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We make the variable change 

h = Rh + A 'bp (5.29) 

where 

h = 

and 

R = •^11 *^12 

•^21 *22 

Then 

IT ' . T -1 " 
= h R'ARh - (Bp)'a '(Bp) - o (5.30) 

We choose R to diagonalize A, so that 

R^AR . I " 
0 X, 

, c - X2 ( 5 .31) 

It can be shown that 

CA = C[(Bp)V '(Bp) - a] 

= [- 6,6283 s - ft + C0] (5.32) 

where 

f = «1V2 * *2*3^1 ^ + *,03) (5.33) 
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and 

o = m^[l ~ Bj - Bg] • (5.34) 

The exact form for R is not needed, since the elements R^g, 

etc., always appear in the combinations 

*11*22 " *12*21 ^ 1 

*11*21^2 *12*22^1 ^ h 

*11^2 *12^1 ^ ^2 

*21^2 * *22^1 ^1 

We scale the integration variables: 

II 1 I II 1 I 
k  =  - L  k  ,  1 = ^ 1  .  ( 5 . 3 5 )  

Aj 

The numerator given in Equation (5.26) becomes quite complicated after 

the variable changes given in (5.29) and (5.35). We list the effect for 

only the leading terms: 

0 9  - 5  9  " 9  " 9  9  " 2  2  " 2  
- s/2 rr = - s/2 C ^{[3/2 3^ + C]k ^ + Cn^G^k + Cn,G,k 

+ 4 Cg2(k" • G,)(k" • G^) + C^G^Gg} , (5.36) 

- 4(p, . k)(p2 . &)(k . &) = - 4{c"2{[g2 + 1/6 C]k"^(k" • p,)(k" • Pg)) 

+ c"1{62k"2(G, • p,)(G2 ' P^) + ngfGg ' Pzifk' ' P|) 
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X (k • Gg) + BgfG^ • P])(k • Pgifk • G^) 

+ GgtGg • Pgifk • p,)(k • G^) + n,(G^ * p,)(k • p^ (k • G^) 

+ BgfG, . G^) (k" . p,)(k" . P2)}+ (G, • GgitG, • p^ifCg • P^)}, 

(5.37) 

2 £^(k • p,)(k . pg) = 2 C"'{[1 + 3/2 $3 C"']jl'^(k" • p,)(k" • p^) 

+ n,(G, • p,)(G, • P2)k"2 + 2 ggfk" . Ggifk" • p^) 

X (G^ ' Pg) + 2 Bgfk • Ggjfk • PgjfG, • p^) 

+ nzG^fk" • p,)(k" • p^) + CGgfG, • p,)(G, ' P;)} , 

(5.38) 

2 k^(p2 • %)(p, • £) = 2 c"'{[l + 3/2 ej c"1]k"2(&" . p,)(&" . p^) 

+ Ti2(G2 • P,)(G2 • P2)k"Z + 2 g^fk" • G,)(k" • p,) 

X (Gg . Pg) + 2 ggCk" . G,)(k" . P2)(G2 • P,) 

+ n,G^(k • P|)(k • Pg) + CG^(G2 • Pj)(G2 • Pg)} • 

(5.39) 

Here 

G, = C - 62G3P2 (^2^4 "*• " P2)] ' 

G2 = C ^[gjggp, - " P2)] 
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Several of the terms in Equations (5.36) - (5.39) give rise to 

leading behavior. However, several cancellations occur, leaving the 

final result 

= i ^-ig^ JTjr ® ' '^f)^ j • (5.40) 

This complex cancellation will be seen to occur to all orders in Sub­

section D. 

The analysis for diagram 11a,2 is similar. We obtain the identical 

result as given in (5.40): 

Tp2 = i ["'9^ -pjr g^(1n s - in)^] . (5.41) 

Diagrams lla.l and 11a.2 belong to the class of s diagrams, to 

be defined in Subsection D. We therefore obtain 

-r(3) _ t-(3) + ji3) 
^s - Ta.l + Tgg 

= -ig^ jrp- g^(ln s - in)^ . (5.42) 

The calculation for diagrams llb.1 and lib.2 follow the same 

form as that for diagram lla.l. They belong to the class of u diagrams 

as defined in Subsection D. We obtain the result 

T(3) _ M) + ,(3) 
u  - ' b . l ^ ' b . 2  

= "ig^ 2Î3T ^• (5.43) 

The other sixth-order diagrams include nonplanar diagrams, diagrams 

involving quartic vertices, radiative corrections to the lower order 
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diagrams, etc. We discuss some of these briefly. 

The calculation of the diagrams in Figure 12a and 12b follows the 

same procedure as above. They behave at most like In^s. The diagrams in 

Figure 12c do not involve fermion lines, and thus behave like 1/s, up to 

powers of In s. 

The nonplanar diagrams can be neglected, following the general 

analysis of Tiktopolous (38). This is valid as long as cancellations do 

not occur to prevent the attainment of the maximum powers of In s. The 

maximum powers of In s are obtained in this case, justifying the neglect 

of nonplanar diagrams. 

Another class of diagrams is illustrated in Figure 13. We find that 

diagrams 13a - 13c behave like In s, while diagrams l3d and I3e behave 

like 1/s, up to powers of In s. 

We note that the dominant sixth-order diagrams support the conjecture 

made by Chang and Ma, as mentioned in Subsection 6. 

D. Pseudoscalar-Pseudoscalar Scattering to All Orders 

In the last two subsections we found that the ladder diagrams with 

fermions exchanged in the t-channel were the dominant diagrams. We 

shall assume that these ladders, as illustrated in Figure 14, dominate 

in all orders. There are several reasons for assuming this: the results 

of the fourth- and sixth-order calculations, the similarity to the 

ladders of (9^)^» and the Chang-Ma conjecture. In this subsection we 

calculate the diagrams shown in Figure 14 to all orders in the forward 

direction. Diagrams like the one shown in Figure 14a we will call u 

diagrams, while those in Figure 14b we will call s diagrams. 
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(0.2) 

(b.l) (b.2) 

— • — 

(c.2) (c.3) 

Figure 12. Sixth-order pseudoscalar-pseudoscalar diagrams 
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(a) (b) 

(c ) (d)  

r 
# # # 

(e )  

13. Sixth-order pseudoscalar-pseudoscalar diagrams 
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1^+ k|,ao 

k|-k2, ai 

k| k2-k3@2 

kn'^n-i ®n-i 

kn+n, «n 

(a )  

COMBINATIONS OF SCALAR AND 

PSEUDOSCALAR CONTRIBUTIONS 

(b) 

COMBINATIONS OF SCALAR AND 

PSEUDOSCALAR CONTRIBUTIONS 

Figure 14. N-loop pseudoscalar-pseudoscalar ladder diagrams: 
(a) u diagrams and (b) s diagrams 
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To aid in comparison with Reference 15, we will calculate the 2(n+l) 

order u diagrams shown in Figure 14b. They all have the same denominator, 

n « n—1 9 9 9 9 
D = n A n [(k - k .) - m ][(p. - k.) - m ] 
" j=l j &=1 ^ 

X [(p, - k^)^ - m^] , (5.44) 

where 

Aj = -(kj - m^) . (5.45) 

The numerator of each individual diagram is given by 

Tr[r,(K, + nOFgCKg + m) ... r^(K^ + m)r^+,(^j + + m) 

X r^+|(K^ + m) ... Tj (Kj + |!52 + m)] , (5.46) 

where 

fj = (') or (YÇ) 

If we denote the sum of all contributions as N^, then 

?("+') . .g2(n+l);3n+l f r % (5.47) 

In Appendix D we show that, in the leading logarithm approximation, 

N = (-2)"*^[A (p, + k )'(p + k.) + Z B^(p, + k )'k.] (5.48) 
n n I n z I n i n j 

J-i 

where 

n 
A = n A. 
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Z 

— 1 2 I 
i-1 

Lq = 2[(p^ + kj).kj] 

= 2[(P2 + kp'k.]A 
r j' j-1 

(5.49) 

In (5.48), we define 

J 
n A = 

£=j+l ^ 

The relations in (5.49) are identical to the corresponding relations 

(5.7) of Reference 15 except for the replacement of p^ with (p^ + k^) and 

Pj^ with (p^ + k^). 

By power counting, one finds that the integral in (5-47) is 

logarithmically divergent. Performing a subtraction on the divergent 

part of produces a In s term. However, we note in Appendix E 

that, as in the case for the fourth- and sixth-order diagrams, this 

logarithm is not promoted by the Feynman parameter integrations, and 

thus remains nonleading. The diagrams of Figure 13 contribute to the 

coupling constant renormalization. Since the integral of (5.47) has 

degree of divergence zero (logarithmically divergent), the renormaliza-

tion will affect only terms independent of the external momentum. Thus 

the leading energy behavior we find for these diagrams should be 
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unaffected by the renormalization. 

We find it convenient to rewrite Equation (5.48) as 

• P;) + A^(P2 • !<„) + \(p, . k,) + A^(k, • k^) 

n 
+ Z Bhip, • k.) + (k . k.)}] . (5.50) 

j=l n ' J n J 

The first term of (5.50) is identical to the corresponding term in 

Equation (5.7) of Reference 15. It can be evaluated using Mel 1 in 

transform techniques, yielding a contribution to of 

•'9^ nifnil)! ' '5-50 

The analysis of the other terms in Equation (5.50) is quite com­

plicated. The result is that they are all nonleading. Therefore the 

leading behavior is given entirely by (5.51). We outline the general 

argument below. More details appear in Appendix E. 

We need to consider two types of terms (see Equation (5.16) of 

Reference 15): 

I n 

X [(k.^ - m^ + iG)(k ^ - m^ + ie) ... (k ^ + ie) 
^1 2 £ 

n ^ - n—1 - -
X { n (k. - m + ie)}{ II [(k. - k. ,) - m + ie]} 

2=1 ^ j=l J J ' 

X {(pg + kj)^ - m^ + ie}{(p^ + k^)^ - m^ + ie}] ^ , (5.52a) 
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and 

c ' wv.v. - '..V. / -/„ 'oro ^ri k, k -1 1 "2 "2 "A 
I n 

X [ ( k ^  -  mf + ie)(k ^ + ie) ... (k ^ + ie) 
A, ^2 ^2 

n - 2 ^ 9 o 
X { n (k - m + ie)}{ II (k. - k. ,) - m + ie} 

e=l ® j=l J J ' 

X {(p2 + k^)^ - mf + ie}{(p^ + k^)^ - + ie}] ^ , (5.52b) 

where 1 ^ ... < < n for (5.52a) and 1 < X| < Xg ... < < n 

for (5.52b). All other terms have been examined in Reference 15. Each 

of the other terms was shown to be non leading but only after a complicated 

cancellation of possible leading terms (called p terms in Reference 15). 

It is useful to parameterize the propagators in exponential form: 

(k^ - + is)"' = -i /" d6 e'e(k^-m^+i£) _ 

k (k^ - + ie)"' = -i /" dS (2i8)"' _J_«'B[(k+a)^V+is] 
^ 0 3a^ a=0 

k^k^(k^ - m^ + ie)"2 d6[(2i6)'1 —^ .g^^jgie[(k+a)^-m^+ie] 
a=0 

(5.53) 

Following Blaha (39), we introduce n extraneous momenta (see 

Figure 15). We can then use the relations given in (5.53) to write 
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P2 krPz.Go 

k, + a| 

k2* 02 

I 

% -4H 

on+kn 

k|-k2,a| 

^ k| + «I 

O2 — 0 I 

kn-i 

A A 
-^+kn, Ob 

On 
\ 

- P, P, 

^ Z * ^ Z  

fln-on-i 

kn*On 

I «h 

Figure 15- N-loop pseudoscalar-fermion u diagram with spurious 
momenta a^ and Feynman parameters Oj and 
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Equation (5.52a) as 

~ Vv Sp.v. Sp.v. "2° /„ - V, ••• 

^0 ° 

on nn Va ^ 0 ° 

x { n  -  (2:6 A**) 
e=1 

n 
X / .../ exp {i E [(k. + a.)^ - + ie)]g. 

k, k î=i J J J 
1 n 

j=l 

n-1 2 2 2 2 
+ î Z [(k. - k. ,) - m + ie]a. + î[(p, + k.) - m + ie]a„ 

j = ] J J"""' J ^ I u 

+ U(p, + k^) 2 2 
m + iE]a^} 

a,=32= =a =0 
n 

1(1) 
n,£ (5.54) 

where 

= _L 
X 3a. (5.55) 

In (5-54) we have neglected irrelevant constants. 

The momentum integrations can be performed. This yields 

•"nil = «PoV„%,V| ••• "2° /„S ••• d'ndB, 

e-re -, .Vl .V 
& V ,p 

X { n [g G t _ (2;gx ) ' a dL=} 
e=l " ^ 

, (5.56) 

a=0 
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where 

' do.n-l * <% * ®n'Cl * ""l.n-l ®I1 

and 

n 2 2 " 
D(a) = -d. s + E [(p, + a ) G + (p. + a.) H ] + E 

0,n \ % j,&=i 

}<l 

(/-U) [c (  z Z $,) - "  d,_ J  

We have defined 

"s a ' ifj '! • "j J ' 'J ' 

i K "1,1-1 «i <1 

= Vl.i + <"j ^ ®J+l"r' ^ "j+l.i 9;+, 

Cj = , . 

and 

'^j ° "o.j-l ®j ' 

"j ' "j.n Cj., 
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(5.60) 

The expression (5.58) for D(a) can be obtained by the graphical cutting 

rules (22, pp. 31-36) generalized to graphs containing 2n + 6 external lines. 

Following a similar procedure, we obtain 

By power counting, we see that (5.52b) is divergent. Expression (5.61) 

is a result of dimensional regularization, where 2w is the spatial 

dimension in which all momentum integrations have been performed. 

We show in Appendix E that the leading terms in the integrals of 

(5.56) and (5.61) are of the form 

Since f(0, B) = 0, we find that expressions (5.56) and (5.61) are non-

leading. The leading behavior of (5.48) is therefore given by (5.51): 

(5.61) 

where 

f(0, B) = 0 ( 5 .63) 

nl(n+1)I 
(g^ In^s)" (5.64) 
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This is identical to the spin-average result, Equation (5.32), of 

Reference 15. The results obtained in Subsections B and C are special 

cases of (5.64) for n = 1 and 2, i.e., for fourth-order and sixth-order 

(see Equations (5.23) and (5.42)). It does not give the result found for 

the Born terms of Subsection A. However, in performing the summation to 

all orders, we will see that Equation (5.64) can also be used for n = 0 

to give the leading behavior. 

The high energy behavior for the s diagrams can be obtained in the 

same manner. All changes can be accounted for by replacing p^ with -p^. 

2 2 For the denominator, this amounts to replacing the factor [(p^ - k^) -m ] 

2 2 
with [(P| + k^) - m ]. This results in changing s to -s in D(a) and D 

given in Equations (5.58) and (5.44). Again we find that the term 

A^(p^ • Pg) (see Equation (5.48)) gives the leading behavior. This also 

gives the effect s + -s in the numerator. We finally obtain 

= -igZ ! [g^(ln s - iir)^]" . (5.65) 
^ n!(n+l): 

Again this is identical to the spin-average result, Equation (5.33), of 

Reference 15. 

With the expressions given in (5.64) and (5.65) we are able to sum 

to all orders the leading logarithms of the two classes of diagrams: 

T = ; T<"^" 
" n=0 " 

= -ig^ z (gf In s)" 
n=0 nl(n+l)I 
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= -ig 
2 1,(29 In s) 

g In s 

^ ^ (g In s)3/2 

and 

Tg = -îg 
2 l,(2g(ln s - î t t)) 

«v 
'b 

(g In s) 

^ e-'Z'S . . (5.67) 
(g In s) 

For the s model, the amplitude is given by 

T = T + T 
s u 

% :iSL (, + e-'2'9) . ,,, . (5.68) 
/Sir (g In s) 

This corresponds to a fixed cut in the complex angular momentum plane. 

It is identical to the result obtained in Reference 15 for the spin 

averaged fermion-fermion scattering amplitude. It is also similar to 

3 3 4 
the results of (cp and the truss bridge diagrams of cp +9 (12, 4o): 

T % (, + 
Air (g In s) 3/2 

In this case the branch cut begins at J = (2g - l) while in the s model 

the branch cut begins at J = 2g. 

The amplitude for pseudoscalar-pseudoscalar scattering in the a 
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model is also given by (5.68). The amplitude for the Y model can be 

2 - 2  2  - 2  
obtained from (5.68) with the replacement of g and g by 4g and g /2. 

In deriving (5.66) and (5.67), we have used the expressions (5.64) 

and (5.65) for the Born terms as well. The value of (5.64) and (5.65) 

2 for n = 0 is just -ig , which is different from the expressions given in 

(5.2). However, all these terms behave like g f(t). When compared to 

the all-orders sum given in (5.68) or in (5.66) and (5.67) which behave 

2 2n 
like g s these terms are negligible. Therefore, the use of expressions 

(5.64) and (5.65) for the Born terms does not affect the leading behavior 

of the all-orders sum given in (5.68). 

E. The Born Terms for Pseudoscalar-Fermion Scattering 

The Born diagrams for pseudoscalar-fermion scattering are shown in 

Figure 16. All diagrams contribute to the leading behavior. We obtain 

T,5.a " ®X,A3 • 

T,5.b ~ -'9' > '5.69) 

-2ig^in^ 6 
v.- ̂ 77^ • 

F. Fourth-Order Pseudoscalar-Fermion Diagrams 

Figure 17 illustrates the fourth-order diagrams for pseudoscalar-

fermion scattering. Besides the diagrams shown in Figure 17, there are 

many radiative corrections to the Born terms. These radiative corrections 
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\ 

( a  )  

/ \ 

( b )  

Figure 16. Born diagrams for pseudoscalar-fermion scattering 
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k «1 ®2 1: 
—'  ̂— » ^ — — 

P| Prk,q* P3 

(a. I) (0.2) (0.3) (0.4) 

(b.l) 

— —  — p  ̂  —  « 2  —  —  ̂ N A A / V ^ ' —  

(b.2) 

] 
(b.3) 

I I X 
(b.4) 

/ 

— — — — \ —IvxAA/^ 

(c. l)  (c.2) 

-A r- —\ X A 
(d.l) (d.2) 

Figure 17- Fourth-order pseudoscalar-fermion diagrams 
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are nonleadîng and will not be discussed further. 

In analogy with the pseudoscalar-pseudoscalar scattering, we call 

the diagrams of Figure l6a.l and l6a.2 s diagrams and those of Figure 

16a.3 and l6a.4 u diagrams. They are the leading diagrams. 

We discuss the diagram of Figure l6a.l. The corresponding amplitude 

is given by 

= 9" I • (5.70) 

gy a. 1 
k 

(2) 
The denominator j is given by Equation (5.5). The numerator is given 

by 

^ u(p2)[-f|*2* + 2(k • Pg)* - - k^m + 

- Km + m^]u(p,) . (5.71) 

The leading behavior comes from the term 

"ife.l = -=(P3)02 "(P,) 

(5.72) 

' " • 

The calculation follows the same procedure as in Subsection B. We 

arrive at the result 

=  ^ 9 '  " "  '  ;  • (5.73) 

The analysis of the diagram in Figure l6a.2 is entirely analogous. 
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We obtain the identical result: 

T,_ . s - . (5.74) 

Combining Equations (5.73) and (5.74), we obtain 

= - Y gf g^Xln s - in)2 . (5.75) 

The u diagrams can be handled in the same manner as the s diagrams. 

2 2 The denominator is changed by the replacement of [(p^ + k^) - m ] by 

2 2 
[(Pg - k^) - m ]. This is equivalent to the replacement of s by -s. 

The numerator undergoes the change of replacing p^ with -pg. This also 

is equivalent to changing s into -s. We obtain the results 

^ 
Thus 

= - i gZ g2 In^s . (5.77) 

Some of the other fourth-order diagrams are shown in Figure 17b -

17d. They are all nonleading. We list only the results. The diagrams 

of Figure 17b and 17d behave at most like a constant. The diagrams of 

Figure 17c behave like 1/s, up to powers of In s, while their planar 

counterparts behave at most like In s. The leading behavior for the 

fourth-order diagrams is thus given by Equations (5-75) and (5.77). 
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G. Sixth-Order Pseudoscalar-Fermion Diagrams 

The planar sixth-order diagrams are illustrated in Figures 18 and 19. 

We expect the diagrams of Figure 18 to give the leading behavior. The 

calculation of the leading diagrams is quite tedious. However, if one 

performs the calculation as the forward spin average, it becomes tract­

able. In this case the general analysis of the following subsection 

applies, and we obtain -

T^S) = -igZ ^ [i^dn s - iir)^]^ (5.78) 

and 

T^S) = -igZ ^ [g^ In^]^ . (5.79) 

H. Pseudoscalar-Fermion Scattering to All Orders 

We assume that the ladder diagrams such as that shown in Figure 20 

give the leading contribution in any given order. We shall work with the 

forward spin averaged amplitude. The calculation is parallel to that for 

pseudoscalar-pseudoscalar scattering given in Subsection D. Let us 

denote the sum of all contributions from diagrams such as that shown in 

Figure 20b by 

T^n+I) = i^"*' f " f F • (5.80) 

The denominator is the same as for pseudoscalar-pseudoscalar scattering 

and is given by Equation (5.43). The expression for the numerator is 
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P2 ki+P2.,./32 P4 
— ^ , 

•f 

k2 

®2 ®3 

«I 

(0.1) 

' k|+(^-P4 
1 

1 } ^ 

(0.2) (0.3) 

(b.i)  

+ 3 MORE 

Figure 18. Leading sixth-order pseudoscalar-fermion s diagrams 



109 

1 1 

(0.1) 

' I 
• I 
I I 

(0.2) (0.3) 

(0.4) 

L_L 
(b.l)  (b.2) 

(b.4) 

Figure 19. Nonleading sixth-order pseudoscalar-fermion planar 
diagrams 



no 

(û) 

COMBINATIONS OF SCALAR AND 

PSEUDOSCALAR CONTRIBUTIONS 

( b )  

COMBINATIONS OF SCALAR AND 

PSEUDOSCALAR CONTRIBUTIONS 

Figure 20. N-loop pseudoscalar-fermion ladder diagrams: (a) s 
diagrams and (b) u diagrams 
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derived in Appendix D. The result is 

N„ - (-2)"+'[A,(p, . Pg) + A„(P2 • k,) + Z bJ (p, + k_^)-k ] . (5.81) 
J = 1 

This equivalent to the replacement of (k^ + p^) with Pg in expressions 

(5.47) and (5.48). As in Subsection D, we find the term A^(p^ • p^) to 

give the leading behavior. The other terms have been analyzed in Appendix 

E. They have already occurred in the calculation of Subsection D. They 

were shown to be non leading. 

Since the leading term is identical to that given in Subsection D, 

we obtain the identical result: 

• (5-82) 

The analysis for the s diagrams is parallel to that for the u 

diagrams. We obtain the same result as in Subsection D: 

= -19^ iïîTsW 's'"" ' - • '5.83) 

Therefore, we arrive at the same results as in pseudoscalar-pseudo-

scalar scattering for the all-order amplitudes: 

-ig^ 1,(2g In s) 
T = ' 
u 

(5.84) 

g In s 

-'9^ 

/47 (g In s)3/^ 

-'9^ 
g-'Zng gZg , (5.85) 

" A7 (g In s)3/2 
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T = T + T 
s u 

The result for the a model is also given by (5.86). The amplitudes 

for pseudoscalar-fermion and pseudoscalar-antîfermion scattering are both 

given by (5.86) with the replacement of g^ by g^/2. 

I. Summary 

In this work we have explicitly examined pseudoscalar-pseudoscalar 

and pseudoscalar-fermion scattering. Fermion-fermion scattering was 

calculated in Reference 15. Amplitudes containing external fermion lines 

were spin averaged. The other amplitudes listed in (4.4) differ from the 

amplitudes mentioned above only by changing two external pseudoscalar 

lines to scalar lines. As noted in Appendix D, this affects only the 

mass terms. Therefore, these amplitudes have the same leading behavior, 

and we are justified in speaking of fermion-boson and boson-boson 

amplitudes. 

In the s model we found all amplitudes to be identical. They are 

given by (5.86). 

The fermion-boson, antifermioo-boson, and boson-boson amplitudes in 

the a model are also given by (5.86). The fermion-fermion and fermion-

anitfermion amplitudes are respectively given by (5.84) and (5.85). 

They lack the signature factor. 

In the Y model the boson-boson scattering amplitude is given by 

(5.86) with g^ and g^ replaced by 4g^ and g^/2. The fermion-boson and 
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"2 "2 
antîfermîon-boson amplitudes is given by (5.86) with g replaced by g /2. 

The amplitudes for fermion-fermion and fermion-antifermion scattering are 

2 - 2  2  
given respectively by (5.84) and (5.85) with g and g replaced by g /2 

-2 
and g /2. They also lack the signature factor. 
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VI. CONCLUSION 

In this work we review the supersymmetry transformation and the 

construction of a field theory satisfying this sytranetry. The Feynman 

rules are derived and renormalizabi1ity is studied to the lowest order 

of perturbation theory. 

We have studied boson-boson and boson-fermion scattering in the 

high energy limit within a class of field theories containing fermions 

and spinless bosons with the aim of investigating the role supersymmetry 

plays in the theory. Fermion-fermion scattering was studied in an 

earlier work (15). In all cases we found the amplitudes to be dominated 

by the diagrams with fermions exchanged in the t channel. This is 

similar to the rule in Regge theory that an amplitude is dominated by 

the highest J-plane trajectory allowed in the t channel. 

The Wess-Zumino model of supersymmetry used in this calculation is 

clearly renormalizabie since the dimension of all interaction terms is 

less than or equal to four. The supersymmetry places restrictions 

between the coupling constants and between the masses. As demonstrated 

in Section III, these restrictions greatly improve the renormalization, 

causing cancellations of divergences to occur between different diagrams. 

All remaining divergences are removed by the introduction of a single 

wavefunction renormalization constant. 

In contrast, the symmetry restrictions in spontaneously broken non-

Abel i an gauge theories are essential for their renormalizabi1ity. The 

symmetry also plays a strong role in their high energy behavior. All 

integrations over transverse momentum are convergent, due to cancellations 
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between diagrams. All In s factors come from the integrations over 

longitudinal momentum. This causes the theory to Reggeize. The vector-

meson self-couplings play an important role in these cancellations. 

Despite the cancellations in the renormalization of supersymmetry, 

the s model has the same basic features of the high energy behavior as 

the Y and a models. Mesons play only a passive role, providing momentum 

transfer for the fermions exchanged in the t channel. Meson-meson 

couplings are unimportant. There is no Pj_ damping and the maximum energy 

dependence exhibited by the individual Feynman diagrams is attained. 

It is interesting to note that the spin-averaged amplitudes for 

fermion-fermion, fermion-boson, and boson-boson scattering are all equal 

in the high energy limit within the s model. In the a model the spin-

averaged fermion-boson and boson-boson amplitudes are equal, while, as 

noted in Subsection I of Section V, the fermion-fermion scattering lacks 

the signature factor. This is due to the fact the fermion wavefunction 

is no longer self-conjugate. The Y model is slightly more complicated. 

The boson-boson amplitude is given by four times the spin-averaged 

fermion-boson amplitude. The spin-averaged fermion-fermion amplitude is 

equal to i times the spin-averaged fermion-boson amplitude, minus the 

signature factor. These factors arise because there is only one type of 

meson which can be exchanged. Again the fermion-fermion amplitude lacks 

the signature factor because the fermion wavefunction is not self-

conjugate. All amplitudes of the three theories possess a similar fixed 

square root cut. 
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IX. APPENDIX A 

In this appendix we give our notâtional conventions. We also list 

some results for Majorana spinors that are used in the text. 

We define our metric according to 

900 = ' > 9,1 = 922 = 933 ° 

= 0 for y V 

(A.l) 

The Dirac matrices we use satisfy 

{?*, yV} = . (A.2) 

We define 

Y5 = = ÎY^Y'Y^Y^ (A.3) 

so that 

Yj = 1 . (A.4) 

We take as charge conjugation matrix 

C = lY^^ . (A.5) 

Our charge conjugation matrix C satisfies the conditions 

+ t 
CC = C C = 1 

= -c 

C'V^C = -(Y*)T . (A.6) 

We also define 
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= Y [y*,  Y^]  •  (A.7)  

Integrals over four-dimensional volumes in momentum space are 

denoted by 

I ' I (a,, 
k 

''''V . (A.8) 

The amplitude T used in the text is defined by 

S = 1 +  T(2*)4 6(p^ -  p . )  .  (A.9)  

The coupling constant, g, we employ in the discussion of the Wess-

Zumino model in Sections III, IV, and V differs from that defined in 

Reference 16 by a factor i. 

A Majorana spinor 41 is defined by 

ij; = = (tjlC) , (A. 10) 

where C is the charge conjugation matrix. Because of (A. 10), ip and tjl 

are not independent fields: 

This is the reason a factor of i is needed in front of the kinetic energy 

and mass terms of £^, Equation (4.1). 

The spinor wavefunctions we employ follow the convention of Bjorken 

and Drell (41), except we use a different normalization: 

Z u(p, s)u(p, s) = *5 + m (A.12) 
s 
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and 

Z v(p, s)v(p, s) = - m 
s 

(A.  13)  

The explicit forms of the spinor wavefunctions, with helicity ±i .  

are 

u(p, s) = (E + m)^ ->• ->• 

0 • p 
E + m *5 

v(p, s) = (E + m) 
, , ^ • P E 
il E + m s (A. 14) 

where is a nonrelativistic spinor wavefunction satisfying 

g » p 

|p| 
Xg = sXg , s = ±1 (A.15)  

and 

(A.16) 

If we choose the reaction plane to coincide with the xz plane so 

that r = (0, r, 0, 0), then in the limit r/E 0 

e' = ; (A.17)  
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and 

( i )  •  ( ? )  •  ( A  ' * )  

where x+^^> etc., apply to particle 1, etc. 

We now list some identities satisfied by two Majorana spinors, 

and ijfg. The proof of these relations appears in Gasiorowicz (32). 

*1*2 ^2*1 

^1V2 " "Wl 

*,75*2 = *2^5*1 
(A.19)  

= -*2Vv*1 ' 

*1*;v*2 = -*2*pv*l " 

Using the Fierz transformation, Gasiorowicz also demonstrates that 

('ï'iYç'j'l) (*2^5*1) = -(i^*i)(*2*i) 

(*lYu^54^)(4^Y^Tg*l) = . (A.20) 
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X. APPENDIX B 

In this appendix we derive the Feynman rules of Figure 8 in 

Section IV. We will do this using functional methods and reduction 

techniques. Reduction techniques simply mean that one may obtain the 

S-matrix element by taking the appropriate n-point function, removing 

the propagators from the external legs, and placing the external momenta 

on the mass shell. 

Functional techniques allow us to calculate the n-point functions 

as functional derivatives of the generating functional. In the case of 

the Lagrangian given in Equation (4.1), the generating functional is 

given by 

Z(J) 'V. / jB  A jB  B S 4» exp i{/ d^U^ + £, + £j]} (B.l) 

where 

^0 " - mV] + i[O^B)^ - mV] + ifi*** - , (B.2) 

= -ig KA - iYgB)* - imgA(A^ + B^) - 1/8 g^{A^ + B^)^ . (B.3) 

and 

= J^A + JgB + Tnjj . (B.4) 

We can write in terms of functional derivatives. Then (B.l) becomes 

Z(J) AS BS exp i| ^ ) 

X  J d\[£Q + F J ]  » , (B.5) 
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where 

£ 
I (i) [-cêà] «1; [33;'se ' ''Ts'eo «!;] 

«  ,  ' - 3  
X j= img 

X 
A  ,4 

«J* «J; «Jb 

Summation on repeated indices is implied. 

The integration can now be performed, using the formula 

/ & Ç e'/(iSAS+jS)= (det A)"* J , (B.7) 

Det A is an irrelevant constant, so (B.5) becomes 

'/  ̂ 1 ( 5^' W )  "^ / [•'a'^'^A * •'B'^'B 4 "T 
Z(J) -v e A G \e (B.8) 

where 

/

. -ip(x-y) 

-r-T—. p - m + I IE 

(B.9) 

with 

Sp(x - y) = Sp (x - y)C^ 

/

.-ip(x-y) 

^ - m+ i le 
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Note that 

A(x - y) = A(y - x) , (B.IO) 

Sp(x - y) = -[Sp(y - x)]^ . (B.ll) 

The propagators a(x -  y) and Sp(x - y) provide the rules for Figures 

8a, 8b, and 8c. 

For simplicity, let us first examine the diagram in Figure 8f of 

Section III: 

This is a term in the expansion of 

<TfA(x)A(y)A(z)) >= (1)^53^ ̂ ^Z(J) . (B..2) 

It corresponds to the term -img in We expand the two exponentials 

of Z(J) given in (B.8), keeping only the term which can contribute to 

this diagram. Let us call this term A^. Then 

*3° (T) (T) 

/ ̂A^^A /  ̂A^^A /  ̂A^^A 
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To obtain diagram 8f, the first three derivatives must act on each 

of the last three integrals. There are 31 ways to do this. The other 

derivatives can act on the remaining currents in 3! ways. We get another 

factor of (2)^ from the fact that 

âjjpfT jT = 2 A(x - w) . (B.U) 

This follows from Equation (B.IO). We therefore obtain 

(i) (-img) (-i)^{2)^(3!) (31) -jr 

= -3 img . (B.15) 

This is the Feynman rule listed in Figure 8. 

Next let us look at the vertex shown in Figure 8g: 

y  
X 

\ 

2 2 
This corresponds to the term -img AB in £|. This vertex appears in the 

expansion of 

<T(A(x)B(y)BU)) >= . (B.I6) 

Expanding Z(J) as given by (B.8), we obtain 
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»2= (T)'J 

x ( - i ) :  j r  3 /  v'a /  jsajg /  j^aj,  • (b- '7)  

We have kept only the term contributing to the vertex shown in Figure 8g, 

and have called this term AB^. To obtain this vertex, 5/ôJg(y) and 

6/6Jg(z) must act on each of the last two integrals, giving a factor 2Î. 

2 2 The derivative 6 /6J_ gives another factor of 21. We obtain a factor of 
d 

(2) since, e.g., 

J-AJ-= 2 A{y - w) (B.18) 
b" 6Jg(y) 6Jg(w) I 

and another factor of 2 because of Equation (B.14). Therefore, we 

obtain 

AB2 = (1) ^ i(-img) (y) ^ (-1)3 ^ 3(2)3(2)2 

= -img . (B.19) 

This agrees with the rule given in Figure 8. 

Let's examine the followinq vertex of Figure 8h 

2  I f  
corresponding to the term -1/8 g B of*,. As before, we expand the 
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following 4-point function 

<T|B(x)B(y)B(z)B(w)) >= .(B.20) 

In the expansion of (B.20), we keep only the term contributing to the 

above diagram. Let us call this term B^. We obtain 

(t) âû;f;T (ij J ir 

Now is it simply a question of combinatories, keeping only the terms 

which contribute to the above diagram. Proceeding as above, we obtain 

(t) '' ̂  sh (l) '' (-1)4(2)4 

= -3 ig^ . (B.21) 

The analysis of the other diagram of Figure 8h is entirely the same. We 

obtain the same result, given by Equation (B.21). This agrees with 

Figure 8. 

To obtain the rule for the diagram appearing in Figure Si 

u. / 
S / 

2 2 2 
corresponding to the term -1/8 g (2A B ) of we expand the 4-point 
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function 

<T ( A(x)A(y)B(z)B(w)) > ^J ÔJ (x) 6J (y) ÔJ (z) 6J (w) •(B.22) 

Let us call the desired term in the expansion of (B.22) ^<^2' obtain 

V 2 = ( t )  ( f )  

X (-1)4 iy (6) J / JgiJj / JgAJg . (B-23) 

Keeping only the terms which correspond to diagram 8i, the combinatories 

yields 

A,B, = {i){-l/8 g^) (?) (-1)* 6 (2) 
2 2 

= -ig^ , (B.24) 

in agreement with Figure 8. 

Lastly, let us calculate the rule corresponding to Figure 8d. 

corresponding to the term -g/2 ipAjp of £|. The result for Figure 8e can 

be obtained from this result due to symmetry. 

As before, we will expand the vertex function 
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<T |*,(x)*g(y)A(z)| > = ("C* «791 «yïT 

In order to obtain all signs correctly, let us explicitly exhibit the 

reduction technique. To be specific, let us consider the amplitude for 

particle A coming in, with an outgoing antifermion and fermion. This 

amplitude is given by 

T(p,s,, PgSg, P3) = (y] /d\dVz G(p^s^)^(i^^ - m)^^ 

2x t-r, X <T ( i|)^(x)ii)g(y)A(z) j >(- o % " m ) (-idy - m)^^ 

i(P,x+p y-p z) 
X v^tpgSg) e . (B.26) 

We expand (B.25), keeping the term, called corresponding to diagram 

8d: 

X J J^AJ^ J n Sp J n Sp . (B.27) 

Taking the functional derivatives, and keeping only the terms contrib­

uting to the vertex of Figure 8d, we obtain 

Aif/g = (-i) (-ig) (i)^{i) (Cg^) (C^^) f d^u[2 A(z - u) ] 2 [Sp(y - u)^^ 

- S^(u - y)YoHSp(x - u)^ - S^(u - x)^] + [S^(y - u)^^ 

Sp'" " " "'ar " 4'" • j 
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= (- -if) {i)'(i)(cj^)(c^) / <1^(2 Hz - u)l 2 r4[S^(u - y)^^l 

X  t S p C x -  u ) ^ ]  -  < . [ s j ( u  -  y ) ^ ] [ S ^ ( x -  u )  A  .  ( B . 2 8 )  

We have used Equation (B.ll) in deriving (B.28). Using the relation 

(C = -(C from Appendix A, we arrive at 

AiJ ,2 = ^ ( i)^(i) J d^u[2 A(z - u)](2)^ [Sp{x - u)C ' Sp(u - y)C '] 

+ [Sp(x - u)C ' Sp(u - y)C 
(B.29) 

= -ig f d^u A(z - u)[Sp(x - u)Sp(u - y)]jjg • (B.30) 

Noting that 

i0^ - m Sp(x - u) = i 5(x - u) , 

and 

-idy - m Sp(u - y) = i 6(u - y) , 

Equation (6.26) becomes 

T(P]Sj, P2S2, P^) = u(PjS,)v(p2S2)(-ig)(2n)^6(p^ + P2 " P3) . (B.31) 

2 
valid to order g . The Feynman rule we obtain from (B.31) is that given 

in Figure Bd. 

As mentioned above, the Feynman rule for the diagram of Figure Be 

can immediately be obtained from that for Figure Bd. It agrees with the 

rule listed in Figure 8. 



134 

We have verified these rules with the calculation of higher order 

diagrams. We obtain the additional rule that every fermion loop is 

associated with a factor (-1). Also, if two diagrams contain closed 

fermion loops differing only in the direction of the charge flow, we 

keep only one of them. 
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XI. APPENDIX C 

In this appendix we derive a procedure for evaluating traces of 

terms often appearing in calculations involving fermions. We employ the 

convention for y matrices such that = 2g^^, where the metric 

g^^ is given by (+, -, -, -). We follow essentially the methods outlined 

in Caianiello (42). For the purposes of this work we do not need all the 

results listed below. We list them for completeness, as well as to show 

the full power of the methods. 

Let 

P. = p(') + m(') (C.I) 

( Î ) ( i ) 
where = m . 

Let 

R = P.P.P. ... P . (C.2) 
1 / 3  n  

We prefer to rewrite this as 

A r r A À r r a ^ r r 

R= P,Y • Y P2 • V - Y P» ••• P2m-,T ' Y Pjm 

for n = 2m , 

 ̂ c  ̂ c  ̂ C c 
R = P,Y • Y P2 • P3Y ' Y P4 ... Pgm-lY '  ̂  

for n = 2m-1 

u  5  . 0 1 2 3  Here y = 'Y Y Y Y . 

(C.3) 
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We introduce the dual representation 

= iyWyS ^ = iyS (C.4) 

It is then easy to verify that 

{r%, ri = , 

rV = -1 , (C.5) 

{r^. r*} = 0 

Letting primed indices run from 0 to 4, we can summarize this as 

{r^'. pV'} = 2Cf'v' (C.6) 

where the metric G is given by (+, -, -, -, -). 

Let us now define 

a. = Pj(iY^) = P^'^ÎYV) + mf'ifiyS) . (CJ) 

We can then write 

(C.8) 

where 

0^^) = (pfj), m(')) . (C.9) 

We find it also convenient to define 

â, = (iY^)Pj (C.IO) 

and 
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M î y ^ )  ' ^ 0  =  ^ 0  •  ( C ' 1 1 )  

Then 

m(')) = -(p('), -m(')) (C.12) 

and 

%' " = (0, 0, 0, 0, 1) . (C.13) 

We immediately obtain 

= &; (C.14) 

We also obtain the following results 

Q, • Qj. = P. . P. - m(')m(j) , (C.15) 

Qi • Qj = Qj • Qj , (C.16) 

and 

Q j  •  Q j  =  Q j  *  Q j  =  ~ ( P j  •  P j  +  .  ( C . 1 7 )  

We are now able to rewrite (C.3) as 

R = ... a2mr1*2m for n = 2m . 

R = ••• ®2m-l^ô for " = 2m-1 

(C.18) 

The power of this notation is seen when we take the trace of R. 

The otherwise troublesome m's are handled automatically by the formalism. 
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Let us take the trace of (C.16) (and thus of (C.3)). For illustrative 

purposes, we will consider only the case n = 2m. The application to the 

case n = 2m-1 is straightforward. 

We use the fact that the trace of gamma matrices can be written as 

a pfaffian. We use the notation outlined in Reference 42. Let 

(Î j) = Q; • Qj 

(i j) 5 q. ' Qj 

(C.19) 

(C.20) 

etc. Then we can write the trace of R as 

èTrlR] = ... 

= (-1)^(1 2 3 4 ... 2m-l 2m) 

where (1 2 3 4 ... 2m-l 2m) is the pfaffian (see Reference 42). 

For instance 

i T r E Q ^ Q g Q ^ q ^ ]  = ( 1 2 3 4 )  

= (12)(34) - (13)(24) + (14)(23) (C.21) 

= - (OI'OGIFQG'ÔT) + (0,-04)(ÔZ'Q,) 

If we define 

R E ... . (C.22) 
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that is, we replace Qj with Q- and Qj with Qj, then we note from (C.14) 

and from (y^)^ = 1 that 

Tr[R] = Tr[R] . (C.23) 
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XII. APPENDIX D 

A. Pseudoscalar-Pseudoscalar Scattering 

In order to calculate all the ladder diagrams of order 2(n+l), we 

need to evaluate the numerator of each individual diagram. To do this, 

we use the methods developed in Appendix C. 

First let us evaluate the expression for the numerator associated 

with the diagram shown in Figure 21. 

In this diagram all the rungs are pseudoscalars. The numerator, 

neglecting factors of i from the propagators, is given by 

= Tr[(K^ + + m)y^  . . .  (K, + - ^2 + 

X + m)Y^ + m)Y^(|<^ + + m)Yg] . (D.l) 

Let us define 

*1 = kn ' *2 = kn-1 ' ' *n = ^1 ' 

^n+1 ^ ("^1 P2)' *n+2 " *n+3 ^ *^2' ' ' *2n+l ^ *^n' 

^2n+2 " " ^1^ (0.2) 

We can then write (D.l) as 

= Tr[(fj + m)Y^(^2 n^YgCf^ + m)Yg ••• (^2n+2 m)Yg] (D.3) 

Now define 

L. = + m (D.4) 
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kn-i -"m 

P| + kn P| 

Figure 21. A ladder diagram for pseudoscalar-pseudoscalar scattering 
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and, as in Appendix C, let 

i. = L.(iYg) . (D.5) 

Then 

= (-l)"'^'TrW,?j(}3 ... ggn+z] • (D.6) 

Using the notation of Appendix C, this is just 

= 4(-])"*1(i 2 3 ... 2n+2) . (0.7) 

(See Figure 22) 

We note that 

" ̂2n+l' ^ = ^n' S " Ozn-I' * * * ' "^n = W ' (^.S) 

With this in mind, we find it convenient to rewrite (D.7) as 

iM = (-1)^"*^(n+1 2n+2 1 2n+2-l 2 2n+2-2 ... n 2n+2-n) 
n 

(D.9) 

= - (n+1 2n+2 1 2n+2-1 2 2n+2-2 ... n 2n+2-n) 

For example, for n = 3, we have 

iM = -(4 8 1 7 2 6 3 5) . (D.IO) 
n 

We have thus grouped equal momenta together. The extra factor of (-1)" 

in (D.9) comes from the sign of the permutation to bring the pfaffian to 

this form. 

We define 

A^ = (-!)"(! 2n+2-I 2 2n+2-2 3 2n+2-3 ... n 2n+2-n) (D.ll) 
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n+ I 

n-l 

n + 2  

n + 3 

2n 

2n + l 

2n+2 

Figure 22. This is a relabeling of Figure 21 (see text) 
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and 

Bjj = 2(-1)"*1(1 2n+2-1 2 2n+2-2 ... n+1 n+j+1 ... n 2n+2-n). (D.12) 

That is, is defined by replacing the element n+l-j in with n+1 and 

multiplying by an overall factor (-2). This will be illustrated later. 

We will show that (D.7) can then be written as 

= (-l)"*^[I(k,-p_)'(k +p,) - m^]A + Z [(k +p.)«k. - m^ B^]. (D.13) 
n I z n I n n i j n 

J-i 

This is similar in form to the result obtained in Reference 15. We 

will be able to ignore the mass terms, which should be nonleading. The 

major difference between this form and that obtained in Reference 15 is 

the replacement of p^ with (p^ + k^) and the replacement of Pg with 

(Pg - kj). 

We will find the following relations to hold 

n 
A = n A. (D.l4a) 
" j=l J 

ni A, A. A. 
B-' = n A. I Z L l/ ... L ' (D.l4b) 
" &=j+1 % i=l 1<A,<A2...<A.=j " ^1 i-1 

where 

Aj = -(kj - m^) (D.15) 

kg = k| - Pg (D.16) 

L = 2[(k. . k.) - m^] n A. (D.17) 
' J £=j+l ^ 



145 

and we define 

Z  
n =1 . (D.18) 

i=£+l 

It follows that 

Lq  = 2[[(k| - Pgj'k^] - , n > 1 

(D.19) 

Lq  = 2[(k^ - Pgi'k, - m^] 

We see that, apart from irrelevant mass terms, the only change from 

Reference 15 arises in the terms occurring in Bj|^. This change is the 

replacement of p^ with - p^ (when all signs are taken into account, 

it is the replacement of Pg with p^ - k^). 

Let us illustrate these statements with some simple examples. Con­

sider first the diagram shown in Figure 23a. 

From (D.9) 

iM, = -(2 4 1 3) . (D.20) 

Using the properties of pfaffians (see Reference 42), we can expand as 

o o 
iM, = -[(2 4)(1 3) + (2 4 1 3)] (D.21) 

where we define 

o o 
(i j) = 0 

(i j) = (i j) = (k j) 
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P| 

Figure 23. Diagram (b) is a relabeling of diagram (a) (see text) 



(D.23) 

M7 

The second term of (D.21) can be expanded as 

( 2 4 1 3 ) =  - [ ( 1  4 )  ( 2  3 )  +  ( 3  4 ) ( 1  2 ) ]  

= -2[(1 4) (2 3)] 

where we have used the fact that (i^ = 

Thus we can write (D.21) as 

iM, = -[(2 4)(1 3) - 2(1 4) (2 3)] • (D.24) 

From (D.ll) and (D.12) we have 

A, = -d 3) . (D.25) 

B] = 2(2 3) . (D.26) 

Substituting these into (D.24) and using the values for (2 4) and (1 4), 

we obtain 

iMj = [[(k^ - P2)'(k] + p^) - + [(k^ + P^)*kj - tn^]B|] . (D.27) 

This is in agreement with (D.13). 

If we how evaluate (D.25) and (D.26), we obtain 

= -(k^ - m^) 

(D.28) 

sj = 2[(k^ - PgJ'kj] - m^ 

This is in agreement with (D.14). 

We now proceed to the two loop case. (See Figure 24) 

From (D.9), 
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Pg k|-P2 P2 

P2 P2 

Figure 24. Diagram (b) is a relabeling of diagram (a) (see text) 
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i M j  = - ( 3 6 1 5 2 4 )  .  ( D . 2 9 )  

This can be expanded as 

o o 
iMj = -[(3 6)(1 5 2 4) + (3 6 1 5 2 4)] . (D.30) 

We can expand the second term as 

(3 6 1 5 2 4) = -[(1 6) (3 5 2 4) + (5 6) (1 3 2 4) + (2 6)(1 5 3 4) 

+ (4 6)(1 5 2 3)] . (D.31) 

The first two terms of (D.31) are equal. Since it is 

clear that 

(1 6) = (5 6) . (D.32) 

We can also see that 

(3 5 2 4) = (1 3 2 4) . (D.33) 

by rewriting the left hand side as 

(3 5 2 4) = -(5 3 2 4) . (D.34) 

We can compare this to (1 3 2 4) by noting that ~ ^5» that 1 is less 

than everything to its right while 5 is greater than everything to its 

right, and by using the fact that 

(i j) = -(j i) 

= Q. • ïj 
for i < j (D.35) 

Thus the first two terms of (D.3I) are equal. 

We can also show that the next two terms are equal. Again, it is 
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clear that 

(2 6) = (4 6) . (D.36) 

We now make use of the fact that 

i j \ when Q. = Q. 
= 0 " (D.37) 

1 m /  i < l , m ; j > 1 , m  ,  

where we write 

I J 

1 m 
= (i 1)(j m) - (i m)(j 1) , . (D.38) 

This is just the determinant of the matrix ^l m ) written in the 

notation due to Cayley (see Reference 42). 

Thus we are able to expand (see Reference 42) 

1 5 
(1 5 3 4) = (1 5) (3 4) -

^ ^ / (D.39) 

= (1 5) (3 4) 

(One could also interpret this as a trace, and use the fact 

Q, = Qj •) 

The second term is zero from (D.37). Similarly, 

(1 5 2 3) = (1 5) (2 3) . (D.40) 

Using (D.35) plus the fact that Qg = Qjj. we arrive at the equality of the 

second two terms of (D.31). Thus we are able to write (D.30) as 

= -[(3 6)(1 5 2 4) - 2(1 6)(3 5 2 4) - 2(2 6)(1 5 3 4)] . (D.41) 

Using (D.ll) and (D.12) and substituting for (1 6), (2 6), and (3 6), we 
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obtain the validity of (D.13) for n = 2. 

Now let us verify that the relations given in (D.14) hold for n = 2. 

Using (D.37) and expanding as in (D.39), we immediately obtain 

(1 5 2 4) = (1 5) (2 4) . (D.42) 

Substituting for (1 5) and (2 4), we verify that 

^2 ~ (*^2 ' - m^) (D.43) 

in agreement with (D.l4a). We note for later purposes that (D.42) is of 

the form 

Ag — A2 Aj (D.44) 

where we have taken into account the relabeling 

A, =  (2  4) . (D.45) 

in order to develop a recurrence relation for the proof of (D.14 ), 

we find it convenient to expand the second term of (D.30) in a different 

manner. 

00 00 
(3 6 1 5 2 4) = (1 5 3 6 2 4) 

= (1 5) (3 6 2 4) - ( 2 (2 4) - (2 4) <3 6) 

+  ( 2  1 )  <5  »  *  { I  l )  (2  3  

= (I  5 ) (3 6 2 i.) - P (2 A) + 2(̂  1) (3 11) . 

In the second line of (D.46), the third term is zero from (D.37) and the 

(D.46) 
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last two terms can be shown to be equal. 

o o 
N o w  ( 3 6 2 5 )  i s  e s s e n t i a l l y  j u s t  a  r e l a b e l i n g  o f  ( D . 2 3 ) ,  y i e l d i n g  

( 3 6 2 4 ) =  - 2 ( 2  6 ) ( 3  4 )  

2 ] (D.47) 
= -[(p, + - m ]B^ 

So the first term of (D.46) becomes, upon substitution for (1 5), 

(1 5)(3 6 2 4) = [(p, + kgl-k, - bJ  . (D.48) 

The second term is 

- (3 g) (2 4) = -2(1 3) (5 6) (2 4) 

= -2[(k, - - mf][(p^ + k^j'k, - - m^] 

= 2[(k^ - pgj'kg - nf][(p, + kgi'k, -

= [(Pj + kgj'k, - m^JL^ 

(D.49) 

The last term is 

CD '">• |U).,' 
= 2 ( J2) { 5  6 ) BJ (D.50) 

=  2 [ ( p j  +  k g ) ' k g  -  m ^ l C f k g  •  k ^ )  -  m ^ l s j  

Collecting (0.48), (D.49), and (D.50), we obtain 
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( 3 6 1 5 2 4 ) =  [ [ ( p ,  +  k g ) ' k g  -  s j  +  [ ( p ,  +  k g ) ' ^ ^  -

+ 2[(p^ + kg)'kg - nf][(k2'k|) - nflsj . (D.51) 

This is the same recurrence relation for Bg as given in Reference 15, so 

we conclude that (D.l4b) is valid for n = 2. One can also verify this 

directly by expanding (D.41). 

Now let us consider the three loop case (see Figure 25). 

From (D.9) 

iMg = -(4 8 1 7 2 6 3 5) . (D.52) 

This can be expanded as 

o o 
= -[(4 8)(1 7 2 6 3 5) + (4 8 1 7 2 6 3 5)] . (D.53) 

We can expand the second term as in the two loop case (see Equation 

(D.41)), yielding 

= -[(4 8)(I 7 2 6 3 5) - 2(1 8)(4 7 2 6 3 5) 

-2(2 8)(1 7 4 6 3 5) - 2(3 8)(1 7 2 6 4 5)] • (D.54) 

Substituting for (1 8), (2 8), (3 8), and (4 8), and using definitions 

(D.11) and (D.12), we can write 

= [[(kj - Pg)'(k^ + P|) - nflAg + [(k^ + P^)'kj - m^]B^ 

+ [(kg + Pj)'kg - + [(kg + p^)'kj - m^]Bg] . (D.55) 

This is in agreement with the general form (D.13). 



154 

k| -Pg P2 

k| - kg 

kg -k3 

P, P,+k3 P, 

(0) 

PZ 

6 

8 

Figure 25. Diagram (b) is a relabeling of diagram (a) (see text) 
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To compare with (D.l4a), can be expanded as 

Ag = -(1 7 2 6 3 5) 

= - [ (1  7) (2  6  3  5)  -  [ l l )  (3 5)  -  [ i  l )  (2 6)  -  ( j  

"  (d.56)  

=  - (1  7) (2  6  3  5)  

Only the first term in the expansion of A^ is nonzero due to (D.37). We 

recognize (D.56) as 

A^ = Aj Ag . (D.57) 

This verifies (D.l4a) for n = 3-

For comparison with (D.l4b) we expand the second term of (D.53) in 

a different manner. As in the two loop case, we can write 

( 4  8 1 7 2 6 3  5 )  =  ( 1  7 4 8 2 6 3  5 )  

= (1  7)  (4  8  2  6  3  5 ) -  ( i  s)  ^2 6  3  5)  (d .58)  

+  2  ( 2  s )  ( 4  6  3  5 )  +  2  7  ) ( 2  6  4  5 )  .  

When we take into account relabeling, we can compare these terms 

with the two loop expansion and find 

(1 7) (4 8 2 6 3 5) = -A, z [(p. + kJ.k, - , (D.59) 
J j=] ' ^ J ^ ^ 
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- (i s) ̂2 6 3 5) = -2(1 4) (7 8) (2 6) (3 5) 

= -2[(k^ - P2)'k2 - m^][(p^ + - m^lA^ (D.60) 

= -[(P, + kg)'kg - m^]L^ 

and 

2 ( 2  g )  6  3  5 )  +  2  ( g  ( 2  6  4  5 )  =  4 ( 1  2 )  ( 7  8 )  ( 4  6  3  5 )  

+ 4(1 3)(7 8)(2 6 4 5) 

(D.61) 

= -[(p, + kg)'kg - m^] 

X [2[(kg • kg) - m^lBg + 2[(kg • k^) - mflBg]. 

Collecting (D.59), (D.60), and (D.6I), we obtain 

-(4 8 1 7 2 6 3 5) = Ag [(p, + kg).k^ - m^]B^ + [(p, + kg).kg - m^]L^ 

+ [(p, + kg).kg - m^]{2[(kg . kg) - m^]B^ 

+ 2[(kg • k^) - m^jBg} . . (D.62) 

This is just the recurrence given in Reference 15. Substituting for 

Lq, Bg, and B^ verifies (D.l4b) for n = 3-

With the previous examples in mind, we find that there are two 

useful expansions for (D.9). The first expansion verifies (D.13) while 

the second verifies (D.14 ). The validity of the expansions can be 

proven by induction. The general form is given by 
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= -(n+1 2n+2 1 2n+2-l 2 2n+2-2 ... n 2n+2-n) 

= -[(n+1 2n+2)(l 2n+2-1 2 2n+2-2 ... n 2n+2-n) 

o o 
+ (n+1 2ri+2 1 2n+2-l 2 2n+2-2 ... n 2n+2-n)] (D.63) 

= (-1)"*^[(n+1 2n+2)(-l)"(l 2n+2-1 ... n 2n+2-2) 

_ o o 
+ (-1) (n+1 2n+2 1 2n+2-l ... n 2n+2-n)] 

Comparing with (D.ll), we see that the first term is just 

(n+1 2n+2)(-l)"(l 2n+2-l ... n 2n+2-2) = [(k, - P2)'(k^ + p^ - m^]A^ . 

(D.64) 

Using (D.37) one can prove by induction that the following recurrence 

relation holds for A : 
n 

\ Vl • 

Using the methods illustrated in the previous examples, one can 

prove by induction that the second term of (D.63) can be expanded in the 

following form. 

_ o o 
(-1) (n+1 2n+2 1 2n+2-l 2 2n+2-2 ... n 2n+2-n) = 

(-1)"*^2[(1 2n+2)(n+l 2n+2-l 2 2n+2-2 ... n 2n+2-n) 

(D.66) 
+(2 2n+2)(l 2n+2-l n+1 2n+2-2 ... n 2n+2-n) + ... 

+ (n 2n+2)(l 2n+2-l 2 2n+2-2 ... n+1 2n+2-n)] 

By comparison with (D.12), this is just 
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2 [(k + p,)'k. - m^]B^ 
j=1 n I J n 

Combining (D.65) with (D.67) yields (D.13). 

Expanding (D.66) in a different manner yields 

n o o 
(-1) (n+1 2n+2 1 2n+2-l 2 2n+2-2 ... n 2n+2-n) 

~ (-1)^(1 2n+2-l n+1 2n+2 2 2n+2-2 ... n 2n+2-n) 

(d .67)  

1 2n-l\ 
n 2n+2/ 

+ 2(-l)' 

Identifying terms in (D.68 

relation 

2 2n+2~2 3 2n+2-3 ... n 2n+2-n) 

(D.68) 

n+1 2n+2-2 3 2n+2-3 

2 2n+2-2 n+1 2n+2-3 

. n 2n+2-n) 

. n 2n+2-n) + ... 

2 2n+2-2 3 2n+2-3 ... n+1 2n+2-n)] 

, we can write the following recurrence 

< = 'n «n-, 

n-1 

for j < n 

(D.69) 

= l-S " jf, "("n • 

These relations, along with (D.65), are the same as those obtained 

in Reference 15» and thus lead to the same solution. Our functions L^. 

are defined slightly differently, but upon neglect of irrelevant mass 

terms, the definitions become equivalent. 

In order to complete the analysis of pseudoscalar-pseudoscalar 
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scattering let us examine what change occurs upon the replacement of one 

of the pseudoscalar rungs, say, the jth rung, with a scalar rung. This 

is a change in the coupling from (-gy^) to (-ig). In (D.l) this cor­

responds to the replacement of the appropriate y^'s with i's. From 

(C.14) this amounts to changing (D.7) to 

= 4(-l)"(l 2 3 ... j j+T ... 2n+2-j 2n+2-j+l ... 2n+2) . (D.70) 

That is, we replace all elements between j and 2n+2-j, inclusive, with 

barred elements. The extra factor of (-1) comes from the i . From (D.I2) 

this is equivalent to replacing m with -m in all the barred elements and 

multiplying by an overall (-1) (we obtain a factor (-1) for each rung we 

pass going up the ladder from j, a (-1) for each rung going down the 

ladder to 2n+2-j, and a (-1) going across the top. This results in an 

overall minus sign.) Differences due to mass terms can be neglected, 

since they should be non leading. This brings (D.70) back to the form 

(D.7), up to mass terms. 

This argument can be repeated for the replacement of an arbitrary 

number of pseudoscalar rungs. Thus, to leading order in log s, all 

combinations contribute equally. There are (n-1) rungs which can be 

1 replaced with scalar lines. This leads to 2 combinations. Adding 

] 
all diagrams thus leads to a factor of 2 .We thus obtain the 

following result for the sum over all combinations, correct to leading 

order in log s. 
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Np = (2"-bM^ 

(D.71) 

= (-2)"*'[(k, - P2)-(k„ + P,)An * i, 'P| * 
J-l 

This is in agreement with Reference 15. 

The numerator for the u diagrams evaluated in subsection D of 

section V can be obtained from Equation (D.71) by replacing -p^ with p^. 

B. Pseudoscalar-Fermion Scattering 

We now consider the numerator for pseudoscalar-fermion scattering. 

Let us examine the 2(n+l) order diagram shown in Figure 26, taking the 

forward spin average. 

Here all rungs are pseudoscalars. The numerator is given by 

= iTr[(K^ + mlYgCKn-i + (K, + ' ^2 ^ m)yg 

X (Kj  + M)YG . . .  (Kp  + +  M)]  .  (D .72)  

We see that this is the same form as (D.I) except for the factor of 

i due to the spin average and for the replacement of (fJ^+K^+m) with 

(jjj+m). 

We are able to carry out the analysis of the preceding section with 

only minor changes. In this case we have n rungs which can be either 

pseudoscalars or scalers. They all contribute with the same sign. The 

extra rung gives another factor of 2, which cancels the i due to the 

spin average. We thus obtain the same result as in the preceding 

s e c t i o n ,  e x c e p t  f o r  t h e  c h a n g e  o f  e v e r y w h e r e  r e p l a c i n g  ( P j + k ^ )  w i t h  P j .  
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P2+k| P2 

kr k2 

km 

kn-i-kn 

kn 

P| P ,  + k ,  P| 

Figure 26. A ladder diagram for pseudoscalar- fermi'on scattering 
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C. Other Amplitudes 

The numerators for all the other amplitudes mentioned in the Summary 

of Section V are all given by Equation (D.7I). These amplitudes differ 

from the ones discussed in Sections I and 11 above by the replacement of 

two external pseudoscalar lines with scalar lines. This causes a change 

only in the mass terms, which are nonleading. For instance, in order to 

obtain scalar-pseudoscalar scattering, one simply changes the external 

lines of Figure 20 labeled with momentum.p^ to scalar lines. One also 

changes the corresponding couplings from -gy^ to ig. But, as argued 

above in Section I, this causes no change to the leading terms. Thus 

the pseudoscalar-pseudoscalar, pseudoscalar-scalar, scalar-scalar, 

fermion-fermion, fermion-pseudoscalar, and fermion-scalar amplitudes 

for the s diagrams (respectively, the u diagrams) in any given order 

have the same numerator in the leading logarithm approximation (and when 

external fermion lines are forward spin averaged). This numerator is 

given by Equation (D.71). Therefore, one can speak of boson-boson, 

boson-fermion, and fermion-fermion scattering in the high energy limit 

without ambiguity. 
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XIII. APPENDIX E 

In this appendix we present some of the details for the proof of the 

statement that Equations (5.56) and (5.61) do not contain any leading 

terms. This amounts to the proof of statements (5.62) and (5.63). We 

base our approach on the methods of Reference 15. 

We will need the following definitions: 

(j)* = do,j-1 ^n ^Z]x * P^^ 

(jj) = jy Cn(Cj_i - *j_i Cj-z) "j «j 

0 c^_, c; , J<1 

where d. . and C, are given in (5.58). 
J »* ^ 

We note the following formulas: 

(E.I) 

1 I 3D(a) 

6,C 3a; 

2i (&) 
y 

a.-O 

(E.2) 

J i 3 D(a) 

c a*; 
= — (Ji)g 

yv 
a.-O 

Keeping terms with lowest power in a.'s and highest power in 

(p, • Pg)» we have for j, < 

(j, • jj) = (j ^n' ^j^-l ^^0,n^Pl * P2)] 

0, - J,) ^ = C°., <'[2V(p, . P,)l , 

'1 .0 
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(Pj • J) = (P2)"(j)u = dj,n • P;) ' 

(p, • J) i (P,)"(J)y = ci(P, • Pj) . (E-3) 

(P2 • J|"Pl • ' dj,.],-, C?,., ' "2'^' ' 

(P2 • J-pCp, • j,) = C°^., cl'[do.n<P| • P2'^l ' 

(P2 • J,)(P, • j,) = Cj|., • "2'^' • 

In order to illustrate the general argument, let us examine a simple 

case of (5-55) and of (5.61). 

For an example of (5.55), consider the term A^(p2 • k^) in 

Equation (5.48). In this case (5.55) becomes 

"(1) ^0 r x-1 ^0 g,'D(a)/C 
•'ni= ••• 

a=0 

(n)"0 ,iD/C 
= Vv P2°/''°'0 

'o"o " " ' " c 

r (Pg ' n) e'D/C 
= I da- ... da dg, ... dg =— 
JO n 1 n c 

. / dOo ... dc^dê, ... d6„ (fj . (E.4) 

We have used expressions (E.l), (E.2), and (E.3) in deriving (E.4). 

If we let f(a, g) = a ,/C, we obtain the results stated in (5.62) 
n n~ I 
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and (5.63). The expression in (E.4) obviously gives less leading 

behavior than the term 

We illustrate the technique of handling (5.61) with the examination 

of the term A (k, • k ). In this case (5.61) becomes 
n I n 

( 2 )  r  -1 -1 ^0 ^0 • > 1 % " " 0  • • •  ' ( Z ' V  « , ° « n  
a=0 

ID/C 
/ "'0 ••• '«.de, ... ds^ (In)(4) - -^1^] .(e.6) 

The first term of (E.6) is divergent in the limit u -*• 2 and requires 

a subtraction. From (E.l) we obtain 

<""'=-"1,0-1 . <E-7) 

which is of degree n - 1. 

Let us call the first term of (E.6) I. Scaling the variables as in 

(2.37) and (2.38), we arrive at the result 

I 0, r da« ... da dg. ... dg 6(1 - Za - Zg) f dp p"^^ ' e . 
0 0 

(E.8) 

We have used the fact that D, C, C^_,, C^, and d are respectively 
A ! n I * 2 
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homogeneous functions of degree n+l,n, X-I,n-X, and Ag - + I. 

Using Equation (2.39), the p integral can be performed, giving the 

result 

1 d C "(2-w) 

I ~ r da. ... da dg, ... dg 6(1 - Za - Zg) ( - ) 
JQ 0 n  1  n  V D y 

X r(n [2  -  w])  .  (E .9 )  

The pole at u = 2 is explicitly exhibited in the gamma function. Per­

forming the subtraction yields 

I ~ r da- ... da dg, ... dg 6(1 - Za - Zg) [In D/C + A.] (E.IO) 
J u n I n V 

where Aq is an arbitrary constant to be fixed by the renormalization. 

The term In D/C is not promoted by the Feynman integrations. Therefore, 

this term behaves at most like In s, and is non leading. 

Let us call the integral of the second term of (E.6) l^. Performing 

the scaling as before, we obtain 

J* Cl (E.„) 

0 

We have taken the limit w -*• 2 since the integral is convergent. After 

factoring the term (p^ • Pg), the remaining polynomial vanishes for 

Og = a^ = ... = a^ = 0. Therefore, this term is non leading. 

We now proceed to the general case of Equation (5.56). In Appendix 

C of Reference 15, it was shown that the leading terms of Equation (5.18) 

of that paper could be written as 

' 2 ~  
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(Pi * Po) în/r î 
g(a, B) '^2 ^ [d^ ' Pz)]^, J = 0, 1, ... A .(E.12) 

In the case we consider here, the proof of (5.62) is entirely 

analagous. There are only slight modifications. We treat each modifica­

tion separately. 

i) The replacement of the factor (p^ • Pg) with (p^ • A^)/C. In 

this case we replace (E.13) with 

g(a, B) e'^^^Edg ^(p, •  Pg)]^ 
^^2 * iD/C, 

But 

% " ~ 7\.n c2.,(P, • P2' • 
w L n 

Thus if we define 

f(a. 6) = aisb-il d, _ C° , , (E.I3) 
C *n'" 

we obtain Equations (5.62) and (5.63). 

ii) The replacement of a factor (p^ • Aj^) with (Aj^ • A^) with 

(Xj^ < A^). But 

'"1 • V " O*»! • "2' • 

(Xk • x„) ~ •'0,1^-1 ^1*." "^n ' ''2' 

This is equivalent to the change 
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d, C , 
A. ,n n-1 

f(a, g) g(a, g) (E.14) 

This verifies Equations (5.62) and (5.63) for this case, 

iii) Lastly, it is possible to obtain a factor (Xj^X^). This 

arises from a term 

J i 3 D(a) 

e, e, C da\ 9a^ 
^n \ n 

a=0 

This can be interpreted as the change 

xX - — 9"" 
' c 

(E.15) 

in 

g(a, 6)(p, • P;) iD/c,, 
72 = (do.n'P, • P;)!" = PjP,^ 

(E.16) 

From (E.I) the change (E.15) is equivalent to 

'"O.X,-! ^2 + \,n P?]»; 

-[ V' I pv 
9 ] (E.17) 

One can interpret this as a modification in (E.16) of 
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H c° 
-1 \-l n 

- [ " . • ] 

" ̂  ('l • P2):'°'^ldo.n(P| '  ̂ 2""' ' j 

d , C° , C " 
A, ,X -1 X, -1 n 

^ . k n k [ g(a, , j = 0 .{E.18) 

The function g (a, g) is different from that given in Equation 

(E.16). But the vanishing of f(0, B) has been explicitly shown. 

This verifies Equations (5.62) and (5.63). 

The general case of Equations (5.61) can be handled similarly. The 

divergent terms are treated exactly as in the special case A^(kj • k^) 

considered earlier. The subtracted integral gives rise to a term 

ln(D/C) which is not promoted by the Feynman parameter integrations. 

The convergent terms give rise to only one case not already treated. 

This is the replacement of (p^ • p^) in Equation (E.12) with 

(I • n) c' C° 
• (E'9) 

This is obviously less leading than the term (p^ • p^) since the 

coefficient vanishes for a. = a =0. 
0 n 


