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and ELWD (Figure 56) indicated advantages for improved over unimproved 

variety hybrids for these growth parameters. Differences among hybrids, 

however, were not significant statistically at all sampling intervals. 

Ear-leaf-area duration, and ELWD, usually, were similar for both years 

(Table 65). Larger ESLÂ values were recorded in 1975 for intervals 6 and 

7, and larger ESLW were measured in 1976 for intervals 5 and 7. Usually, 

the low density favored larger ELÂD, ELWD, and ESLW, but ESLÂ values were 

larger at the high density (Table 65). Genotyplc differences for ESLÂ and 

ESLW were not significant (Table 66). 

Total dry-matter productivity was higher in 1975 than 1976 from 27 to 

83 days after planting, and the two crops produced similar amounts of dry 

matter after 97 days (Figure 57). At 125 days after planting, however, 

total dry matter was higher in 1976 than 1975. For most of the vegetative 

stage of development, stalk and leaf weights were higher in 1975 than 1976 

(e.g., at 69 days after planting, stalk weights were 65.9 and 36.2 g for 

1975 and 1976, respectively). Also, leaf-weight duration (Figure 58) and 

stalk-weight duration (Figure 59) were significantly higher in 1975 than 

1976 during this growth stage. During the reproductive stage, however, 

leaf weight (Figure 57) and leaf-weight duration (Figure 58) were 

significantly larger in 1976 than 1975, and differences for stalk weight 

(Figure 57) and stalk-weight duration (Figure 59) between the two years 

were not significant. Probably, similar amounts of photosynthate were 

translocated from the stalk to the grain both years. Increased leaf weight 

associated with the grain-filling stage in 1976 could have resulted from 

Increased number of leaves per plant (Table 62), Increased leaf areas 
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Table 65. Effects of years and plant densities on ear-leaf-area duration (ELAD), ear-leaf- weight 
duration (ELWD), specific leal: area of ear leaf (ESLA), and specific leaf weight of ear 
leaf (ESLW) for four maize variety hybrids 

ELAD (cm^) ELWD (g/plant) ESLA (cm^/g) ESLW (mg/cm^) 

Sampling Interval 
5 6 7 5 6 7 5 6 7 5 6 7 

Year 

1975 618.59 603.38 381.01 3.79 3.99 3.65 164.98 155.17 103.36 6.19 6.78 12.65 

1976 619.87 640.27 374.79 4.05 4.60 4.81 156.94 142.10 79.86 6.45 7.37 17.08 

LSD Qg NS NS NS NS NS 0.57 NS 5.91 19.31 0.08 NS 3.28 

Plants/ha 

59,300 701.02 665.83 402.35 

98,800 537.44 577.81 353.45 

LSD Qg 100.08 NS NS 

4.64 4.94 4.92 152.45 

3.21 3.65 3.53 169.48 

0.62 0.41 0.33 8.88 

135.97 82.71 6.53 8.15 14.50 

161.30 100.50 6.30 6.37 12.85 

12.05 17.64 NS 1.20 NS 



Table 66. Specific leaf area (ESLA) and specific leaf weight (ESLW) of ear leaf for four maize 

variety hybrids 

ESLA(cii^/g) ESLW(mg/cm^) 

Sampling interval 

BSSS(R) X BSCBl(R) 

Cq X CQ 159.33 149.2» 90.45 3.43 3.73 6.69 

Cy X 156.94 145.27 88.33 3.59 4.03 7.01 

BS12 X B14A 

Cq 167.94 152.05 92.53 3.18 3.60 8.38 

Cg 159.63 147.93 95.13 3.47 3.69 6.63 

LSD Q5 NS NS NS NS NS NS 
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(Figure 43), higher leaf area Indices (Figure 49), and longer LAD (Figure 

52). Additionally, CER was higher in 1976 than 1975 (Table 44). Perhaps, 

the 1976 crop would have produced even higher grain yields if sink size 

was not limiting (Figure 43). Accumulation of dry matter by other plant 

organs was essentially similar for the two years (Figure 57). 

Clearly, plants grown at the low density produced and translocated 

larger amounts of dry matter into their organs than those at the high 

density (Figure 60). Tassel weights, usually, did not differ significantly 

between densities (Figure 60), but LWD (Figure 58) and SWD (Figure 59) 

were higher at the low than high plant density. The high plant density in 

my study was characterized by lower CER (Table 44), lower GR (Figure 35), 

higher LAR (Figure 39), lower NAR (Figure 41), lower leaf area (Figure 43), 

shorter LAD (Figure 47), and lower biological yields (Figure 60) than the 

low density. I also observed that grain and dry-matter productivity per 

unit leaf area (Table 47), shelling percentage, and harvest index (Table 

50) were smaller at the high density; but most vegetative traies (Table 

46) were similar for both plant densities. Plants at the high density, 

therefore, utilized most of their photosynthate for vegetative growth. 

Consequently, grain yields were higher at the low than high plant density 

(Table 43). 

Differences in total dry matter per plant between improved hybrids 

and their unimproved counterparts were small and not significant for the 

first five sampling dates (Figures 61 and 62). Beginning 97 days after 

planting, however, improved hybrids produced larger amounts of dry matter 

than unimproved hybrids. Similarly, ear and grain weights increased 

rapidly for all hybrids during this period, but amounts of dry weight 
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Figure 61. Production of dry-matter by plant organs of BSSS(R)Cq x BSCB1(R)Cq and 
BSSS(R)CYXBSCBL(R)CY 
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Figure 62. Production of dry-matter by plants organs of BSl2Cp x B14A and 

BSl2Cg X B14A 
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partitioned into the ear and grain, usually, were larger for the improved 

hybrids. Leaf dry weights of BSSS(R)Cy x BSCBl(R)Cy were larger than those 

of BSSS(R)CQ X BSCB1(R)CQ at 83 and 125 days after planting, but differ

ences between BS12CQ and BS12Cg for this trait were not significant 

statistically. Stalk weights of all hybrids were similar throughout the 

season (Figures 61 and 62), and hybrid differences for stalk-weight 

duration occurred only at sampling interval 4 (i.e., 69 to 83 days after 

planting). The decreased stalk weight observed for all hybrids from 97 

to 125 days (Figures 61 and 62), therefore. Indicated that both improved 

and unimproved hybrids translocated similar amounts of dry matter from 

the stalk during grain filling. Probably, grain-yield advantages of 

improved over unimproved hybrids resulted from production and deposition 

of larger amounts of photosynthate into ears of improved hybrids. Usually, 

tassel dry weights were significantly larger for the unimproved than the 

improved hybrids (Figures 61 and 62), another indication that tassel size 

and grain yield are negatively correlated. 

Results of my study indicated that improved hybrids produced and 

deposited into the ear larger amounts of dry matter during grain filling 

than unimproved hybrids. This resulted from increased LAD, LAI, and LAID 

during grain filling, suggesting that the improved hybrids possessed the 

ability to photosynthesize for a longer period of time. Unimproved hybrids 

did not demonstrate this ability and were unable to translocate large 

amounts of dry matter from their stalks into the grain. Several studies 

(Van Eijnatten, 1963; Adelana and Milboum, 1972; Yamaguchi, 1974) have 

indicated that high-yielding maize genotypes demonstrated longer LAD's 
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after anthesis than low-yielding genotypes. Similar results were reported 

for other crop species (Stoy, 1965; Goldsworthy, 1970; Pazos, 1976; Brink-

man and Frey, 1977). Perhaps, high-yielding crop genotypes possess a 

mechanism that delays leaf senescence. 
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VIII. GENERAL DISCUSSION AND CONCLUSIONS 

Definite yield improvements resulted from reciprocal recurrent 

selection in BSSS and BSCBl and half- sib selection in BS12. Progress 

from recurrent selection, usually, is evaluated in several environments. 

In my study, I observed that rates of gain in grain yield varied widely 

across nitrogen levels and plant densities, suggesting that one should use 

several levels of these factors in evaluation environments for recurrent 

selection. 

Average grain yields in my study were low, probably, because I 

evaluated variety hybrids (which normally are highly heterogeneous and 

are not as high-yielding as single-cross hybrids) and because of high-

density, low-nitrogen, moisture-stress environments. Yields obtained at 

Ankeny in 1976 were the highest. 

Improved hybrids demonstrated abilities to produce more grain than 

their unimproved counterparts at all levels of nitrogen and plant densities 

I studied. All hybrids, however, demonstrated positive curvilinear 

responses to nitrogen and negative linear responses to plant density. 

Although hybrids in my study were not tolerant of high plant densities, 

the negative linear b-values observed for BSSS(R)Cg x BSCBl(R)Cg and 

BSSS(R)Cy X BSCBl(R)Cy were lower than those for the other genotypes, 

indicating that these two genotypes were more tolerant of high densities. 

Multiple regression models involving linear, quadratic, and interaction 

terms were used to predict optimum combinations of nitrogen and plant 

density for maximum yield of each hybrid across and within environments. 

Optimum plant density was 39,500 plants/ha, but optimum nitrogen within 
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this density varied among hybrids. Usually, the improved hybrids per

formed best at 180 or 270Kg N/ha, and the unimproved hybrids were best at 

90 or 180 Kg N/ha. Regression coefficients for both linear and quadratic 

terms for plant density, and the nitrogen x density interaction term were 

small and nonsignificant. Contrarily, b-values for nitrogen terms were 

large and significant, but those for the quadratic term were smaller than 

for the linear term. I concluded that the hybrids in my study displayed 

linear grain-yield response to nitrogen fertility and that the influence 

of plant density was not as important as the influence of nitrogen-

fertility levels. 

Additionally, I studied yield stability and adaptation reactions for 

the five variety hybrids. BSSS(R)C^ x BSCB1(R)C^ and BS12Cg x B14A 

consistently demonstrated greater adaptation to high-nitrogen environments, 

but their unimproved counterparts did not take advantage of high-nitrogen 

levels to produce grain. BSSS(R)Cg x BSCB1(R)C^ and BSSS(R)Cy x BSCB1(R)C^ 

demonstrated greater adaptation to high plant densities than the other 

hybrids. BSlZCg x B14A and BS12Cg x B14Â were not adapted to high plant 

densities. I suggested that inbred lines tolerant of intermediate-to-high 

densities, probably, could be obtained from BSSS(R)Cy and BSCB1(R)C^, and 

inbreds that will respond efficiently to high nitrogen under low plant 

densities can be developed from BS12C^. (I wish to emphasize that highest 

grain yields in my study occurred at the low density, i.e., 39,500 plants/ 

ha.) Optimum plant density for these hybrids could not be determined from 

my study, but, likely, it is lower than 39,500 plants/ha. 

I noted in Chapter III that lines recombined to form BSSS(R)C^, 

BSCBl(R)Cy, and BS12Cg were selected under somewhat higher nitrogen-
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fertility levels and plant densities than those recombined to form the 

cycles of these populations. Because hybrids of the improved popula

tions demonstrated greater abilities to produce grain at all levels of 

nitrogen and all plant densities than hybrids from the unimproved popula

tions, I concluded that selection under high-nitrogen, high-density 

environments resulted in superior performance at other levels of these 

factors. If the current shortage of nitrogen fertilizer continues, 

perhaps, maize genotypes selected at high-nitrogen levels would be more 

useful to the farmer. Furthermore, in developing countries where nitrogen 

may not be readily available to the farmer, breeders can develop high-

yielding genotypes by selecting under Intermediate levels of nitrogen. 

Note that my studies are preliminary and that extensive studies are 

needed before valid,general conclusions can be drawn about this subject. 

Studies conducted previously (Russell, 1974; Duvick, 1976; Allan and Darrah, 

1977), however, substantiate my inference. 

Results of my study did not support the hypothesis that nltrate-

reductase activity could be used as an Indirect selection criterion for 

grain yield in maize. Average nitrate-reductase activities of x CQ, 

Cg X Cg, and x Cy of the RRS program were similar, but activity of 

BS12CQ X B14A was significantly higher than that of BS12C^ x B14A. During 

the vegetative stage, BSSS(R)Cy x BSCBl(R)Cy demonstrated greater nitrate-

reductase activity than CQ X CQ and x of this program. Recent 

evidence (Klepper et al., 1971) indicated that the greater the amount of 

photosynthate available to the nitrate-reductase system, the higher the 

activity, in view of this evidence, I hypothesized that, perhaps, the 
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nitrate-reductase system in BS12CQ X B14A obtained more photosynthate 

than that in BS12CG x B14. This hypothesis was further substantiated by 

dry-matter and grain yields of these hybrids; i.e., both hybrids produced 

similar amounts of dry matter from planting to mid-grain-filling, but 

BS12CG X B14A produced larger grain yields than its unimproved counterpart. 

The difference in nitrate-reductase activity between these two hybrids 

largely occurred during anthesis. I observed that grain filling was 

initiated earlier in BS12CG than BS12Cq, indicating that dry matter was 

partitioned into the ear earlier in that population. I proposed this as a 

possible reason for the negative association between grain yield and 

nitrate-reductase activity in BS12. My proposal can be tested by obtaining 

random lines from BS12Cq and BS12C^, determining nitrate-reductase 

activities and grain yields for these lines, and determining correlations 

(especially genotypic correlations) between these two traits for the lines 

within each population. 

Plant breeders are currently investigating the possibility of combining 

agronomic, morphological, and physiological traits into optimum plant 

types, termed "ideotypes". Breeding of crop ideotypes assumes a strong 

genetic association between yield and the traits to be used in designing 

the ideotype. To obtain preliminary information for the maize ideotype 

proposed by Mock and Pearce in 1975, I evaluated changes in agronomic, 

morphological, and physiological traits associated with recurrent selection 

for grain yield. Observed and predicted correlated responses for plant and 

ear heights and grain-yield components (ear length, ear diameter, cob 

diameter, and kernel depth) showed poor agreements in the reciprocal 
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recurrent selection program. Kernel weight increased for BSSS(R)C^ x 

BSCB1(R)C^ relative to BSSS(R)CQ X BSCB1(R)CQ, but not for the hybrids 

from the HS program. Carbon-dioxide-exchange rate (a measure of 

photosynthetic rate) did not change appreciably with recurrent selection. 

Leaf orientation was significantly more upright for improved hybrids. 

The changes, however, were of small magnitudes, and the maize "ideotype" 

with upright leaves above and horizontal leaves below the ear was not 

obtained. Largest changes in other traits with recurrent selection for 

yield occurred during flowering and grain-filling growth stages. Tassel 

size (i.e., branch numbers and weight) and pollen-shed-to-silking interval 

decreased significantly for the improved hybrids and further substantiated 

earlier conclusions (Mock and Buren, 1972; Buren et al., 1974; Mock and 

Pearce, 1975) that negative associations exist between grain yield and 

these traits. Also, silking dates were earlier in the improved hybrids. 

Number of days to black-layer formation, grain-filling duration, and 

percent grain moisture at harvest were significantly higher In BSSS(R)C^ x 

BSCBl(R)Cy than Its unimproved counterpart. Hybrids from the HS program 

demonstrated similar trends, but these were not significant statistically. 

Leaf-area efficiency (i.e., grain per unit leaf area), however, was 

considerably higher for BS12Cg than BS12Cq. Furthermore, shelling percent

age and harvest index demonstrated increasing trends as selection 

progressed. 

Additionally, I investigated the effects of nitrogen and plant 

densities on changes in agronomic, morphological, and physiological traits 

associated with recurrent selection for yield. In addition to the changes 
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I have just discussed, significant increases occurred for leaf area, ear 

productivity, grain-yield components (although kernel weight did not 

change in the HS program), and dry-matter productivity in the improved 

relative to unimproved hybrids. Lodging decreased significantly in the 

RRS program. 

These preliminary data indicated genetic associations between grain 

yield and many traits in maize. Although several of these traits demon

strated desirable relationships with yield, poor agreements between 

observed and predicted correlated responses obtained in this and other 

studies (Moll and Robinson, 1966; Moll and Stuber, 1974) suggested that 

maximum potentials for these traits were not attained via recurrent 

selection for grain yield per se. Perhaps, use of index selection and 

ideotype breeding would alleviate this discrepancy and maximize grain 

yields. 

I used the method of growth analysis to study dry-matter productivity 

and uistributlon by the unimproved and improved hybrids. Of all the 

growth traits studied, only leaf-area, leaf-area duration, leaf area 

index, and leaf-area-index duration were significantly larger in the 

improved than the unimproved hybrids. These differences occurred mostly 

during grain filling; consequently, improved hybrids produced and trans

located more dry matter into the ear. Studies with oats, sorghum, and 

other maize genotypes produced similar results. Perhaps, larger sink size 

delays leaf senescence in crop species. 

I concluded that the source (I.e., photosynthetic capacity) was not 

limiting grain yield in BSSS(R) x BSCBl(R) and BS12. Increased grain 
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yields that resulted from recurrent selection were consequences of 

longer duration of grain filling in BSSS(R) x BSCBl(R), and prolonged 

photosynthetic activity, increased production of photosynthate during 

grain filling, and increased translocation of photosynthate from source 

to sink in both BSSS(R) x BSCBl(R) and BS12 x B14A. 
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Appendix Table 1. Nitrogen x environment and density x environment 
interactions for observed gains resulting from six 
cycles of selection for grain yield in BS12 

Gain Per Cycle 

Level of Factor 

Bruner Farm, 1975 Bruner Farm, 1976 Ankeny, 1976 

Level of Factor q/ha % Co q/ha % C o  q/ha % Co 

Kg N/ha 

0 0.45 2.32 1.18 7.21 2.01 5.08 
90 2.26 9.38 2.48 6.03 1.93 3.45 
180 1.85 4.93 2.50 7.55 2.92 5.28 
270 3.14 8.12 4.52 15.02 1.69 2.94 

Plants/ha 

39,500 2.57 7.02 2.10 4.76 2.11 3.31 
59,300 2.35 7.55 3.07 9.80 2.92 5.01 
79,000 1.47 5.39 2.18 8.41 2.11 4.35 
98,800 1.31 5.36 3.33 17.21 1.42 3.71 

X environment 1.93 6.39 2.67 8.85 2.14 4.10 
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Appendix Table 2. Nitrogen x density interaction for observed gains 
resulting from six cycles of selection for grain 
yield in BS12 

Gain Per Cycle 

39,500* 59, 300 79, 000 n
o
 

00
 

800 X nitrogen 

Kg N/ha q/ha % C O  q/ha % Co q/ha % CQ q/ha 7» CQ q/ha % Cq 

0 1.07 2.76 1.12 4.24 1.66 8.57 0.99 6.44 1.21 4.84 

90 1.56 2.88 1.75 3.52 2.49 8.01 3.10 11.56 2.22 5.49 

180 2.62 4.88 3.66 8.49 1.59 4.21 1.83 5.47 2.43 5.77 

270 3.80 8.22 4.58 1144 1.93 4.10 2.16 6.39 3.77 7.39 

X density 2.26 4.69 2.78 6.91 1.92 5.67 2.02 7.38 

^Plants/ha. 



Appendix Table 3. Observed and predicted grain-yield responses of five maize variety hybrids to 
combinations of nitrogen and plant density in three environments 

Grain Yield (q/ha) 

Bruner Farm. 1975 Bruner Farm, 1976 Ankeny. 1976 

Kg N/ha Plants/ha Observed Predicted Observed Predicted Observed Predicted 

0 39,500 30.48 28.81 32.28 34.89 63.31 61.52 
59,300 23.00 24.36 23.80 26.44 53.99 55.26 
79,000 21.32 20.38 18.18 19.88 45.71 47.05 
98,800 17.41 16.84 15.10 15.13 36.33 36.81 

90 39,500 44.88 41.76 60.14 52.50 69.62 71.78 
59,300 31.46 37.08 52.88 44.42 71.24 66.63 
79,000 31.23 32.84 37.25 38.23 57.94 59.52 
98,800 27.71 29.05 39.64 33.85 53.44 50.38 

180 39,500 44.79 51.14 52.69 59.04 73.74 74.24 
59,300 54.12 46.17 45.72 51.34 69.11 70.19 
79,000 42.27 41.68 42.47 45.51 61.18 64.18 
98,800 40.91 37.63 35.59 41.50 56.81 56.15 

270 39,500 57.97 56.88 55.69 54.52 68.25 68.90 
59,300 52.19 51.65 47.45 47.19 68.34 65.96 
79,000 45.47 46.90 46.99 41.73 62.34 61.05 
98,800 40.57 42.59 38.39 38.10 52.43 54.13 



Appendix Table 4, Observed and predicted grain-yield responses of BSSS(R)CQ X BSCB1(R)CQ to 
combinations of nitrogen and plant density in three environments 

Grain Yield (q/ha) • 

Bruner Farm. 1975 Bruner Farm, 1976 Ankeny, 1976 Environments Combined 

Kg N/ha "Plants/ha Observed Predicted Observed Predicted Observed Predicted Observed Predicted 

0 39,500 30,08 24.97 23.59 26.73 55.77 55.48 36.48 35.73 
59,300 19.16 20.61 25.17 20.57 48.99 46.99 31.10 29.09 
79,000 12.79 17.37 12.87 14.54 40.15 37.78 21.93 23.23 
98,800 15.34 15.23 6.92 8.56 25.15 30.47 15.80 18.08 

90 39,500 39.65 38.80 52.39 44.98 60.53 64.11 50.85 49.30 
59,300 30.81 34.18 37.76 37.69 56.42 55.26 41.66 42.38 
79,000 31.82 30.70 25.84 30.53 45.25 47.48 34.30 36.23 
98,800 32.16 28.29 26.23 23.41 44.66 40.70 34.35 30.80 

180 39,500 37.85 46.42 47.61 55.17 63.00 66.87 49.49 56.15 
59,300 47.95 41.55 41.02 46.75 62.72 58.55 50.56 48.95 
79,000 33.42 37.81 42.99 38.46 48.89 51.30 41.75 42.52 
98,800 39.27 35.16 33.36 30.21 47.91 45.06 40.18 36.81 

270 39,500 47.69 47.83 59.11 57.30 69.33 63.75 58.71 56.29 
59,300 49.43 42.71 53.28 47.75 52.52 55.96 51.74 48.80 
79,000 38.29 38.71 35.69 38.32 46.77 49.25 40.25 42.10 
98,800 30.47 35.81 26.11 28.94 43.66 43.54 33.41 36.10 



Appendix Table 5. Observed and predicted grain-yield responses of BSSSCRjC^ x BSCBl(R)Cg to 
combinations of nitrogen and plant density in three environments 

Grain Yield (q/ha) 

Bruner Farm, 1975 Bruner Farm, 1976 Ankeny, 1976 Environments Combined 

Kg N/ha Plants/ha Observed Predicted Observed Predicted Observed Predicted Observed Predicted 

0 39,500 27.44 30.44 28.73 32.07 65.40 62.55 40.52 41.68 
59,300 28.01 24.89 33.04 29.91 50.36 56.37 37.14 37.06 
79,000 31.16 22.54 22.01 27.18 55.01 51.30 36.06 33.67 
98,800 20.51 23.36 22.32 23.84 42.68 47.31 28.50 31.50 

90 39,500 44.87 42.68 58.23 50.24 69.39 70.22 57.50 54.38 
59,300 27.70 36.70 50.14 47.03 70.21 64.93 49.35 49.56 
79,000 25.25 33.93 46.45 43.25 64.08 60.76 45.26 45.98 
98,800 32.17 34.33 45.28 38.86 62.17 57.67 46.54 43.62 

180 39,500 50.83 51.37 47.95 58.57 69.26 72.69 56.01 60.88 
59,300 55.60 44.97 52.31 54.31 64.11 68.31 57.44 55.86 
79,000 44.76 41.78 44.83 49.49 60.25 65.03 49.94 52.10 
98,800 46.36 41.76 40.32 44.04 63.00 62.83 49.89 49.54 

270 39,500 59.27 56.52 62.35 57.06 72.73 69.97 64.78 61.18 
59,300 40.75 49.70 49.27 51.75 67.36 66.48 52.46 55.98 
79,000 47.39 46.09 50.47 45.88 65.93 64.10 54.59 52.02 
98,800 44.67 45.64 38.90 39.39 61.42 62.80 48.33 49.27 



Appendix Table 6. Observed and predicted grain-yield responses of BSSS(R)Cy x BSCBl(R)Cy to 
combinations of nitrogen and plant density in three environments 

Grain Yield (q/ha) 

Bruner Farm. 1975 Bruner Farm, 1976 Ankeny, 1976 Environments Combined 

Kg N/ha Plants/ha Observed Predicted Observed Predicted Observed Predicted Observed Predicted 

0 39,500 38.42 33.40 40.50 40.15 68.33 67.45 49.08 47.00 
59,300 27.99 33.30 24.70 31.37 67.31 65.63 40.00 43.43 
79,000 26.61 28.06 22.91 25.62 56.27 61.06 35.26 38.25 
98,800 19.69 17.62 24.89 22.84 57.24 53.70 33.94 31.39 

90 39,500 53.39 45.98 65.29 57.43 77.61 78.27 65.43 60.56 
59,300 38.88 46.45 58.53 49.97 77.46 77.70 58.29 58.04 
79,000 42.38 41.78 44.71 45.54 74.71 74.37 53.93 53.90 
98,800 30.54 31.91 49.46 44.09 64.91 68.24 48.30 48.08 

180 39,500 39.12 55.66 54.97 63.07 76.92 78.79 57.00 65.84 
59,300 66.04 56.70 49.05 56.94 81.67 79.46 65.59 64.37 
79,000 59.19 52.60 59.21 53.83 79.31 77.37 65.90 61.27 
98,800 44.85 43.31 43.37 53.70 74.13 72.49 54.12 56.50 

270 39,500 66.75 62.43 59.67 57.09 66.89 69.01 64.43 62,84 
59,300 66.98 64.05 50.20 52.28 78.66 70.93 65.28 62.42 
79,000 55.40 60.52 56.75 50.48 61.24 70.08 57.80 60.36 
98,800 49.36 51.80 51.90 51.67 68.38 66.44 56.54 56.64 



Appendix Table 7. Observed and predicted grain-yield responses of BS12CQ X B14A to combinations 
of nitrogen and plant density in three environments 

Grain Yield (q/ha) 

Bruner Farm. 1975 Bruner Farm, 1976 Ankeny, 1976 Environments Combined 

Kg N/ha Plants/ha Observed Predicted Observed Predicted Observed Predicted Observed Predicted 

0 39,500 24.64 25.38 30.76 35.37 60.99 59.74 38.79 40.17 
59,300 19.45 19.54 13.92 21.87 46.16 48.48 26.51 29.97 
79,000 16.61 15.19 13.03 11.53 28.57 34.89 19.40 20.54 

• 
98,800 15.91 12.28 7.73 4.25 22.24 18.82 15.29 11.78 

90 39,500 36.66 34.18 60.40 50.25 64.89 67.18 53.98 50.53 
59,300 22.76 28.57 50.19 38.34 76.32 59.28 49.76 42.06 
79,000 21.40 24.44 30.06 29.59 41.92 49.04 31.13 34.35 
98,800 15.49 21.75 24.20 23.90 40.64 36.34 26.78 27.33 

180 39,500 41.77 41.05 47.88 51.16 71.08 67.52 53.58 53.24 
59,300 40.43 35.66 37.62 40.85 51.05 63.00 43.03 46.50 
79,000 37.52 31.75 25.57 33.69 50.95 56.11 38.01 40.52 
98,800 30.66 29.29 21.46 29.59 48.42 46.78 33.51 35.22 

270 39,500 43.67 45.98 37.56 38.12 57.47 60.79 46.23 48.30 
59,300 41.54 40.81 23.67 29.41 59.31 59.64 41.50 43.29 
79,000 33.39 37.13 35.07 23.83 72.27 56.10 46.91 39.02 
98,800 36.02 34.90 23.98 21.33 41.59 50.14 33.86 35.45 



Appendix Table 8. Observed and predicted grain-yield responses of BSl2Cg x B14A to combinations 
of nitrogen and plant: density in three environments 

grain Yield (q/ha) 

Bruner Farm, 1975 Bruner Farm, 1976 Ankeny. 1976 Environments Combined 

Kg N/ha Plants/ha Observed Predicted Observed Predicted Observed Predicted Observed Predicted 

0 39,500 31.81 29.85 37.84 40.13 66.06 62.40 45.23 44.13 
59,300 20.42 23.45 22.19 28.49 57.14 59.74 33.25 37.23 
79,000 19.46 18.75 20.10 20.53 48.56 50.23 29.37 29.83 
98,800 15.61 15.72 13.65 16.16 34.34 33.75 21.20 21.88 

90 39,500 49.82 47.29 64.41 59.59 75.70 79.14 63.31 62.01 
59,300 37.18 39.48 67.80 49.07 75.81 75.97 60.26 54.84 
79,000 35.33 33,38 39.21 42.22 63.74 65.94 46.09 47.18 
98,800 28.22 28.93 53.04 38.98 54.83 48.94 45.36 38.95 

180 39,500 54.37 61.21 65.04 67.23 88.42 85.34 69.28 71.26 
59,300 60.59 51.99 48.28 57.83 86.02 81.65 64.96 63.82 
79,000 36.46 44.48 39.79 52.10 66.56 71.11 47.60 55.90 
98,800 43.43 38.62 39.47 49.98 50.62 53.60 44.50 47.40 

270 39,500 72.47 71.61 59.76 63.05 74.82 81.00 69.02 71.89 
59,300 62.26 60.98 60.84 54.78 83.87 76.79 68.99 64.18 
79,000 52.89 52.07 56.99 50.16 65.48 65.73 58.45 55.99 
98,800 42.34 44.80 51.09 49.15 47.10 47.71 46.84 47.22 



Appendix Table 9. Mean squares from combined analyses of variance for leaf area and leaf-area-
derived traits of five maize variety hybrids grown in nitrogen-plant-density 
experiments 

Mean Squares 

No. Leaves Ear Leaf Plant Leaf Leaf-Area Grain/Leaf Area 
Sources DF Per Plant Area (m^) Area (m^) Index (mg/cm^) 

Environments (E) 1 83.23 0.69 6054.97 0.01 0.40 
Replications 1 5.30 7.52 66345.78 1.29 0.11 

Error a 1 2.31 22.23 196015.12 10.31 0.01 

Nitrogen (N) 3 102.12** 62.56*** 551574.27*** 22.41*** 3.58** 
N X E 3 3.36 7.42* 65484.94* 3.43* 0.36 

Error b 6 6.25 1.30 11418.44 0.64 0.33 

Density (D) 3 45.42*** 21.85*** 192695.95*** 117.88*** 25.45*** 
D X E 3 1.78 0.42 3672.02 0.01 0.17* 
D X N 9 1.36 0.82 7212.45 1.32** 0.21** 
D X N X E 9 3.74 0.18 1613.30 0.16 0.15** 

Error c 24 1.51 0.55 4891.68 0.27 0.04 

Genotype (G) 4 5.55*** 5.69*** 50172.13*** 2.30*** 1.62*** 
G X E 4 0.46 0.68 6011.62 0.14 0.10 
G X N 12 0.33 0.47 4160.15 0.15 0.09 
G X D 12 0.58 0.36 3134.84 0.23 0.06 
G X E X N 12 0.50 0.40 3568.60 0.27 0.03 
G X E X D 36 0.60 0.21 1846.12 0.08 0.06 
G X N X D 36 0.52 0.27 2423.33 0.16 0.08 
G X E X N X D 36 0.75 0.23 2014.69 0.15 0.03 

Error d 128 0.60 0.34 3040.05 0.19 0.06 

Total 319 2.62 1.39 12226.29 1.63 0.36 

C. V. % 6.84 8.62 8.62 10.63 21.70 

* 3 * * ,  and ***gignificant F-tests at 0.05, 0.01 and 0.001 levels of probability, respectively. 



Appendix Table 10. Mean squares from combined analyses of variance for leaf-orientation traits of 
five maize variety hybrids grown in nitrogen-plant-density experiments 

UPPER CANOPY 

Angle (degrees Length to Flag. Total Leaf Leaf Orientation 
Sources DF from horizontal) point (cm) Length (cm) Value 

Environment (E) 1 743.90 2258.88 1300.08 1318.84 
Replication 1 139.26 6260.49 16.47 3959.54 

Error a 1 18.38 1760.63 2591.23 166.82 

Nitrogen (N) 3 48.46 3543.80** 3283.28** 618.04* 
N X E 3 167.30** 417.15 463.34 469.01 

Error b 6 15.75 142.90 197.35 125.73 

Density (D) 3 25.25 51.90 249.93** 28.73 
D X E 3 56.18 93.67 11.93 115.82 
D X N 3 17.11 153.07 150.26** 82.74 
D X N X E 9 12.43 94.13 70.22 51.70 

Error c 24 20.59 84.23 38.41 43.92 

Genotype (G) 4 248.19*** 176.23*** 1106.21*** 727.01*** 
G X E 4 7.32 53.72 94.37** 10.10 
G X N 12 13.89 27.33 21.14 26.42 
G X D 12 8.86 20.39 18.62 16.58 
G X E X N 12 9.90 42.61 27.89 32.32 
G X E X D 36 18.69 52.42 17.78 47.46 
G X N X D 36 11.51 42.41 19.90 31.25 
G X E X N X D 36 12.77 27.48 18.33 23.49 

Error d 128 14.73 39.45 20.67 28.51 

Total 319 22.08 118.81 93.64 69.59 

C. V. % 6.39 13.67 5.47 16.0 

' » Significant F-tests at 0.05, 0.01, and 0.001 levels of probability. 



Appendix Table 10. (continued) 

LOWER CANOPY 

Angle (degrees Length to Flag. Total Leaf Leaf Orientation 
Sources DF from horizontal) point (cm) Length (cm) Value 

Environment (E) 
Replication 

Error a 

Nitrogen (W) 
N X E 

Error b 

Density (D) 
D X E 
D X N 
D X N X E 

Error c 

Genotype 
G X E 
G 
G 
G 
G 
G 
G 

(G) 

X 

X 

X 

X 
X 
X X D 
Error d 

Total 

C. V. % 

1 
1 
1 

3 
3 
6 

3 
3 
3 
9 
24 

4 
4 
12 
12 
12 
36 
36 
36 

128 

319 

454.58 
67.90 
32.77 

18.71 
179.44* 
24.90 

167.18*** 
20.73 
26.63 
10.23 
21.09 

138.00*** 
8.49 
11.24 
13.75 
5.50 

10.10 
15.36 
12.61 
15.32 

21.13 

6.29 

478.73 
9396.11 
1342.34 

2647.11** 
523.49 
233.54 

185.27 
87.41 
107.17 
64.25 
83.64 

221.20*** 
39.10 
44.43 
17.16 
25.78 
32.54 
41.90 
26.29 
40.22 

114.68 

11.87 

1170.83 
591.60 
3582.50 

2829.10** 
357.95 
155.34 

15.12 
12.05 
105.58** 
56.72 
27.27 

782.71*** 
41.68 
25.11 
8.94 
27.56 
7.24 
16.36 
14.59 
20.78 

81.30 

5.13 

271.18 
3757.64* 

7.57 

147.15 
563.03 
142.75 

250.71** 
82.05 
72.96 
27.30 
44.13 

566.35*** 
14.17 
28.56 
23.82 
12.03 
29.00 
30.41 
26.70 
29.41 

60.33 

14.45 



Appendix Table 11. Mean squares from the combined analyses of variance for dry-matter productivity 
and harvest index of five maize variety hybrids grown in nitrogen-plant-
density experiments 

Mean Squares 

Sources DF 
Total Dry Matter 

(mt/ha) 
Dry Matter 

g/plant 
Harvest Index 

% 
Dry Matter/Leaf 
Area (mg/cm^) 

Environments (E) 1 774.30 282904.74 77.24* 58.94 
Replications 1 40.81 23247.68 0.01 0.20 

Error a 1 46.37 8248.91 0.38 1.70 

Nitrogen (N) 3 666.69** 195921.99** 7.97 13.22* 
N x E 3 68.60 17493.98 2.04 0.44 

Error b 6 34.24 7243.70 1.76 1.73 

Density (D) 3 20.84 573797.25*** 33.43*** 82.73*** 

D X E 3 3.00 7112.04 1.32 0.58 

D X N 9 8.08 5362.49 2.24*** 1.05 
D X N X E 9 7.68 3293.23 0.85 0.41 

Error c 24 20.59 4022.08 0.45 0.78 

Genotype (G) 4 65.78*** 17477.86*** 7.93*** 1.71** 
G X E 4 4.14 1819.62 2.12* 0.56 
G X N 12 9.81 2849.07 1.30 0.36 
G X D 12 5.04 1721.97 0.61 0.27 
G X E X N 12 10.01 2219.17 0.64 0.22 

G X E X D 36 6.91 1760.88 1.08 0.31 

G X N X D 36 11.04 1929.13 0.97 0.39 
G X E X N X D 36 6.17 1605.84 0.55 0.31 

Error d 128 7.98 2143.51 0.79 0.43 

Total 319 19.70 10952.99 1.57 1.56 

C. V. 7o 21.24 20.29 28.26 18.80 

***** and ***significant F-tests at 0.05, 0.01, and 0.001 levels of probability, respectively. 


