non-zero vector a = x+ v for some v ∈W⊥. Since a ∈W , we have

〈x, v〉 = 〈a− v, v〉 = −|v|2. Then we get |a|2 = 〈x+ v, x+ v〉 = |x|2 − 2|v|2 + |v|2 = |x|2 − |v|2.

If (i) is true, then |a|2 ≤ −|v|2, and we also must have v 6= 0 since otherwise x = a ∈ W .

Because v ∈W⊥ and W⊥ is positive definite, we get |v|2 > 0, so |a|2 < 0.

On the other hand, suppose (ii) is true. Then (Cx+W⊥)⊥ = x⊥ ∩W is positive definite,

so Cx+W⊥ is indefinite. Then there is an r1 ∈W⊥ such that span{x, r1} has signature (1, 1)

and |r1|2 = 1. Now extend r1 to an orthogonal basis {r1, . . . , rk} of W⊥, where |rj |2 = 1 for

all j. So v =
∑k

j=1 cjrj for some cj ’s ∈ C. From a = x + v and the fact that a ∈ W , we can

compute the cj ’s to get a = x−
∑
〈x, rj〉rj . Then

|a|2 = 〈a, x+ v〉 = 〈a, x〉 = |x|2 −
k∑
j=1

|〈x, rj〉|2 = (|r1|2|x|2 − |〈x, r1〉|2)−
k∑
j=2

|〈x, rj〉|2 < 0,

where the inequality follows from the fact that span{x, r1} has signature (1, 1).
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(b) We have a ∈W<, so by Lemma 2.2.3 any vector in P(W<) can be written as P(a+w),

where w ∈W> ∪ {0} and 〈a,w〉 = 0. We calculate

hx(P(a+ w)) =
|〈x, a+ w〉|2

−|a+ w|2
=
|〈x, a〉+ 〈x,w〉|2

−|a|2 − |w|2
=

|a|4

−|a|2 − |w|2
.

This quantity is clearly minimized when |w|2 = 0, i.e. when w = 0. Therefore P(a) =

P((Cx+W⊥) ∩W ) minimizes hx on P(W<).

Corollary 2.2.5. Let {r1, . . . , rm} be an orthogonal basis for a positive definite subspace of

V . Set W :=
⋂
r⊥j , and let x ∈ V<. Then the projection of P(x) onto P(W<) is given by

P(prW (x)), where

prW (x) = x−
m∑
j=1

|rj |−2〈x, rj〉rj

Proof. If x ∈ W , then we have prW (x) = x and the result holds. Otherwise we can apply

Theorem 2.2.4, since it is clear that W is Lorentzian, and by the proof of the Theorem we

know prW (x) ∈ (Cx+W⊥) ∩W .

Lemma 2.2.6. Suppose v, y ∈ V with |v|2 6= 0 and |y|2 = 1. Let a = v − 〈v, y〉y. We have

(a) |〈v,a〉|2
|v|2|a|2 = |a|2

|v|2 = 1− |〈v,y〉|2
|v|2 , and (b) If v ∈ V< and y ∈ V>, then c(v, pry⊥(v))2 = 1− c(v, y)2.

Proof. (a) Observe that 〈y, a〉 = 0. Then 〈v, a〉 = |a|2 = 〈v, v− 〈v, y〉y〉 = |v|2− |〈v, y〉|2, which

gives us what we want.

(b) This follows from part (a) and the definition of of prW (x) above, since we may assume

|y|2 = 1.

Theorem 2.2.7. (a) Let r ∈ V> and x ∈ V< \ r⊥<. Then

d(P(x),P(r⊥<)) = sinh−1(
√
−c(x, r)2) (2.2)

(b) Let r, x ∈ V> such that span{r, w} is Lorentzian (so r⊥< ∩ x⊥< = ∅). Then

d(P(x⊥<),P(r⊥<)) = cosh−1(c(x, r)) (2.3)
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Proof. (a) By Corollary 2.2.5 and Lemma 2.2.6, d(x, r⊥<) = d(x, prr⊥(x)) = cosh−1 (
√

1− c(x, r)2) =

sinh−1 (
√
−c(x, r)2).

(b) We may assume |r|2, |x|2 = 1. Let v ∈ r⊥<. Then as in part (a)

d(v, x⊥<) = d(v, prx⊥(v)) = cosh−1 (c(v, prx⊥(v))) = cosh−1 (
√
1− c(v, x)2) = cosh−1 (

√
1 + hx(v)).

We wish to minimize this expression for v ∈ r⊥<, which amounts to minimizing hx(v) there. By

condition (ii) of Theorem 2.2.4 this occurs at v = prr⊥(x). Therefore by Lemma 2.2.6 we have

d(r⊥<, x
⊥
<) = cosh−1 (

√
1− c(prr⊥(x), x)2) = cosh−1 (

√
1− (1− c(x, r)2)) = cosh−1 (c(x, r))

Theorem 2.2.8. The following variants of the triangle inequality hold in CHn.

(a) Let z ∈ V> and x, y ∈ V<. Then

d(x, z⊥<) ≤ d(x, y) + d(y, z⊥<) (2.4)

(b) Let x, z ∈ V> and y ∈ V<. Then

d(x⊥<, z
⊥
<) ≤ d(x⊥<, y) + d(y, z⊥<) (2.5)

Proof. (a) For any w ∈ V< we have d(x,w) ≤ d(x, y) + d(y, w). Therefore

d(x, z⊥<) = min
w∈z⊥<

d(x,w) ≤ min
w∈z⊥<

(d(x, y) + d(y, w)) = d(x, y) + min
w∈z⊥<

d(y, w) = d(x, y) + d(y, z⊥<).

(b) For any v, w ∈ V< we have d(v, w) ≤ d(v, y) + d(y, w). Hence

d(x⊥<, z
⊥
<) = min

v∈x⊥<
w∈z⊥<

d(v, w) ≤ min
v∈x⊥<
w∈z⊥<

(d(v, y) + d(y, w)).

As d(v, y) does not depend on w, and similarly d(y, w) does not depend on v, the last expression

above is equal to

min
v∈x⊥<

d(v, y) + min
w∈z⊥<

d(y, w) = d(x⊥<, y) + d(y, z⊥<).
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2.2.9. Horoballs. Let ρ ∈ V be a null vector and let ρ := P(ρ) be the corresponding cusp.

We define dρ : P(V<)→ R as

dρ(P(x)) := log (
√
hρ(x)) = log

(
|〈ρ, x〉|√
−|x|2

)
.

We define the open horoball at ρ of radius k to be

Bk(ρ) := {P(x) ∈ P(V<) | hρ(x) < k2}.

Now suppose P(ρ1) = P(ρ2) = ρ is a cusp, and suppose x, y ∈ V<. Observe that dρ1(P(x)) differs

from dρ2(P(x)) by a constant independent of x. Then dρ(P(x)) − dρ(P(y)) is independent of

the lift ρ for ρ we choose, so we can think of P(x) being “closer to” or “farther from” ρ than

P(y) is from ρ, even though P(x) and P(y) are at distance infinity from ρ in CHn.

2.2.10. Suppose ρ is a cusp with lift ρ ∈ V , Bk(ρ) is a horoball, and P(x) ∈ CHn is a point

not contained in Bk(ρ). The projection prBk(ρ)
(P(x)) is contained on the geodesic ray joining

P(x) and ρ. So if we have two points P(x),P(y) ∈ CHn and wish to compare their distances to

the cusp ρ, this is tantamount to comparing their (finite) distances to a horoball Bk(ρ) which

doesn’t contain them.

2.3 Analogous and Motivating Examples

The situation for a positive-definite integral Z-lattice, described in Section 2.1, suggested

to Allcock and Basak that an analogous situation might hold for lattices L that aren’t positive-

definite, over a ring R * R. They found several examples where R = E (the Eisenstein integers),

G (the Gaussian integers), or H (the Hurwitz integers). In each of these examples the following

suggestive features are present.

The lattice L contains a set of roots R whose reflections generate Ref(L). The roots in R

form a diagram D, a graph with the following properties: Fix a unit ξ ∈ R. The vertices of D

are the roots r ∈ R, and no edge exists between r1 and r2 if φξr1 and φξr2 commute, while r1 and

r2 have an edge between them if φξr1 and φξr2 braid. These roots and the diagram they form

are the analogs of the simple roots and their associated Coxeter Diagram. There is a point τ

in V := L ⊗ K which is equidistant from the r⊥’s for r ∈ R, where the distance is taken in
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hyperbolic space. Additionally, these r⊥’s are precisely the closest mirrors to τ , and it often

has another property. Specifically, τ is often the unique point in hyperbolic space fixed by a

group G ≤ Aut(L), where G acts as the graph automorphism group of the undirected graph

corresponding to D. This τ is the analog of the Weyl vector.

One example found by Basak is the “complex lorentzian Leech lattice,” which has a connec-

tion with the bimonster group (the wreath product of the monster sporadic simple group and

Z/2Z) [Ba1]. For this E-lattice L, the set S contains 26 roots (each giving an order 3 reflection)

whose diagram D is IncP2(F3), the incidence graph of the projective plane over F3. It turns

out that D also describes a presentation for the bimonster, whose generators g are vertices of

D and commute or braid accordingly, but where each g has order 2 instead of order 3. The

lattice L is isomorphic to 3E8 ⊕ H (as E-lattices), and thus contains copies of E8 ⊕ H and

2E8 ⊕H. Each of these sublattices also has a “Weyl vector” and corresponding root diagram

whose reflections generate Ref(L).

Basak gives another example in [Bas2], this time with R = H. The lattice L has a root

diagram D which is a directed version of the incidence graph of the projective plane over F2,

IncP2(F2). There is a “Weyl vector” in L, τ which is fixed by a group G ≤ Aut(L), where G

acts as the automorphism group of the undirected version of D. As hoped, the mirrors in roots

of D are exactly those mirrors closest to τ in hyperbolic space. The lattice L is isomorphic to

3E8 ⊕H; it therefore contains sublattices isomorphic to E8 ⊕H and 2E8 ⊕H (as H-lattices).

It is expected that, as in the prior example, these lattices each have a “Weyl vector” and

corresponding root diagram whose reflections generate Ref(L).

In both of the examples given above, the fact that the mirrors of D generate Ref(L) can be

proved using a “height reduction” argument. However, this height reduction argument differs

from that used in the case for positive-definite integral Z-lattices. The difference is that it

proceeds in two stages. For the first stage we fix a cusp (norm-0 vector in L) called ρ. In

hyperbolic space ρ can be thought of as a point at infinity, because it lies on the boundary in

V between points of negative norm and points of positive norm. We define a vector’s height

with respect to ρ, and consider the set of roots with minimal height R0. By a height reduction

argument, we show that an arbitrary root can be reflected down to one in R0, using reflections
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in the roots of R0. There are infinitely many roots in R0, but the reflections in roots of R0

are finitely generated. Suppose they are generated by reflections in roots from a finite set R′
0.

The second stage of our height reduction argument reflects the roots of R′
0 down to the roots

of D by height reduction with respect to the “Weyl vector.”

The work presented in this thesis extends the two aforementioned examples. We consider

here a nested sequence of three lattices: 3DG
4 ⊕H, 2D

G
4 ⊕H, and D

G
4 ⊕H, and prove results for

them analogous to those for the examples above.

2.4 Background on graphs

2.4.1. Notation and Conventions about graphs: We maintain the notation of [Ser]

regarding graphs. By subgraph we always mean full subgraph. Recall that a combinatorial

graph Ψ is specified by giving a set of vertices v(Ψ) and a symmetric relation e(Ψ) ⊆ v(Ψ)×v(Ψ)

called the set of geometric edges of Ψ satisfying (a, a) /∈ e(Ψ) for all a ∈ v(Ψ). If y = (a, b) ∈

e(Ψ), then ȳ = (b, a) denotes the opposite edge and we write a = o(y) = t(ȳ), b = t(y) = o(ȳ).

An orientation on Ψ is given by a subset e+(Ψ) ⊆ e(Ψ) called the set of (positively) oriented

edges satisfying e(Ψ)− e+(Ψ) = {ȳ : y ∈ e+(Ψ)}. Equivalently, an orientation on Ψ is given by

a function ω : e(Ψ)→ {1,−1} such that ω(ȳ) = −ω(y) for all y ∈ e(Ψ). We relate the two ways

of defining orientation as follows: given ω, we let e+(Ψ) = {y ∈ e(Ψ): ω(y) = 1}. A diagram

(Ψ, ω) is a combinatorial graph Ψ together with an orientation ω. If (a, b) ∈ e+(Ψ), then we

draw an arrow from a to b in our picture for the diagram. To avoid confusion, we shall write

(a→ b) ∈ e+(Ψ).

Let Ψ→ = (Ψ, ω) be a diagram. Let Aut(Ψ) denote the set of graph automorphisms of the

combinatorial graph Ψ and let Aut(Ψ, ω) denote the set of oriented graph automorphisms. An

automorphism g ∈ Aut(Ψ) is determined by a bijection g : v(Ψ)→ v(Ψ) such that (a, b) ∈ e(Ψ)

if and only if g(a, b) = (g(a), g(b)) ∈ e(Ψ). This automorphism g belongs to Aut(Ψ, ω) if and

only if ω(g(y)) = ω(y) for all y ∈ e(Ψ).
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A bipartite structure on a combinatorial graph Ψ is an onto map type : v(Ψ) → {1,−1}

such that type(t(y)) = − type(o(y)) for each y ∈ e(Ψ). The vertices v for which v(Ψ) = 1 are

called positive vertices and the rest are called the negative vertices. So each edge of Ψ joins a

positive vertex with a negative vertex.

Lemma 2.4.2. The following are equivalent:

(a) Each positively oriented edge goes from positive vertex to a negative vertex..

(b) If y is an positively oriented edge, then o(y) is a positive vertex.

(c) One has type(o(y)) = ω(y) = − type(t(y)) for each y ∈ e(Ψ).

We shall say that an orientation ω and an bipartite structure type on Ψ are compatible with

each other if the equivalent conditions of the above lemma are satisfied.

Lemma 2.4.3. Let (Ψ, ω) be a connected finite diagram. Let type : v(Ψ)→ {±1} be a bipartite

structure compatible with ω.

(a) Let g ∈ Aut(Ψ). If g preserves (resp. reverses) the type of one vertex, then g preserves

(resp. reverses) the type of every vertex.

(b) Let g ∈ Aut(Ψ). Then g preserves type if and only if g preserves ω.

(c) Assume that there exists σ ∈ Aut(Ψ) such that type(σ(v)) = − type(v) for some v ∈ v(Ψ)

(hence for all v ∈ v(Ψ)). Then Aut(Ψ, ω) has index 2 in Aut(Ψ) and σ represents the nontrivial

coset.

Proof. (a) Pick v0 ∈ v(Ψ). Write type(gv0) = ε type(v0) with ε = 1 or ε = −1. To show

type(gv) = ε type(v) for every v ∈ v(Ψ), induct on the distance d(v0, v). Since Ψ is connected,

we can choose v′ ∈ v(Ψ) such that d(v0, v
′) = d(v0, v) − 1 and (v, v′) ∈ e(Ψ). So type(gv) =

− type(gv′) = −ε type(v′) = ε type(v) where we have the first and the third equality since (v, v′)

and (gv, gv′) are edges of Ψ and the second equality follows from the induction hypothesis.

(b) Suppose g preserves type. Let (a, b) be an oriented edge of Ψ. Then a is of positive

type and b is of negative type. Since g is a graph automorphism, either (ga, gb) is an oriented

edge, or (gb, ga) is. Since each oriented edge goes from a positive vertex to a negative vertex,

it follows that (ga, gb) must be an oriented edge. So g preserves the orientation. Conversely,

suppose g preserves orientation. Let (a, b) be a positively oriented edge. Then (ga, gb) is a
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positively oriented edge. So ga is a positive vertex. Thus g preserves the type of the vertex a,

and hence preserves type by part (a).

(c) Part (a) implies that σ reverses type and (b) implies that σ does not preserve ω so

σ ∈ Aut(Ψ)− Aut(Ψ, ω). Let g ∈ Aut(Ψ). By part (a) either g or σ−1g is type preserving, so

by part (b), either g or σ−1g belongs to Aut(Ψ, ω).

Lemma 2.4.4. Let O be one of the three rings : O = Z or E or G. Let K0 (resp. K)

be an O-lattice spanned by s01, · · · , s0n (resp. s1, · · · , sn). Assume that K is non-singular,

s01, · · · , s0n form a basis of K0 and 〈s0i , s0j 〉 = 〈si, sj〉. Then s0i 7→ si induces an isometry

K0/Rad(K0) ' K.

Proof. Since s0i ’s form a basis of K0 note that f : s0i 7→ si defines a well defined map from

K0 to K. Since si’s span K, the function f is onto and we have 〈f(x), f(y)〉 = 〈x, y〉 for all

x, y ∈ K0. If x ∈ Rad(K0) then 0 = 〈x, y〉 = 〈f(x), f(y)〉 for all y ∈ K0. Since f is onto

〈f(x), z〉 = 0 for all z ∈ K. Since K is nonsingular, f(x) = 0, so x ∈ Ker(f). On the other

hand, if x ∈ ker(f), then for all y ∈ K0, we have 〈x, y〉 = 〈f(x), f(y)〉 = 〈0, f(y)〉 = 0, so

x ∈ Rad(K0). So Rad(K0) = ker(f).

Lemma 2.4.5. Let O be as Lemma 2.4.4. Suppose L is an O-lattice, and ψ ∈ Aut(L).

Define v̂ := v + Rad(L) for all v ∈ L. Further, define a hermitian form on L/Rad(L) by

〈v̂, ŵ〉 = 〈v, w〉. Then ψ induces an automorphism ψ̂ ∈ Aut(L/Rad(L)) given by ψ̂(v̂) := ψ̂(v).

Proof. 〈·, ·〉 is well-defined on L/Rad(L): Suppose v̂1 = v̂2 and ŵ1 = ŵ2. Then v1 = v2+ r and

w1 = w2 + s for r, s ∈ Rad(L). So 〈v̂1, ŵ1〉 = 〈v1, w1〉 = 〈v2 + r, w2 + s〉 = 〈v2, w2〉 + 〈r, w2〉 +

〈v2, s〉+ 〈r, s〉 = 〈v2, w2〉 = 〈v̂2, ŵ2〉.

ψ̂ is well-defined: Suppose v̂1 = v̂2, so v1 = v2 + r for some r ∈ Rad(L). Then ψ̂(v̂1) =

ψ̂(v1) = ̂ψ(v2 + r) = ψ̂(v2) + ψ̂(r) = ψ̂(v2) = ψ̂(v̂2). (We know ψ(r) is in Rad(L) because ψ

preserves 〈·, ·〉.)
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ψ̂ is 1-to-1: Suppose ψ̂(v̂) = 0̂. Then ψ(v) = r ∈ Rad(L), so v = ψ−1(r) ∈ Rad(L). Thus

v̂ = 0̂.

ψ̂ is onto: This is immediate since ψ is onto.

ψ̂ preserves 〈·, ·〉: We have 〈ψ̂(v̂1), ψ̂(v̂2)〉 = 〈ψ̂(v1), ψ̂(v2)〉 = 〈ψ(v1), ψ(v2)〉 = 〈v1, v2〉 =

〈v̂1, v̂2〉.

2.5 Complex lattices and their diagrams

Definition 2.5.1. If V is an (n+ 1) dimensional complex vector space with a hermitian form

of signature (n, 1), we let B(V ) denote the set of complex lines in P(V ) of negative norm. If K

is a subset of V such that V = spanC(K), then we write B(K) = B(V ).

Let G = Z[i] be the ring of Gaussian integers. Let p = (1 + i). By a diagram we mean

a combinatorial graph with an orientation. If Ψ→ is a diagram, then we let Ψ denote the

corresponding combinatorial graph. Given a diagram Ψ→, let G(Ψ→) denote the free G-module

with basis indexed by the vertices of Ψ and a G-valued hermitian form (linear in second variable)

given by v2 = 2 for each vertex v ∈ Ψ and 〈w, v〉 = p = 〈v, w〉 if there is an arrow from w to v

and 〈v, w〉 = 0 otherwise. Let

LG(Ψ→) = G(Ψ→)/Radical(G(Ψ→)).

Let I→14 denote the bipartite diagram IncP2(F2) where all the arrows go from the points to

the lines. Let I→8 denote the diagram with vertex set Z/8Z and oriented edges going from the

vertices (2j − 1) and (2j +1) to the vertex 2j for j = 0, 1, · · · , 3. We shall call this diagram an

octagon. Let I→4 be the subdiagram of I→8 formed by the vertices 1, 2, 3, and 4.

2.5.2. Write L0 = L0(I→8 ) with basis vectors s00, · · · , s07. So

〈s0k, s0r〉 =



2 if k = r

1 + (−1)ri if k and r differ by 1

0 otherwise.

where the subscripts are read modulo 8, so s8 = s0 etc. Let L = LG(I→8 ) = L0/Rad(L0), the

projection from L0 to L sending s0j to sj . The vectors s02j , s2j are called the line roots and the
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vectors s02j−1, s2j−1 are called the point roots. For each k ∈ Z/8Z, define

w0
k = s0k−1 − (1 + (−1)ki)s0k + s0k+1.

Then

〈w0
k, s

0
j 〉 =


1 + (−1)ki if j = k ± 2,

0 otherwise.

In particular each w0
k is a null vector and

z0k = (w0
k − w0

k+4) ∈ Rad(L0) for all k.

The z0j ’s satisfy the relations

zk−1 + (1− (−1)ki)zk + zk+1 = 0.

Writing the vectors z0j in the basis {s00, · · · , s07} we observe that z0j and z0j+1 are linearly inde-

pendent. Verify that that any two of these z0j , z
0
j+1 form a basis of Rad(L0).

Now we work in L(I→8 ) = L0(I→8 )/Rad(L0(I→8 )). Let sj , wj be the vectors in L(I→8 )

corresponding to s0j , w
0
j . The four mirrors s⊥2j intersect in a two dimensional subspace of L(I→8 )⊗

C. Note that w2k−1 are orthogonal to each s2j . So two linearly independent norm zero vectors

in the intersection ∩4j=1s
⊥
2j are given by w1, w3.

Lemma 2.5.3. Let L be a Lorentzian integral G-lattice, and let φir1 , φ
i
r2 ∈ Ref(L). Then

(a) φir1φ
i
r2 = φir2φ

i
r1 ⇔ 〈r1, r2〉 = 0 (i.e., r1 and r2 have no edge between them)

(b) φir1φ
i
r2φ

i
r1 = φir2φ

i
r1φ

i
r2 ⇔ |〈r1, r2〉|

2 = 2 (i.e., r1 and r2 have an edge between them)

Proof. Set W := Cr1 + Cr2, G := 〈{φir1 , φ
i
r2}〉, and let B := {r1, r2} be an ordered basis of W .

Then G stabilizes W and fixes W⊥ pointwise, so G is isomorphic to its restriction to W . We

now identify G with its restriction to W . For j = 1, 2 let Mj be the matrix of φrj with respect

to B. Set α := −(1− i)/2, β = 〈r1, r2〉. We get

M1 =

i αβ

0 1

 , M2 =

 1 0

αβ i


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M1M2 =

i+ α2|β|2 iαβ

αβ i

 , M2M1 =

 i αβ

iαβ i+ α2|β|2



M1M2M1 =

−1 + iα2|β|2 2iαβ + α3|β|2β

iαβ i+ α2|β|2

 , M2M1M2 =

 i+ α2|β|2 iαβ

2iαβ + α3|β|2β −1 + iα2|β|2


Now, comparing the (1, 2) entries of M1M2 and M2M1 reveals that M1M2 = M2M1 ⇔ β = 0.

This proves (a).

Equating the (1, 1) entries of M1M2M1 and M2M1M2 gives us

i+ α2|β|2 = −1 + iα2|β|2 ⇔ 1 + i = (i− 1)α2|β|2 ⇔ |β|2 = 2

Thus |β|2 = 2 is a necessary condition to conclude M1M2M1 = M2M1M2. It will also be

sufficient if we can show |β|2 = 2 implies the offdiagonal entries are equal. So assume |β|2 = 2,

and let us equate the (1, 2) entries; equating the (2, 1) entries is similar.

iαβ = 2iαβ + α3|β|2β ⇔ i = 2i+ α2 · 2⇔ α2 = − i
2
,

which is true by the definition of α. Hence we conclude (b).
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CHAPTER 3. A SEQUENCE OF 3 GAUSSIAN LORENTZIAN

LATTICES

3.1 Preface

In this section, we study the reflection groups of three Gaussian Lorentzian lattices and

prove mostly similar results about them. First we study the lattice L = 2DG
4 ⊕H. We prove

that Ref(2DG
4 ⊕H) is generated by reflections in 8 roots which form an octogonal I→8 diagram.

The mirrors of these roots have a central point τ in CH5 which is equidistant from the mirrors,

and these mirrors are the closest ones to τ . The point τ is also the unique point fixed by the

induced action of the dihedral D8 group acting on the 8 mirrors. We also prove Ref(2DG
4 ⊕H)

has finite index in Aut(2DG
4 ⊕H).

We prove analogous results for DG
4 ⊕H and 3DG

4 ⊕H, but with 2 differences. For L := DG
4 ⊕

H, τ is no longer the unique fixed point of the graph automorphism group. For L := 3DG
4 ⊕H,

we do not prove that Ref(L) is generated by the mirrors closest to τ , although we present

strong empirical evidence that this is true.

Definition 3.1.1. Let p := 1 + i. We define DG
4 := {(x, y) ∈ G2 | x + y ≡ 0 mod p} as a

positive-definite G-lattice with hermitian form given by 〈(x1, x2), (y1, y2)〉 = x1y1+x2y2 . Define

the G-lattice H, called the hyperbolic cell, by H := G2 with hermitian form 〈(x1, x2), (y1, y2)〉 =[
x1 x2

]0 p

p 0


y1
y2

.
Throughout this chapter we will abuse notation and identify a point x ∈ Cn,1, |x|2 < 0 with

its image P(x) in CHn.

Let K be a G-lattice of rank m. We can forget the G structure on K to create a Z-lattice

of rank 2m, denoted by Kreal [CS], which we call the underlying Z-lattice of K. The points
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of Kreal are given by (Re z1,
1
i Im z1, . . . ,Re zm,

1
i Im zm) whenever (z1, . . . , zm) is in K. The

bilinear form on Kreal is simply the real part of the Hermitian form on K.

We recall now the definition of D4:

D4 := {(x1, . . . , x4) ∈ Z4 |
∑

xj ≡ 0 mod 2}

with bilinear form ((x1, . . . , x4), (y1, . . . , y4)) =
∑
xjyj .

Lemma 3.1.2. The underlying Z-lattice of DG
4 is D4.

Proof. Suppose (z1, z2) ∈ DG
4 , where zj := xj + iyj with xj , yj ∈ Z. Then p|(z1 + z2) ⇒

2|(pz1 + pz2) ⇒ 2|Re (pz1 + pz2) ⇒ 2|(x1 + y1 + x2 + y2) ⇒ (x1, y1, x2, y2) ∈ D4. Conversely,

suppose (x1, y1, x2, y2) ∈ D4, and set zj := xj + iyj . We have (x1, y1, x2, y2) ∈ D4 ⇒ 2|(x1 +

y1 + x2 + y2), 2|(−x1 + y1 − x2 + y2)⇒ 2|p(z1 + z2)⇒ p|(z1 + z2)⇒ (z1, z2) ∈ DG
4 . Finally, it

is immediately checked that the bilinear form on D4 is the real part of the hermitian form on

DG
4 .

Lemma 3.1.3. Both H and DG
4 are p-modular lattices.

Proof. H∨ ⊆ 1
pH: Let v = (a, b) ∈ H∨. Then 〈(0, 1), v〉 = r1 ∈ G, so pa = r1 ⇒ a = r1

p .

Similarly we get b = r2
p for some r2 ∈ G, and thus v ∈ 1

pH.

1
pH ⊆ H

∨: Let v = ( r1p ,
r2
p ) ∈

1
pH. Choose any w = (a, b) ∈ H. Then 〈v, w〉 = p r2p a+p

r1
p b =

ir2a+ r1b ∈ G, so v ∈ H∨.

(DG
4 )

∨ ⊆ 1
pD

G
4 : Let v := (a, b) ∈ (DG

4 )
∨. Then 〈(p, 0), v〉 = r1 ∈ G ⇒ pa = r1 ⇒ a = r1

p .

Similarly b = r2
p . Furthermore, we have 〈(1, 1), v〉 = r1

p + r2
p ∈ G, so p|(r1 + r2). Therefore

(r1, r2) ∈ DG
4 so v ∈ 1

pD
G
4 .

1
pD

G
4 ⊆ (DG

4 )
∨: Let v = ( r1p ,

r2
p ) ∈

1
pD

G
4 . Choose any w = (a, b) ∈ DG

4 . Then 〈v, w〉 =
1
p(r1a+r2b) =

1
p [a(r1+r2)−r2(a−b)] =

1
p [a(r1+r2)−r2(a+b−2b)] = a( r1+r2p )−r2(a+bp −pb) ∈ G.

So v ∈ (DG
4 )

∨.

Corollary 3.1.4. Both H and D are even lattices.

Proof. Let L = H or D, and take any v ∈ L. Then by Lemma 3.1.3, p | |v|2, but then

|v|2 ∈ Z⇒ 2 | |v|2.
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Observe that the direct sum of p-modular (even) lattices is p-modular (even). The covering

radius of DG
4 is 1 [CS]; we can use the following Lemma 3.1.5 to get the covering radii of 2DG

4

and 3DG
4 .

Lemma 3.1.5. Suppose L and L′ are positive-definite lattices with respective covering radii r

and r′. Then the covering radius of L⊕ L′ is
√
r2 + (r′)2.

Proof. Let the underlying vector spaces of L and L′ be V and V ′, respectively. Denote the

covering radius of L⊕ L′ by r′′.

(r′′)2 ≤ r2 + (r′)2: Let (v, v′) ∈ V ⊕ V ′. There are l ∈ L, l′ ∈ L′ with |v − l|2 ≤ r2 and

|v′ − l′|2 ≤ (r′)2. So we have |(v, v′)− (l, l′)|2 ≤ r2 + (r′)2, so (r′′)2 ≤ r2 + (r′)2 as desired.

(r′′)2 ≥ r2 + (r′)2: Take any ε > 0. There are v ∈ V and v′ ∈ V ′ with minl∈L |v − l|2 >

r2 − ε/2 and minl′∈L′ |v′ − l′|2 > (r′)2 − ε/2. Then

min
(l,l′)∈L⊕L′

|(v, v′)− (l, l′)|2 = min
(l,l′)∈L⊕L′

(|v − l|2 + |v′ − l′|2) =

min
l∈L
|v − l|2 + min

l′∈L′
|v′ − l′|2 > r2 + (r′)2 − ε.

The conclusion follows.

3.2 The Lattice L = 2DG
4 ⊕H

3.2.1. The Root Diagram of L. Let roots s0, . . . , s7 ∈ L be as follows:

s0 = (0, 0, 0, p,−1, 0)

s1 = (0, 0, 0, 0,−1,−1)

s2 = (0, p, 0, 0,−1, 0)

s3 = (−1, 1, 0, 0, 0, 0)

s4 = (−p, 0, 0, 0, 0, 0)

s5 = (−1,−1,−1,−1,−i,−1)
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s6 = (0, 0,−p, 0, 0, 0)

s7 = (0, 0,−1, 1, 0, 0)

These sj ’s give the octogonal I→8 diagram shown below, where an arrow goes from sk to sl

whenever 〈sk, sl〉 = p, and no edge means 〈sk, sl〉 = 0.

Figure 3.1 The root diagram I→8

Consider the singular G-lattice L0, with basis s′0, . . . , s
′
7 whose products are given by I→8 .

Because Aut(I→8 ) permutes these basis elements, it induces a subgroup of Aut(L0). Then

Lemmas 2.4.4 and 2.4.5 tell us Aut(I→8 ) induces a subgroup of Aut(L). There is a σ ∈ Aut(L)

defined by s2k 7→ is1−2k, s1−2k 7→ s2k (where subscripts are taken mod 8). This σ does not act

on the roots s0, . . . , s7 in L. However, Pσ does act on their images in P(L⊗ C), and therefore

acts on their mirrors in CH5. Note that σ2(x) = ix, so (Pσ)2 = 1. Thus Q := 〈Aut(I→8 ), σ〉 has

a D8 action on the set of mirrors {s⊥j }. (The group D8 here is the octogonal dihedral group.)
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3.2.2. The Central Point of I→8 in CH5. Set τ :=
∑

j odd sj + (−e−πi/4)
∑

j even sj , and

note |τ |2 < 0. We see that Aut(I→8 ) fixes τ in L ⊗ C, and σ(τ) = −eπi/4τ . This tells us that

the action of Q on CH5 fixes τ ’s image there. If we denote the hyperbolic distance metric by

d(·, ·), the I→8 diagram shows that c := d(τ, s⊥j ) is constant for all j. This is because Q fixes τ

and acts transitively on the mirrors {s⊥j }.

Theorem 3.2.3. The s⊥j ’s are the closest mirrors in CH5 to τ .

Proof. We describe the algorithm which was implemented as computer code to show the desired

result. Suppose r := (r1, . . . , r6) is a root of L with d(τ, r⊥) ≤ c. By (2.5) we have for all j

d(r⊥, s⊥j ) ≤ 2c. (3.1)

If r⊥ and s⊥j don’t intersect in CH5, then this and (2.3) give us |〈r, sj〉| ≤ 2 cosh 2c <
√
5. If

r⊥ and s⊥j do intersect, then span{r, sj} must be positive-definite. This implies |〈r, sj〉| ≤ 2, so

|〈r, sj〉| <
√
5 holds in this case too.

Note that s3, s4, s6, s7 ∈ 2DG
4 as their last 2 coordinates are 0, so if we denote by v̂ the

vector consisting of the first 4 coordinates (the “2DG
4 ⊗C part”) of a vector v ∈ L⊗C, we get

|〈r̂, ŝj〉| <
√
5 (3.2)

for j = 3, 4, 6, 7. This can be written in matrix form as

r̂∗ = R−1



a1

a2

a3

a4


where R is the invertible 4x4 matrix whose rows are ŝ3, ŝ4, ŝ6, ŝ7 in that order, and the

ai ∈ G satisfy |ai| <
√
5. There are only finitely many possibilities for such ai’s, so the first

4 coordinates of r belong to a finite set, which can be found by iterating through the possible

ai’s. To determine the last 2 coordinates r5 and r6 of r, we proceed as follows. Define w ∈ C5,1

as w := (0(4); 1,−1), where 〈w,w〉 < 0 so w ∈ CH5. Either r⊥ and s⊥1 intersect so |〈r, s1〉| ≤ 2,
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or from j = 1 in (3.1) we get |pr5 + p̄r6| ≤ 2 cosh 2c. In either case we have

|r5 − ir6| ≤
√
2 cosh 2c. (3.3)

From (2.4) we get d(r⊥, w) ≤ d(r⊥, τ) + d(τ, w) ≤ c + e, where e := d(τ, w). If w ∈ r⊥ then

〈w, r〉 = 0. Otherwise (2.2) yields |〈w, r〉| = |−pr5 + p̄r6| ≤ 2 sinh (c+ e), so in both cases we

have

|−r5 − ir6| ≤
√
2 sinh (c+ e) (3.4)

From (3.3) and (3.4) we thus obtain

2 |r5| = |2r5| = |(r5 − ir6)− (−r5 − ir6)| ≤
√
2(cosh 2c+ sinh (c+ e))

hence

|r5| ≤
cosh 2c+ sinh (c+ e)√

2
<
√
5

and similarly we see |r6| satisfies the same inequality. So we have that r5 and r6 belong to a

finite set as well, and altogether there are a finite number of choices for the coordinates of a

root r whose mirror is at least as close to τ as the mirrors of the sj ’s, and these choices can be

checked iteratively. In this way we can verify that s⊥0 , . . . , s
⊥
7 are precisely the closest mirrors

to τ .

Theorem 3.2.4. τ is the unique point in CH5 fixed by the group Q := 〈Aut(I→8 ), σ〉.

Proof. Consider ψ ∈ Aut(I→8 ) which acts by reflecting the diagram about the line through s1

and s5. In cyclic notation, it permutes the vertices in I→8 according to

ψ := (s0 s2)(s3 s7)(s4 s6).
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Take the ordered basis B := (s0, s1, s2, s3, s6, s7) of L ⊗ C. The matrices Mσ,Mψ of σ, ψ

with respect to B are given by

Mσ =



0 1 0 0 0 0

i 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 i 0

0 0 0 1 0 0

0 0 i 0 0 0


Mψ =



0 0 1 0 1 0

0 1 0 0 0 0

1 0 0 0 −1 0

0 0 0 0 1 + i 1

0 0 0 0 1 0

0 0 0 1 −1− i 0


A computer calculation reveals that Mσ and Mψ have exactly two common eigenvectors (up to

scalar multiple), one of which is τ . Of the two, only τ has negative norm and thus is in CH5.

Therefore τ is the only point in CH5 fixed by the group Q.

3.2.5. We define ρ := (0; 0, 1) ∈ L. Then for v = (λ; a, b) ∈ L⊗C set ht(v) := |〈v, ρ〉|/
√
2 = |a|.

We call this the height of v. Note that this is related to the “distance” from P(v) to the cusp

P(ρ), which is tantamount to the distance from P(v) to a horoball Bρ(k). (See Section 2.2.10

for more information.) Reducing the height of v, as we have defined it here, is essentially the

same as reducing the distance from P(v) to Bρ(k).

Lemma 3.2.6. Let y := (l; 1, p−1(α− l2/2)) be a multiple of a root in L⊗ C with height > 1.

Then there is a root r in L of height 1 such that we can reduce the height of y to a smaller

height, by reflecting it in an i-reflection of r.

Proof. We have |y|2 ∈ (0, 2), so Reα ∈ (0, 1). Set r := (λ; 1, p−1(1 − λ2/2 + β + n)) where

β ∈ ImC is chosen so that p−1(1−λ2/2+β) ∈ G. We will choose λ ∈ 2DG
4 and n ∈ 〈p〉∩ImG =

2 ImG later. We have

〈r, y〉 = pp−1(α− l2/2) + pp−1(1− λ2/2 + β + n) + 〈λ, l〉

= α− l2/2 + 1− λ2/2− β − n+ 〈λ, l〉

= 2a+ 2b
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where 2a := 1+Reα− 1
2 |l − λ|

2 ∈ R and 2b := Imα+Im 〈λ, l〉−β−n ∈ ImC. So ht(φir(y)) =

1− (1− i)(a+ b). We want |1− (1− i)(a+ b)|2 < 1, i.e.

∣∣∣∣12 − a
∣∣∣∣2 + ∣∣∣∣12 i− b

∣∣∣∣2 < 1

2
(3.5)

As noted above, Reα ∈ (0, 1). Thus we may choose λ so that a ∈ (12−
1
4c

2, 1) = (0, 1) where

c =
√
2 is the covering radius of 2DG

4 . This implies
∣∣1
2 − a

∣∣2 < 1
4 . Next, observe i− 2b ∈ ImC

and we may choose n ∈ 2 ImG so that |i− 2b| ≤ 1, since the covering radius of 2 ImG is 1.

Therefore we may choose n so that
∣∣1
2 i− b

∣∣2 ≤ 1
4 , and (3.5) follows.

Theorem 3.2.7. The reflections in roots of height 0 and 1 in L generate Ref(L).

Proof. Let r be a root of L. By Lemma 3.2.6, if r has height > 1, it can be reflected to a

root with strictly lower height; since the set of possible heights for lattice vectors is Z≥0, by

induction r can be reflected to a root of height 0 or 1. This shows that every reflection is

conjugate, via reflections in roots of height 1, to a reflection in a root of height 0 or 1, which

proves the theorem.

3.2.8. The Heisenberg group of Translations on L. Define the group of translations T

of L to be the subgroup of Aut(L) which fixes ρ and acts trivially on ρ⊥/〈ρ〉.

Theorem 3.2.9. We have

T = {Tλ,z | λ ∈ 2DG
4 , z = (|λ|2/2 + 2k)i for some k ∈ Z}

(note this is equivalent to T = {Tλ,z | λ ∈ 2DG
4 , z ∈ i · (2Z+ |λ|2

2 (mod 2))})

where Tλ,z : L −→ L acts via

Tλ,z(ρ) = ρ

Tλ,z(0; 1, 0) = (λ; 1,
1

p
(−|λ|2/2 + z))

Tλ,z(x; 0, 0) = (x; 0,−1

p
〈λ, x〉)
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Proof. Let ψ ∈ T, and choose an arbitrary x ∈ 2DG
4 . Because ψ preserves 〈·, ·〉, in particular

it preserves the products and norms of ρ, (0; 1, 0), and (x; 0, 0). By the definition of T we

have ψ : ρ 7→ ρ. We can see that ρ⊥ = {(x; 0, b) | x ∈ 2DG
4 , b ∈ G}. Then because ψ acts

trivially on ρ⊥/〈ρ〉 we know ψ : (x; 0, 0) 7→ (x; 0, b1) for some b1 ∈ G. Finally, let us write

ψ : (0; 1, 0) 7→ (λ; a, b2) for some λ ∈ 2DG
4 and a, b2 ∈ G.

Then we have

p = 〈(0; 1, 0), ρ〉 = 〈(λ; a, b), ρ〉 = pa⇒ a = 1

Also,

0 = 〈(0; 1, 0), (x; 0, 0)〉 = 〈(λ, a, b2), (x; 0, b1)〉 = 〈λ, x〉+ pab1 ⇒ b1 = −
1

p
〈λ, x〉

Note that b1 ∈ G because 2DG
4 is p-modular. Furthermore,

0 = |(0; 1, 0)|2 = |(λ; a, b2)|2 = |λ|2 + 2Re pab2 = |λ|2 + 2Re pb2 ⇒

Re pb2 = −|λ|2/2⇒ pb2 = −|λ|2/2 + βi for some β ∈ Z.

So b2 =
1
p(−|λ|

2/2 + βi). For b2 to be in G it is necessary and sufficient that β = −|λ|2/2 + 2l

for some l ∈ Z. Because |λ|2 is even, this is equivalent to β = |λ|2/2+2k for some k ∈ Z. Thus

ψ is of the form Tλ,z for a λ ∈ 2DG
4 and with z = (|λ|2/2 + 2k)i for some k ∈ Z.

Conversely, take any such Tλ,z. That Tλ,z fixes ρ and acts trivially on ρ⊥/〈ρ〉 is immediate.

Because 2DG
4 is even and p-modular we see Tλ,z preserves L. Now choose any x ∈ 2DG

4 . To see

Tλ,z preserves 〈·, ·〉, it suffices to check it preserves products between and norms of ρ, (0; 1, 0),

and (x; 0, 0). This is a straightforward calculation.

Lemma 3.2.10. The following identities hold in T:

Tλ1,z1Tλ2,z2 = Tλ1+λ2,z1+z2+Im 〈λ2,λ1〉 (3.6)

Tλ,zT0,0 = T0,0Tλ,z = Tλ,z (3.7)

T−1
λ,z = T−λ,−z (3.8)

Tλ1,z1Tλ2,z2T
−1
λ1,z1

T−1
λ2,z2

= T0,2 Im 〈λ2,λ1〉 (3.9)
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Proof. We prove identity (3.6), from which the others follow. To do this, we show that the LHS

and RHS of (3.6) have the same action on ρ, (0; 1, 0), and (x; 0, 0), where x ∈ 2DG
4 is arbitrary.

First we calculate:

Tλ1+λ2,z1+z2+Im 〈λ2,λ1〉(ρ) = ρ

Tλ1+λ2,z1+z2+Im 〈λ2,λ1〉(0; 1, 0) = (λ1 + λ2; 1,
1

p
(−|λ1 + λ2|2/2 + z1 + z2 + Im 〈λ2, λ1〉))

Tλ1+λ2,z1+z2+Im 〈λ2,λ1〉(x; 0, 0) = (x; 0,−1

p
〈λ1 + λ2, x〉)

We also have

Tλ2,z2(ρ) = ρ

Tλ2,z2(0; 1, 0) = (λ2, 1;
1

p
(−|λ2|2/2 + z2))

Tλ2,z2(x; 0, 0) = (x; 0,−1

p
〈λ2, x〉)

and therefore

Tλ1,z1(Tλ2,z2(ρ)) = ρ

Tλ1,z1(Tλ2,z2(0; 1, 0)) = (λ2, 0;−
1

p
〈λ1, λ2〉) + (λ1; 1,

1

p
(−|λ1|2/2 + z1)) + (0; 0,

1

p
(−|λ2|2/2 + z2))

= (λ1 + λ2; 1,
1

p
(−|λ1|2/2− |λ2|2/2− 〈λ1, λ2〉+ z1 + z2)).

This last expression is equal to

(λ1 + λ2; 1,
1

p
(−1

2
(|λ1|2 + |λ2|2 + 2Re 〈λ1, λ2〉)− Im 〈λ1, λ2〉+ z1 + z2))

= (λ1 + λ2; 1,
1

p
(−|λ1 + λ2|2/2 + z1 + z2 + Im 〈λ2, λ1〉)).

Finally,

Tλ1,z1(Tλ2,z2(x; 0, 0)) = (x; 0,−1

p
〈λ1, x〉) + (0; 0,−1

p
〈λ2, x〉)

= (x; 0,−1

p
〈λ1 + λ2, x〉).

Hence we see the actions are the same, as desired.

Note: In what follows up through Theorem 3.2.13, where appropriate we will implicitly be

considering roots to be defined “up to units.” E.g., Lemma 3.2.11 below is really a statement
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about T ’s action on the equivalence classes of height-1 roots defined up to a unit multiple.

This doesn’t pose a problem, because the purpose is to prove Theorem 3.2.13, in which we are

considering reflections in a set of roots, and thus unit multiples don’t change the reflections so

determined.

Lemma 3.2.11. The group T acts freely and transitively on the set of height-1 roots in L.

Proof. Let r1 be a height-1 root, and set δ := (0; 1, 1), which is another height-1 root. We know

r1 = (x; 1, 1p(1 − |x|
2/2 + βi)) for some x ∈ 2DG

4 and β ∈ Z. We also have β = 1 − |x|2
2 + 2k

some k ∈ Z. Now set z := (β + 1)i = (− |x|2
2 + 2(k + 1))i. It is immediate to check that Tx,z is

in T and maps δ 7→ r1. If r2 is another height-1 root, we have Tx2,z2T
−1
x1,z1(r1) = r2, for xj , zj

defined as above. Hence T acts transitively on the roots of height 1 in L.

To see T acts freely, calculate/observe that there is at most one Tλ,z ∈ T which maps a

given l1 ∈ L to another given l2 ∈ L.

Lemma 3.2.12. Let G be a group acting transitively and freely on a set X. Suppose H ≤ G,

and let {gα}α∈A be a complete set of right coset representatives for H\G. Then for any x ∈ X,

the union ∪α∈A{gα · x} is disjoint and is a complete set of orbit representatives for the action

of H on X.

Proof. Let x ∈ X be arbitrary. Because G acts transitively on X, and since {Hgα | α ∈ A}

partitions G, we see that {gα · x}α∈A contains representatives for each orbit of H’s action on

X. To show gα ·x and gβ ·x are in different H-orbits for α 6= β, choose α, β ∈ A with gα ·x and

gβ ·x in the same orbit of H. Then gα ·x = hgβ ·x for some h ∈ H. This gives h−1gαg
−1
β ·x = x,

so h−1gαg
−1
β ∈ StabG x; as G acts freely, this says that gα = hgβ. So gα and gβ are in the same

coset of H\G and thus α = β.

Theorem 3.2.13. Ref(L) is finitely generated.

Proof. Set m := dimG 2D
G
4 = 4. We proceed similarly to [Ba1]. Let r1 = (0; 1, 1), r2 = (0; 1, i).

A matrix calculation reveals that

Tλ,zφ
i
r1φ

i
r2T

−1
λ,z (φ

i
r1φ

i
r2)

−1 = Tpλ,i|λ|2 (3.10)
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for all Tλ,z ∈ T. If we choose λ1, . . . , λm to be a G-basis for 2DG
4 , we get λ1, . . . , λm, iλ1, . . . , iλm

as a Z-basis. We may also choose zj for each j such that Tλj ,zj and Tiλj ,zj are in T. It then

follows from (3.10) that reflections in T (r1) and T (r2) for these T ’s, together with φ
i
r1 and φir2 ,

generate a group that contains the group of translations

S := 〈Tpλ1,i|λ1|2 , . . . , Tpλm,i|λm|2 , Tpiλ1,i|λ1|2 , . . . , Tpiλm,i|λm|2〉.

By (3.6) we know that S has a translation Tpλ,z for every λ ∈ 2DG
4 . Now take any Tpλ,z and

Tpλ′,z′ in T. Let z′′ and z′′′ be such that Tp(λ+λ′),z′′ = Tpλ,zTpλ′,z′ and Tp(λ+λ′),z′′′ = Tpλ′,z′Tpλ,z.

Then (3.6) says that z′′ ≡ z′′′(mod 4). This tells us that for any fixed λ ∈ 2DG
4 , all Tpλ,z ∈ S

have z of the form (eλ + 4k)i, where k ∈ Z and eλ ∈ {0, 2} depends only on λ. Furthermore,

because we may choose λ1 and λ2 so that 〈λ1, λ2〉 = p, we get from (3.9) that {T0,4ki | k ∈ Z}

is contained in S. Altogether, we get that S contains

T′ := {Tpλ,i(eλ+4k) | λ ∈ 2DG
4 , k ∈ Z} ≤ T.

We now enumerate a (finite) complete set of coset representatives for T/T′, where there

may be some repetition of the represented cosets. Take any Tλ,z ∈ T. Observe that (2, 0, 0, 0)

and (2i, 0, 0, 0) (and all permutations of coordinates) are in p · 2DG
4 . Therefore we can find a

Tpx0,z0 ∈ T′ such that Tλ′,z′ := Tλ,z ·Tpx0,z0 = Tλ+px0,∗ has all coordinates of λ′ := (a′1, b
′
1, a

′
2, b

′
2)

in {0, 1, i, p}. Because λ′ ∈ 2DG
4 we have p|a′j + b′j . Thus the possible combinations for (a′j , b

′
j)

are (0, 0), (0, p), (p, 0), (p, p), (1, 1), (1, i), (i, 1), and (i, i). We next note that (u1p, u2p) ∈ p ·DG
4

for any units u1, u2 ∈ G∗. Hence we can find a Tpx1,z1 ∈ T′ such that Tλ′′,z′′ := Tλ′,z′ · Tpx1,z1

has λ′′ := (a′′1, b
′′
1, a

′′
2, b

′′
2) with the following properties: for each j independently, either a′′j = 0

and b′′j = 0 or p, or a′′j = 1 and b′′j = 1 or i. In summary, we can find an x ∈ 2DG
4 such that

Tλ′′,z′′ = Tλ,z · Tpx,i(ex+4k), where we may choose k ∈ Z so that z′′ ∈ {0, i, 2i, 3i}. Then the

following elements of T form a (possibly redundant) complete set of coset representatives for

T/T′:
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{Tλ′′,z′′ | λ′′ = (a′′1, b
′′
1, a

′′
2, b

′′
2), where the a′′j and b′′j are as above,

and z′′ ∈ {0, i, 2i, 3i}, z′′ = (|λ′′|2/2 + 2j)i for some j ∈ Z}.

Let T1, . . . , Tn be an enumeration of this set. Note that n = 2m+1, so [T : T′] ≤ n <∞.

Set λ′j := Tj(0; 1, 1) for each j. Then Lemma 3.2.12 and the fact that T acts freely and

transitively on the height-1 roots in L shows that ∪nj=1T′λ′j = {height-1 roots in L}. Because

AφrA
−1 = φAr (3.11)

for any A ∈ Aut(L), we deduce that T′ ∪ {φiλ′j}
n
j=1 generates all reflections in height-1 roots

of L. All such reflections are therefore generated by i-reflections in the following finite set of

roots: r1, r2, {Tλj ,zj (r1)}mj=1, {Tλj ,zj (r2)}mj=1, {Tiλj ,zj (r1)}mj=1, {Tiλj ,zj (r2)}mj=1, {λ′j}nj=1.

We now turn our attention to the roots of height 0, which have the form (x; 0, b), where x

is a root in 2DG
4 and b ∈ G is arbitrary. We first show that for each such x, the subset of the

height-0 roots Rx := {(x; 0, b) | b ∈ G} has exactly two orbits under T′.

Take any Tpλ,z ∈ T′ and any (x; 0, b) ∈ Rx. Because x is primitive (as it is a root) and 2DG
4

is p-modular, there is a λ ∈ 2DG
4 with 〈λ, x〉 = p. For this choice of λ we get Tpλ,z(x; 0, b) =

(x; 0, b − 1
p〈pλ, x〉) = (x; 0, b − p). Because [G : pG] = 2, we can set λ′ to be an appropriate

G-multiple of λ to get Tpλ′,z(x; 0, b) = (x; 0, 0) or (x; 0, 1), depending on b’s congruence class

mod pG. These are representatives of the two orbits.

Note that 2DG
4 has only finitely many roots. Then, as in the height-1 case above, we

can generate all reflections in height-0 roots of L with i-reflections in the following finite set

of roots: r1, r2, {Tλj ,zj (r1)}mj=1, {Tλj ,zj (r2)}mj=1, {Tiλj ,zj (r1)}mj=1, {Tiλj ,zj (r2)}mj=1, {(x; 0, 0) | x ∈

2DG
4 is a root}, {(x; 0, 1) | x ∈ 2DG

4 is a root}.

Theorem 3.2.14. Ref(L) is generated by reflections in the si’s.

Proof. This result can be verified by computer program. The proof of theorem 3.2.13 provides

a finite set of roots {q1, q2, . . . , qN} whose reflections generate Ref(L). We demonstrate that

the qj ’s can all be reflected, by reflections in the sj ’s, into {sj}. The operative technique is
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another height reduction, where this time height is measured with respect to the central point

τ . The basic algorithm can be described as follows:

Start by setting the root q equal to one of the finite generating roots qk. Try reflecting q in

each of the φξmsj ’s in turn, until one of these gives d(φξmsj (q
⊥), τ) < d(q⊥, τ). If such an sj exists,

we set q ← φξmsj (q) and iterate. If no such sj exists, we check whether q⊥ = s⊥l for some l. If

so, we report success. Otherwise we report failure (this does not occur in practice).

We conclude the section for L = 2DG
4 by showing that [Aut(L) : Ref(L)] is finite.

Lemma 3.2.15. Let Ref1(L) be the group in Aut(L) generated by reflections in roots of height

1. Let Cus(L) be the set of primitive norm-0 vectors in L. Then Ref1(L) acts transitively

(up-to-units) on Cus(L).

Proof. Suppose y := (l; 1, p−1(α−l2/2)) ∈ L⊗C is a multiple of a lattice vector v ∈ Cus(L) with

non-0 height. Because |y|2 = 0 we must have Reα = 0. Set r := (λ; 1, p−1(1− λ2/2 + β + n))

where β ∈ ImC is chosen so that p−1(1− λ2/2 + β) ∈ G. The lattice vector λ ∈ 2DG
4 and n ∈

〈p〉∩ ImG = 2 ImG will be chosen later. We have 〈r, y〉 = 2a+2b, where 2a := 1− 1
2 |l−λ|

2 ∈ R

and 2b := Imα+ Im 〈λ, l〉 − β − n ∈ ImC, whence ht(φir(y)) = 1− (1− i)(a+ b).

Using the covering radius
√
2 of 2DG

4 we may choose λ so that a ∈ [0, 12 ]. Then
∣∣1
2 − a

∣∣2 ≤ 1
4 .

Next, observe i−2b ∈ ImC and we may choose n ∈ 2 ImG so that |i− 2b| ≤ 1, since the covering

radius of 2 ImG is 1, so
∣∣1
2 i− b

∣∣2 ≤ 1
4 , and we therefore can strictly decrease the height of y

and thus of v. It follows that after a finite number of reflections in Ref1(L), v can be brought

to a unit multiple of (0; 0, 1), and we see Ref1(L) acts transitively on Cus(L) up-to-units.

Theorem 3.2.16. The reflection group Ref(L) has finite index in Aut(L).

Proof. (A similar result is contained in [Al1].) Define ρ := (0; 0, 1), ρ′ := (0; 1, 0). Choose any

ψ ∈ Aut(L); by Lemma 3.2.15 there is an r ∈ Ref(L) such that rψρ = u · ρ for some u ∈ R∗.

Then we have 〈ρ′, ρ〉 = 〈rψρ′, u · ρ〉, so rψρ′ = (∗;u, ∗). It is clear that we may choose t ∈ T

with trψρ′ = u · ρ′, and since T fixes ρ, we also have trψρ = t(u · ρ) = u · ρ. Therefore k acts on

H via multiplication by u, and thus each such k is in a group K isomorphic to Aut(2DG
4 )×Z4,

which is finite.
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From the proof of Theorem 3.2.13 we know Ref(L) contains a subgroup T′ which has finite

index in T. Choose a finite set T of coset representatives of T′ in T, and let t = t0t
′ where t′ ∈ T′

and t0 ∈ T . Then ψ = r−1t′−1t−1
0 k with r−1t′−1 ∈ Ref(L). As ψ ∈ Aut(L) was arbitrary, this

says Aut(L) =
⋃
k∈K,t0∈T Ref(L)t−1

0 k. I.e., Ref(L) has finite index in Aut(L).
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3.3 The Lattice L = DG
4 ⊕H

3.3.1. The Root Diagram of L. Define the roots s1, . . . , s4 to be:

s1 = (0, 0,−1,−1)

s2 = (0, p,−1, 0)

s3 = (−1, 1, 0, 0)

s4 = (−p, 0, 0, 0)

Note that the sj ’s here are projections of corresponding “sj ’s” from the 2DG
4 ⊕H case above.

In particular, define the projection

f : 2DG
4 ⊕H → DG

4 ⊕H

f : (x1, x2, x3, x4, x5, x6) 7→ (x1, x2, x5, x6)

If we relabel each “sj” from the 2DG
4 ⊕H case as s′j , we have sj = f(s′j) for j = 1, 2, 3, 4.

These sj ’s form the root diagram I→4 which is a chain of four vertices with alternating arrow

directions.

Figure 3.2 The root diagram I→4

3.3.2. The Central Point of I→4 in CH3. Similarly to the 2DG
4 ⊕H case, define σ ∈ Aut(L)

via s2k 7→ is1−2k, s1−2k 7→ s2k, where subscripts are taken mod 4. The graph automorphism

group Aut(I→4 ) is trivial, and we can extend it by σ to get Q := 〈σ〉. Here Q has a Z2 action

on the mirrors s⊥j , which is not transitive. If, by analogy with the 2DG
4 ⊕ H case, we define

τ0 := (s1 + s3) + (−e−πi/4)(s2 + s4), we find |τ0|2 < 0 and τ0’s image in CH3 is fixed by Q.

However, τ0 is not equidistant from the s⊥j ’s this time. We will instead define our τ for the

DG
4 ⊕H case using a projection.
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Let τ ′ be the “τ” from the 2DG
4 ⊕ H case, and set τ = f(τ ′). Because the 3rd and 4th

coordinates of s′j are 0, for j = 1, 2, 3, 4, we see that |〈sj , τ〉| = |〈s′j , τ ′〉| is constant. Therefore

the mirrors in s1, s2, s3, and s4 are equidistant from τ . It can be verified using the method

given in the proof of Theorem 3.2.3 that these mirrors are precisely those closest to τ . More

specifically, because the 3rd and 4th coordinates of s3 and s4 are 0, we are able to obtain an

invertible matrix R from the first 2 coordinates of these roots. The rest of the calculations and

proof are entirely analogous. We also verify by computer that τ is fixed in CH3 by Q.

Theorem 3.3.3. Ref(L) is generated by reflections in the sj’s.

Proof. The proof is similar to that for 2DG
4 ⊕H. The covering radius of DG

4 is smaller than that

of 2DG
4 , which enables the height reduction arguments to go through essentially unmodified.

We also have a finite-index theorem, whose proof again goes through for the DG
4 case due

to covering-radius considerations.

Theorem 3.3.4. The reflection group Ref(L) has finite index in Aut(L).

3.4 The Lattice L = 3DG
4 ⊕H

3.4.1. The Root Diagram of L. The following roots in L:

s1 = (0, 0, 0, 0, 0, 0,−1,−1)

s2 = (−1, 1, 0, 0, 0, 0, 0, 0)

s3 = (0, 0,−1, 1, 0, 0, 0, 0)

s4 = (0, 0, 0, 0,−1, 1, 0, 0)

s5 = (0, 0,−1,−1,−1,−1,−i,−1)

s6 = (−1,−1, 0, 0,−1,−1,−i,−1)

s7 = (−1,−1,−1,−1, 0, 0,−i,−1)

s8 = (0, p, 0, p, 0, p, ip, p)
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s9 = (0, p, 0, 0, 0, 0,−1, 0)

s10 = (0, 0, 0, p, 0, 0,−1, 0)

s11 = (0, 0, 0, 0, 0, p,−1, 0)

s12 = (−p, 0, 0, 0, 0, 0, 0, 0)

s13 = (0, 0,−p, 0, 0, 0, 0, 0)

s14 = (0, 0, 0, 0,−p, 0, 0, 0)

Figure 3.3 The root diagram I→14

form the root diagram I→14 = Inc (P2(F2)), where an arrow goes from ri to rj whenever

〈ri, rj〉 = p, and no edge indicates 〈ri, rj〉 = 0. Inc (P2(F2)) is bipartite with parts corresponding

to the set of points and set of lines in P2(F2), which we will call the “points and lines of I→14 ,”
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defined such that 〈x, l〉 = p whenever x is a point incident with line l. We denote the set of

points by P and the set of lines by L. Define ΣP and ΣL to be the sum of the points and

sum of the lines, respectively. As in the case for 2DG
4 ⊕ H, Lemmas 2.4.4 and 2.4.5 imply

Aut(I→14 )
∼= PGL3(F2) induces a subgroup of Aut(L). Note that PGL3(F2) acts by permuting

P and by permuting L.

3.4.2. The Central Point of I→14 in CH7. Choose a line l of I→14 . Using the defining

properties of I→14 , we see that

wP := −pl +
∑
x∈l

x (3.12)

is perpendicular to the points, has norm −2, and satisfies 〈wP ,
∑

l∈L l〉 = 7p. Because there

is only one such vector, it follows that wP is independent of the choice of l. We also see that

P ∪ {wP} is a basis for V := L⊗ C.

Now we determine which points of V are common eigenvectors for PGL3(F2). Let P =

{x1, . . . , x7}, where increasing indices arrange the points in counterclockwise order around I→14 .

Let v ∈ V be such a common eigenvector. Then for each g ∈ PGL3(F2) we have g(v) = kgv

for some kg ∈ C. Write v =
∑7

j=1 cjxj + cPwP , where the c’s are in C. Since wP is fixed by

PGL3(F2), we have for any g that g(v) = kgv ⇒

7∑
j=1

cjg(xj) + cPwP =
7∑
j=1

kgcjxj + kgcPwP .

If cP 6= 0 this implies kg = 1, while if cP = 0 the terms involving wP vanish. In either case, we

get
7∑
j=1

cjg(xj) =

7∑
j=1

kgcjxj . (3.13)

The action of PGL3(F2) is 2-transitive on the points, so for any k 6= l there is a g0 ∈ PGL3(F2)

such that g0(xk) = xl and g0(xl) = xk. Using (3.13) with g = g0 and applying g0 to both sides

yields k2g0 = 1⇒ kg0 = ±1. This then tells us that for any k 6= l we have ck = ±cl. Now choose

g1 ∈ PGL3(F2) to be the automorphism of I→14 that rotates the points by 2π/7 clockwise, i.e.,

g1 maps xj 7→ xj+1 (where indices are taken mod 7). Then g71(v) = v ⇒ k7g1 = 1, so kg1 is a

7th root of unity. Then for k 6= l (3.13) implies ck = ξ7cl where ξ7 is a 7th root of unity. But

ck = ±cl, so we must have ck = cl. Thus the common eigenvectors of PGL3(F2) are given by
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W := span {ΣP , wP}, and these vectors are fixed by PGL3(F2). (Verify that ΣP and wP are

linearly independent.)

Now consider the σ ∈ Aut(L) which acts as a “reflection” about the central vertical line of

I→14 . For a point x and line l identified by this “reflection,” σ maps l 7→ x and x 7→ −il. Then

Q := 〈σ, PGL3(F2)〉 = 8 · PGL3(F2) acts as the graph automorphism group of the undirected

graph corresponding to I→14 . The group Q acts by automorphisms on L and therefore on L⊗C.

In particular Q acts on CH7.

If we apply σ to wP , we have

wL := −px+
∑
x∈l

l (3.14)

doesn’t depend on our choice of x. This says wL is fixed by PGL3(F2). We can then check that

wP and wL are linearly independent, soW = span {wP , wL} is the 2-dimensional subspace fixed

by PGL3(F2). We have the signature of W is (1, 1). Also, σ(wP) = −iwL and σ(wL) = wP ,

whence Q stabilizes W and has a unique fixed point in CH7. We can see that PGL3(F2) also

fixes span {ΣP ,ΣL} while similarly σ(ΣP) = −iΣL and σ(ΣL) = ΣP . Thus we can calculate

the unique fixed-point of the action of Q on CH7, which is given by the image of ΣP − ξΣL or

wP − ξwL, where ξ := e−
π
4
i. We call this fixed vector the Weyl vector:

τ = (ΣP − ξΣL)/14 (3.15)

We note some of the products between the special vectors that we need later: Let (τ1, · · · , τ14) :=

(x1, · · · , x7,−ξl1, · · · ,−ξl7), where the xj ’s are the points and the lj ’s are the lines of I→14 . We

have 〈τs, τt〉 is equal to −
√
2 or 0 according to whether the two nodes are joined or not joined

in the diagram I→14 . We have, for s = 1, · · · , 14,

〈τ, τs〉 = |τ |2 = −1/(2 + 3
√
2) (3.16)

From (3.12) and (3.14) we get

|wP |2 = |wL|2 = −2 and 〈τ, wP〉 = 〈τ,−ξwL〉 = −
√
2/2 (3.17)
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We use the Weyl vector τ to define the height of a root r as

ht(r) := |〈τ, r〉|/|τ |2 (3.18)

Our definition of “height” here is tantamount to the distance of r⊥ from τ in CH7.

Proposition 3.4.3. The 14 roots of the diagram I→14 are the only roots (up to units) having

the minimum height 1.

Proof. Let r be a root of the lattice L with ht(L) = |〈τ, r〉|/|τ |2 ≤ 1. We want to prove that r

is a unit multiple of one of the 14 roots of I→14 .

Let x be a point in I→14 . Either |〈x, r〉| ≤ 2, or using the triangle inequality d(r⊥, x⊥) ≤

d(r⊥, τ) + d(x⊥, τ) along with the distance formulae (2.2) and (2.3) above we get

|〈x, r〉| ≤ 2 cosh (2 sinh−1 (|τ |/
√
2)) ≈ 2.32

So we must have |〈x, r〉|2 equal to 0, 2, or 4.

Similarly from d(r⊥, wP) ≤ d(r⊥, τ) + d(wP , τ), (2.1) and (2.2) we get

|〈wP , r〉| ≤ 2 sinh (sinh−1 (|τ |/
√
2) + cosh−1 (1/(2|τ |))) ≈ 2.26

It follows that |〈wP , r〉|2 is equal to 0, 2, or 4.

We can write

r =
∑
x∈P

x〈x, r〉/2− wP〈wP , r〉/2 (3.19)

and taking the product with r on both sides of (3.19) we get

2 =
∑
x∈P
|〈x, r〉|2/2− |〈wP , r〉|2/2 (3.20)

There are only a few cases to consider. Multiplying r by a unit, we may assume that 〈wP , r〉

is either 0, p, or 2. In the following let u1, u2, etc. denote units in G∗ and x1, x2, etc. denote

points of I→14 .

If 〈wP , r〉 = 0, from (3.20) we get
∑
|〈xs, r〉|2 = 4. Then the unordered tuple (〈x1, r〉, · · · , 〈x7, r〉)

is equal to (2u1, 0
6) or (u1p, u2p, 0

5). So either r is a unit multiple of xs (in which case it has

height equal to one) or r = (u1px1 + u2px2)/2. Using diagram automorphisms (which are
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2-transitive on points of I→14 ) we can assume that x1 = s1 and x2 = s2 and then check that

there is no such root r.

If 〈wP , r〉 = p, then
∑
|〈xs, r〉|2 = 6; the unordered tuple (〈x1, r〉, · · · , 〈x7, r〉) is equal to

(2u1, u2p, 0
5) or (u1p, u2p, u3p, 0

4). In the first case we get r = 2u1/2x1 + u2p/2x2 − p/2wP .

Taking product with τ and using 〈τ, wP〉/|τ |2 = 3+
√
2 we get 〈τ, r〉/|τ |2 = u1+u2/p−(3+

√
2)/p

which clearly has norm greater than one.

In the second case we get r =
∑3

s=1 usp/2xs− p/2wP which implies 〈τ, r〉/|τ |2 = (u1+u2+

u3 − 3−
√
2)/p. Again this quantity has norm at least one. We now show that the only way it

can be equal to one is if r is one of l1, · · · , l7.

The only way one can have ht(r) = 1 in the above paragraph is if r has product p with

three of the points x1, x2, x3 and is orthogonal to the others. If x1, x2, x3 do not all lie on a

line then there is a line l that avoids all these three points. Taking product with r in equation

(3.12) gives p = −p〈l, r〉, contradicting L = pL∨. So x1, x2, x3 are points on a line l1. It follows

that r and l1 have the same product with each element of P and with wP . So r equals l1.

If 〈wP , r〉 = 2, and
∑
|〈xs, r〉|2 = 8, the unordered tuple (〈x1, r〉, · · · , 〈x7, r〉) is equal to

(2u1p, 0
6), (2u1, 2u2, 0

5), (2u1, u2p, u3p, 0
4), or (u1p, · · · , u4p, 03). Using a similar calculation as

above, we get 〈τ, r〉/|τ |2 is equal to (u1p−3−
√
2), (u1+u2−3−

√
2), (u1+u2/p+u3/p−3−

√
2),

or ((u1 + · · ·+ u4)/p− 3−
√
2) respectively. Again each of these quantities are clearly seen to

have norm strictly bigger than one.

Theorem 3.4.4. The reflection group Ref(L) has finite index in Aut(L).

Proof. Although 3DG
4 has a larger covering radius than 2DG

4 , it is still small enough for the

arguments to work as in the 2DG
4 case.

Theorem 3.4.5. (Conjecture.) Ref(L) is generated by reflections in the si’s.

Here, the author was unable to show that reflections in height-0 and height-1 roots generate

Ref(L). The covering radius of 3DG
4 is too big for the arguments which worked before to get

the needed height reduction. The author attempted to show Ref(L) is generated by reflections

in roots of height
√
2, in addition to reflections in height-0 and height-1 roots, but without
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success. However, there is considerable experimental evidence that the conjecture is true. Over

100,000 roots with large coordinates (on the order of 1000 for the real and imaginary parts)

were generated, and all could be reflected into {sj} using the reflections in the sj ’s.
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CHAPTER 4. FUTURE DIRECTIONS

4.1 Finishing the 3DG
4 ⊕H Case

Proving the 14 diagram mirrors generate the reflection group of 3DG
4 ⊕ H is an obvious

direction for further research. As noted earlier, the experimental evidence for this conjecture

is quite strong. The major sticking point seems to be the height reduction argument relative

to a cusp. Here the argument used in the other examples fails because the covering radius of

3DG
4 is too big.

But there is hope that a modified version of the height-reduction argument may work using

the mirrors of height 0, 1, and
√
2 around the cusp. This could involve covering the vector

space underlying 3DG
4 using two kinds of balls centered around two sets of points related to the

lattice. A similar idea has been used to prove Theorem 6.2 of [Al1].

4.2 Fundamental Group of the Discriminant Complement

The discriminant complement of a Lorentzian lattice L is its hyperbolic space CHn minus

the mirrors of L’s roots, quotiented by L’s reflection group. It would be interesting to study the

fundamental group π1 of the discriminant complement for the three main lattices considered in

this thesis, similarly to [AB1] [AB2]. In particular, to investigate whether the loops correspond-

ing to the mirrors in S generate π1, and whether these loops braid and commute according to

the diagram for S. This holds in the case of real Weyl groups, where the fundamental group of

the discriminant complement is known to be an Artin group. A similar result was obtained by

D. Bessis for finite complex reflection groups [Be2]. Another example is furnished by a fourteen

dimensional Lorentzian lattice over the Eisenstein integers [Ba3] [AB1] [AB2]. It is conjectured
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in [Al3] that a quotient of the fundamental group of this lattice’s discriminant complement

is isomorphic to the bimonster group, the wreath product of the monster sporadic group with

Z2.

4.3 Reflection Groups of Other Lattices

Finding more examples of similar phenomena would be significant. Specifically, the author

studied the reflection group of the lattice L := EG
8 ⊕H. This example appears to be challenging,

and the root diagram of the generating roots may be significantly more complicated than the

prior considered cases. The author searched without success for such a root diagram on 6

vertices. Once it appears feasible, the entire sequence of lattices EG
8 ⊕ H, 2EG

8 ⊕ H, and

3EG
8 ⊕H could be studied. The last lattice here is particularly interesting, as it is isomorphic

to ΛG ⊕ H, where ΛG is the Gaussian Leech lattice. There are a couple of other promising

examples where the root diagram happens to be the Petersen graph and the 1-complex of the

cube.

Also, it would be good to verify that the believed root diagrams do exist for the lattices

EH
8 ⊕H and 2EH

8 ⊕H. Furthermore, Dr. Tathagata Basak has found a hexagonal root diagram

for the E-lattice 2DE
4 ⊕H. This picture could be completed by studying DE

4 ⊕H and 3DE
4 ⊕H.
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 APPENDIX COMPUTER PROGRAMS

We collect here the computer programs used to verify Theorems 3.2.3 and 3.2.14, and their

analogs for the DG
4 ⊕ H case. They are written in the PARI/GP programming language,

which is freely available from https://pari.math.u-bordeaux.fr/. Documentary comments are

included within the listings.

https://pari.math.u-bordeaux.fr/
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\\**************************************************************

\\ Name : DiagramMirrorsClosest2D4+H.gp

\\ Purpose : This program applies to the case L := 2D_4+H. It

\\ shows that the closest mirrors to the point tau in

\\ hyperbolic space CH^5 are precisely the 8 diagram

\\ mirrors.

p = 1 + I;

s = vector(8);

\\ Our diagram roots.

s[1] = [ 0, 0, 0, 0, -1, -1];

s[2] = [ 0, p, 0, 0, -1, 0];

s[3] = [ -1, 1, 0, 0, 0, 0];

s[4] = [ -p, 0, 0, 0, 0, 0];

s[5] = [ -1, -1, -1, -1, -I, -1];

s[6] = [ 0, 0, -p, 0, 0, 0];

s[7] = [ 0, 0, -1, 1, 0, 0];

s[8] = [ 0, 0, 0, p, -1, 0];

\\ Determines whether two inputs are equal up to

\\ a unit multiple.

equal_upto_units(v1, v2)=

{

my(units = [[1, -1], [I, -I]]);

for( i = 1, 2,

for ( j = 1, 2,

if( v1 == units[i][j]*v2,

return(true) )));

return(false);

}

\\ Is the input complex number a Gaussian integer

is_gaussian_integer(z)=

{

if( ( round(real(z)) == real(z) ) &&

( round(imag(z)) == imag(z) ),

return(true), return(false));

}

\\ Is our vector in the lattice D_4

is_in_D_4(v)=

{
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for( i = 1, 2,

if( (is_gaussian_integer(v[i]) == false),

return(false) ));

if( is_gaussian_integer((v[1]+v[2])/p) == false,

return(false) );

return(true);

}

\\ The product of two vectors in 2D_4+H

ip(x,y)=

{

return( sum(i = 1, 4, conj(x[i])*y[i])

+ p*y[5]*conj(x[6]) + conj(p)*conj(x[5])*y[6] );

}

\\ Determine whether a give root is equal to one of the

\\ diagram roots, up to units

is_among_8_roots(r_1)=

{

for(i = 1, 8,

if(equal_upto_units(r_1, s[i]),

return( true );

);

);

return( false );

}

\\ Try the various a_j possibilities described in Theorem 3.2.3.

\\ If this gives a root r whose mirror is at least as close to

\\ tau as one of the diagram mirrors, report r as new.

main()=

{

root_list = listcreate(100);

tau = [1.00000000000000, 2.41421356237309, 1.00000000000000,

2.41421356237309, -0.707106781186548 + 4.12132034355964*I,

3.41421356237309];

R = [-1, 1, 0, 0;

-p, 0, 0, 0;

0, 0, -p, 0;

0, 0, -1, 1];

R_inv = R^(-1);
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gi = List( [

0,

1,

-1,

I,

-I,

1 + I,

1 - I,

-1 + I,

-1 - I,

2,

-2,

2*I,

-2*I

] );

const = abs(ip(s[1], tau));

roots_found = 0;

new_roots_found = 0;

for( i = 1, 13,

for( j = 1, 13,

for( k = 1, 13,

for( l = 1, 13,

a_vec = [gi[i], gi[j], gi[k], gi[l]];

r_hat_conj = (R_inv*(a_vec~))~;

if( (is_in_D_4(r_hat_conj) == true),

r_hat = conj(r_hat_conj);

for( m = 1, 13,

for( n = 1, 13,

r = [r_hat[1], r_hat[2], r_hat[3], r_hat[4],

gi[m], gi[n]];

if( (abs(ip(r, r) - 2) < 0.0001) &&

(abs(ip(r, tau)) - const < 0.0001),

print("=+=+=+=+=+=+=+=+=+=+=+=+=+=+");

roots_found = roots_found + 1;

print(r);

print(abs(ip(r, tau)));

if(is_among_8_roots(r) == true,

print("r is already among 8 diagram roots.");

);

if(is_among_8_roots(r) == false,

print("r is NOT in diagram!");

new_roots_found = new_roots_found+1;

);

);
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);

);

);

);

);

);

);

print("Done!");

print("Number of roots found = ", roots_found);

print("Number of roots we found NOT in diagram = ",

new_roots_found);

}
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\\**************************************************************

\\ Name : DiagramMirrorsClosestD4+H.gp

\\ Purpose : This program applies to the case L := D_4+H. It

\\ shows that the closest mirrors to the point tau in

\\ hyperbolic space CH^3 are precisely the 4 diagram

\\ mirrors.

p = 1 + I;

s = vector(4);

\\ Our diagram roots.

s[1] = [ 0, 0, -1, -1];

s[2] = [ 0, p, -1, 0];

s[3] = [ -1, 1, 0, 0];

s[4] = [ -p, 0, 0, 0];

\\ Determines whether two inputs are equal up to

\\ a unit multiple.

equal_upto_units(v1, v2)=

{

my(units = [[1, -1], [I, -I]]);

for( i = 1, 2,

for ( j = 1, 2,

if( v1 == units[i][j]*v2,

return(true) )));

return(false);

}

\\ Is the input complex number a Gaussian integer

is_gaussian_integer(z)=

{

if( ( round(real(z)) == real(z) ) &&

( round(imag(z)) == imag(z) ),

return(true), return(false));

}

\\ Is our vector in the lattice D_4

is_in_D_4(v)=

{

for( i = 1, 2,

if( (is_gaussian_integer(v[i]) == false),

return(false) ));

if( is_gaussian_integer((v[1]+v[2])/p) == false,
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return(false) );

return(true);

}

\\ The product of two vectors in D_4+H

ip(x,y)=

{

return( sum(i = 1, 2, conj(x[i])*y[i])

+ p*y[3]*conj(x[4]) + conj(p)*conj(x[3])*y[4] );

}

\\ Determine whether a given root is equal to one of the

\\ diagram roots, up to units

is_among_4_roots(r_1)=

{

for(i = 1, 4,

if(equal_upto_units(r_1, s[i]),

return( true );

);

);

return( false );

}

\\ Try the various a_j possibilities described in Theorem 3.2.3.

\\ If this gives a root r whose mirror is at least as close to

\\ tau as one of the diagram mirrors, report r as new.

main()=

{

root_list = listcreate(100);

tau = [1.00000000000000, 2.41421356237309,

-0.707106781186548 + 4.12132034355964*I, 3.41421356237309];

R = [-1, 1;

-p, 0];

R_inv = R^(-1);

gi = List( [

0,

1,

-1,

I,

-I,

1 + I,
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1 - I,

-1 + I,

-1 - I,

2,

-2,

2*I,

-2*I

] );

const = abs(ip(s[1], tau));

roots_found = 0;

new_roots_found = 0;

for( k = 1, 13,

for( l = 1, 13,

a_vec = [gi[k], gi[l]];

r_hat_conj = (R_inv*(a_vec~))~;

if( (is_in_D_4(r_hat_conj) == true),

r_hat = conj(r_hat_conj);

for( m = 1, 9,

for( n = 1, 9,

r = [r_hat[1], r_hat[2], gi[m], gi[n]];

if( (abs(ip(r, r) - 2) < 0.0001) &&

(abs(ip(r, tau)) - const < 0.0001),

print("=+=+=+=+=+=+=+=+=+=+=+=+=+=+");

roots_found = roots_found + 1;

print(r);

print(abs(ip(r, tau)));

if(is_among_4_roots(r) == true,

print("r is already among 4 diagram roots.");

);

if(is_among_4_roots(r) == false,

print("r is NOT in diagram!");

new_roots_found = new_roots_found+1;

);

);

);

);

);

);

);

print("Done!");

print("Number of roots found = ", roots_found);

print("Number of roots we found NOT in diagram = ",

new_roots_found);

}
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\\**************************************************************

\\ Name : DiagramMirrorsGenerate2D4+H.gp

\\ Purpose : This program applies to the case L := 2D4+H. It

\\ shows that the finite set of roots in the proof of

\\ Theorem 3.2.13 can all be reflected down to one of

\\ the 8 diagram roots, using reflections in the

\\ diagram roots.

p = 1 + I;

s = vector(8);

\\ Our diagram roots.

s[1] = [ 0, 0, 0, 0, -1, -1];

s[2] = [ 0, p, 0, 0, -1, 0];

s[3] = [ -1, 1, 0, 0, 0, 0];

s[4] = [ -p, 0, 0, 0, 0, 0];

s[5] = [ -1, -1, -1, -1, -I, -1];

s[6] = [ 0, 0, -p, 0, 0, 0];

s[7] = [ 0, 0, -1, 1, 0, 0];

s[8] = [ 0, 0, 0, p, -1, 0];

refl_units = vector(3);

\\ The units we can reflect in.

refl_units[1] = -1;

refl_units[2] = I;

refl_units[3] = -I;

\\ Determines whether two inputs are equal up to

\\ a unit multiple.

equal_upto_units(v1, v2)=

{

my(units = [[1, -1], [I, -I]]);

for( i = 1, 2,

for ( j = 1, 2,

if( v1 == units[i][j]*v2,

return(true) )));

return(false);

}

\\ The product of 2 vectors 2D_4+H tensor C.

ip_L(x,y)=

{

return( sum(i = 1, 4, conj(x[i])*y[i])



56

+ p*y[5]*conj(x[6]) + conj(p)*conj(x[5])*y[6] );

}

\\ The product of 2 vectors 2D_4 tensor C.

ip_Lambda(x,y)=

{

return( sum(i = 1, 4, conj(x[i])*y[i]) );

}

\\ Heisenberg group of translations T

T(lambda,z,v)=

{

my(x = [0, 0, 0, 0]);

x[1] = v[1]; x[2] = v[2]; x[3] = v[3]; x[4] = v[4];

my(r_v1 = [0, 0, 0, 0, 0, v[6]]);

my(r_v2 = v[5]*[lambda[1], lambda[2], lambda[3], lambda[4], 1,

1/conj(p)*(-ip_Lambda(lambda, lambda)/2 + z)]);

my(r_v3 = [x[1], x[2], x[3], x[4], 0,

-1/conj(p)*ip_Lambda(lambda, x)]);

return( r_v1 + r_v2 + r_v3 );

}

\\ Perform unit-reflection on y in mirror of x

reflect(x,unit,y)=

{

return( y - (1-unit)*(ip_L(x,y)/ip_L(x,x))*x );

}

\\ Determine whether a given root is equal to one of the

\\ diagram roots, up to units

is_among_8_roots(r_1)=

{

for(i = 1, 8,

if(equal_upto_units(r_1, s[i]),

return( true );

);

);

return( false );

}

\\ The main loop, that tries to reflect each of the finite set

\\ of roots from Theorem 3.2.13 down to one of the diagram

\\ roots, using reflections in the diagram roots.

main()=

{
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\\ Our central point

tau = [1.00000000000000, 2.41421356237309, 1.00000000000000,

2.41421356237309, -0.707106781186548 + 4.12132034355964*I,

3.41421356237309];

\\ Before the main loop, we build our list of roots that we

\\ want to reflect down to the diagram roots.

gen = listcreate(1000);

r = listcreate(2);

listput(r, [0, 0, 0, 0, 1, 1]);

listput(r, [0, 0, 0, 0, 1, I]);

x_0 = [0, 0, 0, 0, 1, 1];

\\ G-basis for 2D4

basis = listcreate(4);

listput(basis, [1, I, 0, 0]);

listput(basis, [p, 0, 0, 0]);

listput(basis, [0, 0, 1, I]);

listput(basis, [0, 0, p, 0]);

\\ Coset representatives for D_4 parts of coordinates

a = listcreate(2);

listput(a, 0);

listput(a, 1);

b_0 = listcreate(2);

listput(b_0, 0);

listput(b_0, 1 + I);

b_1 = listcreate(2);

listput(b_1, 1);

listput(b_1, I);

b = listcreate(2);

listput(b, b_0);

listput(b, b_1);

\\ Roots of D_4

D4rootsuptounit = listcreate(6);

listput(D4rootsuptounit, [p, 0]);

listput(D4rootsuptounit, [0, p]);

listput(D4rootsuptounit, [1, 1]);

listput(D4rootsuptounit, [1, -1]);

listput(D4rootsuptounit, [1, I]);
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listput(D4rootsuptounit, [1, -I]);

D4roots = listcreate(24);

for(i = 0, 3,

for( j = 1, 6,

listput(D4roots, (I^i)*D4rootsuptounit[j]);

);

);

\\ Add r_1, r_2 to list

for(i = 1, 2,

listput(gen, r[i]);

);

\\ Add T_{lambda, z}(r_j) to list

for(i = 0, 1,

for(j = 1, 2,

for(k = 1, 4,

lambda = basis[k] * (I^i);

z = ip_Lambda(lambda, lambda)/2*I;

listput(gen, T(lambda, z, r[j]));

);

);

);

\\ Add the lambda’ roots to the list

for( i = 1, 2,

for( j = 1, 2,

for( k = 1, 2,

for( l = 1, 2,

for( m = 0, 1,

lambda = [0, 0, 0, 0];

lambda[1] = a[i];

lambda[2] = b[i][j];

lambda[3] = a[k];

lambda[4] = b[k][l];

z = ((ip_Lambda(lambda, lambda)/2 + 2*m)%4)*I;

listput(gen, T(lambda, z, x_0));

);

);

);

);

);

\\ Add the (x; 0, 0) and (x; 0, 1) roots to list

for( i = 0, 1,

for( j = 1, 24,
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for( k = 0, 1,

ht0root = [0, 0, 0, 0, 0, 0];

ht0root[2*i + 1] = D4roots[j][1];

ht0root[2*i + 2] = D4roots[j][2];

ht0root[6] = k;

listput(gen, ht0root);

);

);

);

\\ Absolute value of the product that a diagram mirror

\\ has with tau.

abs_mirror_ip = abs(ip_L(s[1], tau));

num_got_there = 0;

gen_count = length(gen);

\\ Loop, trying to bring the mirrors in "gen" closer to

\\ the diagram mirrors, until we get there or time out.

for( i = 1, gen_count,

got_there = false;

r_1 = gen[i];

r_start = r_1;

for( j = 1, 1000000,

found_closer = false;

for( k = 1, 8,

for( l = 1, 3,

r_2 = reflect(s[k],refl_units[l],r_1);

if( abs(ip_L(r_2, tau)) <

abs(ip_L(r_1, tau)),

r_1 = r_2;

found_closer = true;

);

)

);

if( found_closer == false,

if( abs(abs(ip_L(r_1, tau)) - abs_mirror_ip) < 0.0001,

if(is_among_8_roots(r_1),

got_there = true;

num_got_there = num_got_there + 1;
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);

);

if( got_there == false,

print("COULDN’T get to one of 8 diagram roots with:");

print(r_1);

);

break;

);

);

if( (got_there == false) && (found_closer == true),

print("Timed out trying to get to one of the 8 mirrors.");

print("Starting with:");

print(r_start);

);

);

print("");

print("+_+_+_+_+_+_+_+_+_+_");

print("");

print("Number of roots in generator set = ", gen_count);

print("Number got there = ", num_got_there);

}
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\\**************************************************************

\\ Name : DiagramMirrorsGenerateD4+H.gp

\\ Purpose : This program applies to the case L := D4+H. It

\\ shows that a finite set of roots analogous to those

\\ in the proof of Theorem 3.2.13 can all be reflected

\\ down to one of the 4 diagram roots, using

\\ reflections in the diagram roots.

p = 1 + I;

s = vector(4);

\\ Our diagram roots.

s[1] = [ 0, 0, -1, -1];

s[2] = [ 0, p, -1, 0];

s[3] = [ -1, 1, 0, 0];

s[4] = [ -p, 0, 0, 0];

refl_units = vector(3);

\\ The units we can reflect in.

refl_units[1] = -1;

refl_units[2] = I;

refl_units[3] = -I;

\\ Determines whether two inputs are equal up to

\\ a unit multiple.

equal_upto_units(v1, v2)=

{

my(units = [[1, -1], [I, -I]]);

for( i = 1, 2,

for ( j = 1, 2,

if( v1 == units[i][j]*v2,

return(true) )));

return(false);

}

\\ The product of 2 vectors D_4+H tensor C.

ip_L(x,y)=

{

return( sum(i = 1, 2, conj(x[i])*y[i])

+ p*y[3]*conj(x[4]) + conj(p)*conj(x[3])*y[4] );

}

\\ The product of 2 vectors D_4 tensor C.
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ip_Lambda(x,y)=

{

return( sum(i = 1, 2, conj(x[i])*y[i]) );

}

\\ Heisenberg group of translations T

T(lambda,z,v)=

{

my(x = [0, 0]);

x[1] = v[1]; x[2] = v[2];

my(r_v1 = [0, 0, 0, v[4]]);

my(r_v2 = v[3]*[lambda[1], lambda[2], 1,

1/conj(p)*(-ip_Lambda(lambda, lambda)/2 + z)]);

my(r_v3 = [x[1], x[2], 0,

-1/conj(p)*ip_Lambda(lambda, x)]);

return( r_v1 + r_v2 + r_v3 );

}

\\ Perform unit-reflection on y in mirror of x

reflect(x,unit,y)=

{

return( y - (1-unit)*(ip_L(x,y)/ip_L(x,x))*x );

}

\\ Determine whether a give root is equal to one of the

\\ diagram roots, up to units

is_among_4_roots(r_1)=

{

for(i = 1, 4,

if(equal_upto_units(r_1, s[i]),

return( true );

);

);

return( false );

}

\\ The main loop, that tries to reflect each of the finite set

\\ of roots from an analog of Theorem 3.2.13 down to one of the

\\ diagram roots, using reflections in the diagram roots.

main()=

{

\\ Our central point

tau = [1.00000000000000, 2.41421356237309,

-0.707106781186548 + 4.12132034355964*I, 3.41421356237309];



63

\\ Before the main loop, we build our list of roots that we

\\ want to reflect down to the diagram roots.

gen = listcreate(1000);

r = listcreate(2);

listput(r, [0, 0, 1, 1]);

listput(r, [0, 0, 1, I]);

x_0 = [0, 0, 1, 1];

\\ G-basis for D4

basis = listcreate(2);

listput(basis, [1, I]);

listput(basis, [p, 0]);

\\ Coset representatives for D_4 parts of coordinates

a = listcreate(2);

listput(a, 0);

listput(a, 1);

b_0 = listcreate(2);

listput(b_0, 0);

listput(b_0, 1 + I);

b_1 = listcreate(2);

listput(b_1, 1);

listput(b_1, I);

b = listcreate(2);

listput(b, b_0);

listput(b, b_1);

\\ Roots of D_4

D4rootsuptounit = listcreate(6);

listput(D4rootsuptounit, [p, 0]);

listput(D4rootsuptounit, [0, p]);

listput(D4rootsuptounit, [1, 1]);

listput(D4rootsuptounit, [1, -1]);

listput(D4rootsuptounit, [1, I]);

listput(D4rootsuptounit, [1, -I]);

D4roots = listcreate(24);

for(i = 0, 3,

for( j = 1, 6,

listput(D4roots, (I^i)*D4rootsuptounit[j]);

);
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);

\\ Add r_1, r_2 to list

for(i = 1, 2,

listput(gen, r[i]);

);

\\ Add T_{lambda, z}(r_j) to list

for(i = 0, 1,

for(j = 1, 2,

for(k = 1, 2,

lambda = basis[k] * (I^i);

z = ip_Lambda(lambda, lambda)/2*I;

listput(gen, T(lambda, z, r[j]));

);

);

);

\\ Add the lambda’ roots to the list

for( i = 1, 2,

for( j = 1, 2,

for( k = 0, 1,

lambda = [0, 0];

lambda[1] = a[i];

lambda[2] = b[i][j];

z = ((ip_Lambda(lambda, lambda)/2 + 2*k)%4)*I;

listput(gen, T(lambda, z, x_0));

);

);

);

\\ Add the (x; 0, 0) and (x; 0, 1) roots to list

for( i = 1, 24,

for( j = 0, 1,

ht0root = [0, 0, 0, 0];

ht0root[1] = D4roots[i][1];

ht0root[2] = D4roots[i][2];

ht0root[4] = j;

listput(gen, ht0root);

);

);

\\ Absolute value of the product that a diagram mirror

\\ has with tau.

abs_mirror_ip = abs(ip_L(s[1], tau));
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num_got_there = 0;

gen_count = length(gen);

\\ Loop, trying to bring the mirrors in "gen" closer to

\\ the diagram mirrors, until we get there or time out.

for( i = 1, gen_count,

got_there = false;

r_1 = gen[i];

r_start = r_1;

for( j = 1, 1000000,

found_closer = false;

for( k = 1, 4,

for( l = 1, 3,

r_2 = reflect(s[k],refl_units[l],r_1);

if( abs(ip_L(r_2, tau)) <

abs(ip_L(r_1, tau)),

r_1 = r_2;

found_closer = true;

);

);

);

if( found_closer == false,

if( abs(abs(ip_L(r_1, tau)) - abs_mirror_ip) < 0.0001,

if(is_among_4_roots(r_1),

got_there = true;

num_got_there = num_got_there + 1;

);

);

if( got_there == false,

print("COULDN’T get to one of 4 diagram roots with:");

print(r_1);

);

break;

);

);

if( (got_there == false) && (found_closer == true),

print("Timed out trying to get to one of the 4 mirrors.");

print("Starting with:");
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print(r_start);

);

);

print("");

print("+_+_+_+_+_+_+_+_+_+_");

print("");

print("Number of roots in generator set = ", gen_count);

print("Number got there = ", num_got_there);

}
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