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(b)] in the grayscale encoded intensity. The smaller insets to each panel

display an expanded view of the region close to the γ-Fe (220) Bragg

peak illustrating the quality of the refinement. . . . . . . . . . . . . . 118
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Figure A.3: (color online) Volume thermal expansion measurements of Fe83B17. The

volumes are normalized to the lowest temperature measured on cooling

from the liquid. The data acquisition began at (I), with the sample in

the equilibrium Fe2B + γ-Fe solid phases at a temperature of 1420 K.

The heating laser power was increased in a single step (black curve) such

that the sample melted and was heated to a maximum temperature of

1565 K (II). The heating laser was turned off and the sample under-

went free radiative cooling (green curve). At (III) the liquid reached its

minimum temperature of 1368 K, corresponding to an undercooling be-

low the Fe2B melt plateau of ∆T ∼ 79K, and underwent recalescence

and solidification into the metastable Fe23B6 + γ-Fe phases. A grad-

ual positive deviation (IV) from linear behavior occurred as the sample

temperature decreases down to 640 K. After a two minute hold at this

temperature, the sample temperature was increased at a constant rate

of 3 K/s to 1420 K (orange curve). The cooling and heating curves be-

gin to diverge at (IV) with a step in the volume at (V). After heating

to 1420 K, the temperature was decreased to 670 K (blue curve) and

increased to 1420 K (red curve) at a rate of 3 K/s. The cooling and

heating curves are featureless beyond the expected first-order allotropic

phase transition for Fe (VI). . . . . . . . . . . . . . . . . . . . . . . . . 123
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ABSTRACT

Containerless processing techniques allow the exploration of several poorly understood areas

of materials science and physics. The formation of transient metastable phases is typically

challenging to study in-situ, and so information on high-temperature solidification pathways

and the properties of such phases are often incomplete at best. Similarly, the structure and

properties of the undercooled liquid regime are just now being explored. The wide variety

of optical instrumentation and scattering techniques available for use with levitation based

systems allow novel, multi-faceted approaches to in-situ materials characterization.

Metastable phase formation in the Fe83B17 system was investigated through a wide variety of

techniques using multiple electrostatic levitators. Two primary phase selection pathways were

observed via in-situ x-ray diffraction studies. Samples either solidified into the equilibrium

Fe2B + fcc-Fe phase or formed a coherently intergrown metastable Fe23B6 + fcc-Fe structure,

which either transformed during the solidification plateau to the equilibrium phase or persisted

through cooling down to room temperature. The metastable solidification featured a kinetically

suppressed allotropic transformation, as well as the irreversible precipitation of a primitive

tetragonal Fe3B structure at low temperatures.

Both solidification pathways were probed with the use of the newly developed ISU-ESL

tunnel diode oscillator to observe magnetic transitions through the dynamic susceptibility.

In addition to observing the ferromagnetic transition of bcc-Fe, the ferromagnetic transition

temperature of the Fe3B phase was identified to be 795 K. Fe2B was seen to experience a ferro-

magnetic transition at 1015 K, which appeared to be characteristic of local moment magnetism.

A new transition temperature of 850 K was established for the metastable Fe23B6 + fcc-Fe

structure.

The newly developed Neutron Electrostatic Levitator, in conjunction with x-ray scattering

results from the Beamline Electrostatic Levitator, was used in combination to probe the liquid
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structure of Fe83B17 and compared to that of Fe83C17. Reverse monte carlo simulations were

carried out to model the structure of the liquid, which was then characterized using Voronoi

tesselation and Honeycutt-Andersen indexing. In doing so, qualitative evidence for a greater

degree of similarity to the Fe23B6 structure in the Fe-B liquid was demonstrated and used to

construct an argument for the comparative rarity of observation of the Fe23C6 in the Fe-C

binary.
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CHAPTER 1. INTRODUCTION

1.1 Technological and Historical Context

In 1976, the first of a new series of ferromagnetic metallic glasses containing only one met-

alloid component was trademarked by Allied Chemical Corporation[4]. The previous alloys in

the series, dubbed Metglas, contained two or three metalloid species, making it challenging to

understand trends in structural or magnetic properties of interest. The prevailing understand-

ing of good metallic glass forming materials were that materials exhibiting deep eutectics and

a large variance in atomic size, such as metal-metalloid systems, would be the most likely can-

didates. The Fe-B binary system matches both of these criteria handily. The Fe80B20 metallic

glass was found to be the strongest, hardest, and stiffest glass yet discovered[5]. Hasegawa et

al[6] performed a series of vibrating magnetometer experiments on this newly synthesized sys-

tem, and determined that the glass exhibited a Curie temperature TC of 647 K, approximately

11 K below a crystallization temperature of 658 K. This was much higher than the Curie tem-

peratures reported in other Fe-based Metglas materials containing phosphorous and/or carbon.

Further studies confirmed the Fe80B20 glass showed the highest room temperature saturation

magnetization of the Metglas family[7]. The low coercivity associated with the low anisotropy

in metallic glasses, combined with a high saturation magnetization, culminated in a tantalizing

material for transformer or inductor cores in a number of industrial applications[8].

The Fe80B20 glass forming system was thoroughly investigated in the following years, and

the numerous studies on the crystallization products of these glasses led to the discovery of

a number of metastable structures in the system. However, the sensitivity of the devitrifica-

tion process to the precise heat treatment applied[9], as well as compositional inhomogeneities

resulting from different quenching methods[10] and ribbon thicknesses[11], led to wide discrep-
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Figure 1.1: Phase diagram of the Fe-B binary from [1]

ancies over the precise nature of the crystallization pathways from the glass, causing confusion

over the thermodynamics of the system and a number of competing proposals regarding the

kinetics of crystallization in the system[12].

Typical glass forming compositions in the system range from Fe73B27 to Fe91B9[13], with

the lowest critical cooling rate at the eutectic of Fe83B17[14]. According to the equilibrium

phase diagram[1] (Fig. 1.1), at the relevant compositions near the eutectic, the stable boride

is body-centered tetragonal Fe2B (I4/mcm, a = 5.12 Å, c = 4.252 Å)[15] as seen in Fig. 1.2.

Fe2B is ferromagnetic[16] with Curie temperature TC of 1015 K [17], and experiences a shift in

its easy axis of magnetization between 460 and 480 K[18]. At high temperature, from 912◦C to

1394◦, the fcc allotrope of Fe (γ-Fe, Fm3m, a = 3.57 Å) is stable. At 912◦C, on cooling, γ-Fe

transforms to bcc-Fe (α-Fe, Im3m, a = 2.8 Å). Both allotropes are displayed in Fig. 1.3. These

are the only equilibrium structures near this composition. As it turns out, however, there are

several metastable structures involved in a typical crystallization pathway.
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Figure 1.2: The tetragonal Fe2B structure; I4/mcm, a = 5.12 Å, c = 4.25 Å. Large dark red
spheres represent Fe atoms, small green spheres correspond to B.

Hasegawa et al [6] performed several of the early devitrification studies of the alloy. Their

initial x-ray diffraction study of the ensuing phases yielded α-Fe and a phase that appeared to be

consistent with orthorhombic Fe3B (θ-Fe3B, Pnma), isomorphic with the common metastable

carbide Fe3C. They attributed this Fe3B structure a TC of 793 K, while others have claimed a

TC of 897 K[19]. By contrast, Koster et al [20] determined that devitrification resulted in plate-

like α-Fe particles embedded in a matrix composed of a tetragonal phase with a stochiometry

near Fe4B, independently observed by electron microscopy[21], though no explicit form of the

structure was ever determined. Koster only observed θ-Fe3B after annealing the system above

950 K. Heating the system above 1270 K caused a structural transformation to the equilibrium

Fe2B + γ-Fe phase.

Yet another devitrification study by Greer[22] found only a body-centered tetragonal variant

of Fe3B (bct-Fe3B, spacegroup I4, a = 8.63 Å, c = 4.87 Å), isomorphic with Fe3P, was always

present during devitrification, a conclusion supported by further studies [13, 23]. This phase was

also suggested to have a Curie temperature of ∼800 K[24]. Later work on annealing Fe80B20 at

380◦C also observed bct-Fe3B by transmission electron microscopy (TEM) and x-ray diffraction

(XRD), as well as noting a contiguous, possibly coherent, α-Fe phase[25]. Alternatively, Khan
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Figure 1.3: (left) bcc Fe structure, Im − 3m, a = 2.8 Å(right) fcc Fe structure, Fm − 3m,
a = 3.62 Å

et al[26] observed a primitive tetragonal Fe3B phase (pt-Fe3B, P42/n, a = 8.655 Å, c = 4.297

Å), an observation later repeated by Inal[12], who claimed it preceded any other Fe3B phases

during crystallization. Observation of this phase was also mirrored by Rundqvist in the Fe-B-P

ternary system[27], who established a model of the structure.

Theoretical studies of these boride compounds have established that Fe2B is the only stable

boride in this region[28]. Due to their metastable nature, there is a dearth of experimental

examinations of their properties, it is difficult to obtain physical parameters as inputs and

constraints on simulations. The similarity between the structures caused further disagreement

and confusion, as they may have been misidentified in the past. This has even led some to

wonder if the Fe3B phases were, in fact, stable[29].

Meanwhile, following the initial flurry of activity on the Fe-B glasses, a new permanent

magnet system was discovered. Previously, the market for hard magnetic materials had been

dominated by Sm-Co magnets. Nominally created as SmCo5 and Sm2Co17, these hard mag-

nets proved expensive for applications requiring mass production of large magnets, such as

the automotive industry. In 1982, General Motors and Sumitomo Special Metals indepen-

dently developed a new class of rare-earth magnets based on neodymium iron boron ( specif-

ically, Nd2Fe14B)[30]. The new magnets exhibited a rare-earth stabilized magneto-crystalline

anisotropy[31] that resulted in high coercivity[30] similar to the SmCo magnets, but at much

lower cost, making them far more attractive for applications not requiring the higher TC of
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SmCo. The new magnets were produced either by sintering or through crystallization from

melt-spun ribbons, producing nano-crystalline magnetic structures. Soon thereafter, a number

of devitrification studies on Nd-Fe-B ternary glasses were performed.

In a seminal work detailing the new principle of the ”Exchange-Spring Magnet”, Kneller

and Hawig [32] developed a microstructure prototype wherein hard magnetic nanoparticles were

surrounded by a soft magnetic matrix, promoting intergrain ferromagnetic exchange coupling

for the enhancement of a number of critical properties, and described such a system by using

the microstructure produced on devitrification of Nd3.8F77.2B19. In contrast to the previous

studies on binary Fe80B20 glasses, however, they note that neither α-Fe or any variation of Fe3B

were the initial devitrification products. Instead, a complex metastable cubic phase, Fe23B6

(spacegroup Fm3m, a ∼ 10.70 Å), shown in Fig.1.5 and isomorphic with Cr23C6, was observed

on crystallization every time. They reasoned that the broad crystalline reflections they had

observed via x-ray diffraction during the crystallization process could be attrributed to this

structure containing a significant amount of dissolved Nd, and noted it appeared to be the

only metastable boride capable of doing so. Upon formation, the Fe23B6 immediately began

to decompose to α-Fe and Fe3B, leading to a supersaturation of Nd in the residual Fe23B6.

The remaining Fe23B6 eventually transformed to the hard magnetic phase Nd2Fe14B, set in

the soft magnetic matrix of Fe3B. By alloying with small amounts of silicon and/or vanadium,

this sequence could be controlled to reduce or eliminate the initial decomposition into α-Fe and

Fe3B, producing a range of microstructures.

Devitrification and metallic glasses are not a focus of this dissertation, as the studies pre-

sented in later chapters are primarily related to solidification from the undercooled liquid.

However, aside from painting a picture of the confusion of poorly-characterized metastable

phases present in the system and establishing some of the historical interest in this alloy, these

studies may be instructive in light of the intimate relationship between the local structure of a

metallic glass and the short range ordering in the undercooled liquid it is produced from[33].

Given the theorized similarity in the cohesive energies of many of these borides [28], the contri-

bution of interfacial energies in the phase selection process or the kinetics associated with the

phase transformations should be considered. Recent in-situ measurements during solidification
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Figure 1.4: (a) The orhthorhombic Fe3B structure; Pnma, a = 5.09 Å, b = 6.748 Å, c = 4.25
Å[2]. (b) bct-Fe3B, I4 (c) pt-Fe3B, P4 2

n . Large dark red spheres represent Fe atoms, small
green spheres correspond to B.
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of other systems have revealed transient phases that effectively lower the nucleation barrier

[34], and the importance of the Fe23B6 system as a transient phase during the crystallization

of some glassy phases arouses some curiousity about a similar role during solidification.

In this regard, while solidification in the Nd-Fe-B ternary has been studied fairly extensively[35–

41], solidification studies of binary near-eutectic Fe-B are comparatively rare, and provide

conflicting information on the formation of metastable borides. Yang et al thermally cycled

Fe83B17 samples under a glass flux at the eutectic composition and found they exhibited a wide

range of undercooling [42, 43]. Performing XRD and TEM on solidified samples showed that

for undercooling temperature ∆T < 386 K, the equilibrium α-Fe + Fe2B phase resulted. For

386 < ∆T < 460 K, metastable tetragonal Fe3B was formed and persisted to room tempera-

ture. No other metastable phase was found. That study reported that the Fe3B phase remained

after annealing at 858 K for up to 16 hours and at 1223 K for up to 3 hours, decomposing after

5, as verified by SEM micrograph analysis. Battezzati et al [44] also observed an Fe3B phase

through similar methodology, but were unsure of the precise symmetry of the phase, noting

only that it transformed to the equilibrium phases on heating to ∼1300 K. Neither of these

studies observed Fe23B6.

To observe solidification of these metastable phases in-situ, conical nozzle levitation was

combined with XRD to study both Fe83B17 and Fe83C17 at cooling rates up to 170 K/s[45].

In Fe83C17 they observed first the formation of γ-Fe at 1420 K, followed by θ-Fe3C at 1000 K,

contrary to expectations from the phase diagram, which suggests a eutectic solidification. No

evidence of Fe23C6 was observed. By contrast, in Fe83B17 the Fe23B6 structure was seen to

precipitate as the primary, and only, phase. At cooling rates of 30 K/s it transformed to the

equilibrium Fe2B + γ-Fe phase; at 170 K/s the Fe23B6 persisted below the sensitivity of their

pyrometer, though a small amount of α-Fe was seen to appear. No Fe3B was observed, and no

quantitative phase analysis was performed. This is the first instance of the Fe83B17 structure

appearing as the primary constituent of the binary.

Barinov et al successfully obtained single phase Fe23B6 by mechanical milling [46]. Their

sample exhibited a Curie temperature of 601 K at the nominal composition of 20.7 at% boron,

but demonstrated a sensitive dependence on the boron composition and ranging as high as



8

Figure 1.5: The cubic Fe23B6 structure along the (1 0 0) direction; Fmm, a = 10.71 Å. Large
dark red spheres represent Fe atoms, small green spheres correspond to B.
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750 K. Upon applying Mössbauer spectroscopy to further detail the local atomic environments,

they observed a curious precipitation of α-Fe, where the weight fraction of α-Fe varied between

0.6 wt % and 12-15 wt %[47]. This appeared to have no effect on the ferromagnetic ordering

temperature. They attributed this phenomenon to the ”Diverse Atomic Position Occupancy”

(DAPO) effect, a mechanism by which Fe atoms moved from the 4a to 4b sites[47].

The Fe23B6 structure also came under renewed scrutiny through the work of computational

physicists. Fang et al [48] determined that the low vacancy energy of several of the Fe sites,

combined with a large variety of electronic structures and magnetic moments, led to a range

of chemical environments that allowed easy substitution of other transition metal atoms. They

studied a number of structural models, varying the site occupancies and positions, and com-

pared their cohesive energy to that of pure austenitic γ-Fe and the diamond structure (and,

by extension, graphite). At least one variant of the Fe23C6 was found to be even more ener-

getically stable than θ-Fe3B (19.5 meV/atom vs 20.6 meV/atom, respectively). Additionally,

they determined that the Fe sites on the (1 0 0) plane of the Fe23C6 structure matched the

(1 0 0) plane of austenite well enough to develop an epitaxial growth relationship, implying a

possible reduction in the nucleation barrier to forming the Fe23C6 structure out of an austenitic

matrix. They concluded that one would expect to see this structure much more commonly in

steel alloys, a thought echoed elsewhere [49]. However, despite the predicted thermodynamic

stability and structural flexibility, Fe23C6 is never seen in the Fe-C binary, and is only observed

in multicomponent systems.

Providing somewhat contrary results, ab inito MD simulations [50] were performed to study

the stability of the Cr23C6 structure in ternaries based on Fe-B and Fe-C. Their interest in the

system was in preventing the Fe23(B,C)6 structure from forming, considering it a primary

competitor to glass formation in the system. Other studies [45] suggested that the appearance

of the Fe23B6 phase was related to the glass formability of the system. Thermodynamicaly,

Widom found that while Fe23B6 had a slightly higher cohesive energy than equilibrium Fe2B,

Fe23C6 was found to have the lowest energy of all of the metastable carbides. Their approach

claimed that the structure would be destabilized with the substitution of sufficiently large rare-
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earth atoms onto the Fe sites, the opposite conclusion of previous experimental work[32] and

theoretical predictions[51].

As discussed through both devitrification processes and solidification from the liquid, rare

in-situ studies seem to suggest that Fe23B6 plays an important role, either as a transient

metastable phase or as a primary solidification product. It is possible kinetic factors contribute

to this, and the local structures of the glass or the liquid may play a role. Many models have

been proposed for the glass structure, generally envisioning a network composed of structural

motifs similar to the metastable crystallization phases[52, 53] arranged dense-packed solute-

centred atomic clusters[54, 55], based on structure factors from diffraction[56] or simulation[57].

The additional icosahedral ordering of the Fe23B6 structure appears to be less common in the

binary FeB glasses, appearing when larger atoms, such as Nd or Nb, are alloyed[55]. The liquid

itself is commonly suggested to exhibit the trigonal prisms dominant in the Fe3B structures

and the archimedian antiprisms related to the boron environments in the Fe23B6 structure[58].

However, icosahedral ordering is also frequently observed in undercooled liquid metals[59] and

is correlated with glass-formability[60, 61].

The variation of solidification or crystallization products among the different methods and

the lack of concrete phase analysis suggest a need for another look at the phase selection path-

ways in the system. While some variability is expected due to different methodologies, theo-

retical studies require some experimental constraints; in this regard, due to the metastability

of these phases, there are barely any experimental studies to use for comparison. For instance,

what experimental work does exist on the local atomic environments in Fe23B6[46, 47] conflicts

with theoretical models of the structure[62, 49]. Given the importance of these sometimes

transient phases and the difficulty of experimentally studying them (or even creating them),

a new approach is required. It is here that the utility of containerless processing techniques

become apparent.

1.2 Containerless Processing

The development of levitation-based containerless processing furnaces stretches back to the

early 20th century, with the first appearances of electromagnetic levitation (EML), patented
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in 1923 [63]. The utility of the approach is multi-faceted, avoiding common problems in high-

temperature metallurgical processing, allowing easy in-situ characterization of solidification

processes, and enabling the study of a new regime of liquid physics.

For one, from a very practical perspective, special care must be taken with the selection

of container materials to avoid alloying processes that could at best cause cross-contamination

and at worst threaten the integrity of the crucible itself. A particular example of great rele-

vance to the origins of the ISU-ESL project involves the many attempts to study the resistivity

of liquid silicon and other reactive high temperature liquids, which have been stymied by the

introduction of impurity phases from container walls and the resulting scatter in experimental

data[64]. Further complications arise when the interest lies in structural changes during solidi-

fication processes, and special furnaces optimized for scattering environments are often needed,

introducing a large, unavoidable background. By contrast, levitation systems optimized for

scattering, though comparatively rare, enable repeated thermal cycling and low-background

structural studies while bypassing many of these technical hurdles.

Perhaps the more significant benefit of a containerless processing environment is the elimi-

nation or reduction of the influence of impurity phases and container walls on the solidification

process. Classical theory models nucleation as the formation of clusters, with an associated

energy ∆G(r) given by

∆G(r) = −4

3
πr3∆GLS + 4πr2γLS (1.1)

where r is the radius of the cluster, ∆GLS is the bulk Gibbs free energy difference per unit

volume, and γLS > 0 is the interfacial energy. Below the melting temperature, ∆GLS > 0,

and so there is a critical cluster size r∗ = γLS/∆GLS beyond which it becomes energetically

favorable for the cluster to grow. The activation energy ∆G∗ to create this critical cluster is

given by

∆G∗ =
16πγ3

LS

3∆G2
LS

(1.2)
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In this framework, the nucleation rate I(T) may be calculated according to

I(T ) ∼ 1036

η(T )
exp(−∆G∗

kBT
)m−3s−1 (1.3)

where η(T ) is temperature dependent viscosity and kB is the Boltzmann constant[65]. By

contrast, in the case of heterogenous nucleation on a surface, such as a container wall, the

heterogenous activation energy is given by

∆G∗het = G∗f(θ) (1.4)

where 0 ≤ f(θ) ≤ 1 is a function of the wetting angle θ and is given by

f(θ) =
1

4
(2− 3cosθ + cos3θ) (1.5)

While the nature of heterogenous nucleation means that there are fewer potential nucleation

sites, the exponential function in the nucleation rate is greatly affected by reducing the wetting

angle, affecting the rate of nucleation by many orders of magnitude.

By removing container walls and eliminating a large source of heterogenous nucleation sites,

a liquid may be readily undercooled. Studies of this state have, to date, largely focused on the

short and medium range ordering in the liquid, its relation to solidification pathways, as well

as the formation of non-equilibrium states such as metastable crystal phases or bulk metallic

glasses. There are a number of levitation based schemes in use today; the following is a short

overview of the most common methods.

1.2.1 Conical Nozzle Levitation

Conical nozzle levitation (CNL) is mechanically the simplest technique to achieve levitation.

The sample is placed in the eponymous nozzle, and connected to a gas line. The nozzle is

designed such that Bernoulli forces will guide the sample back to the levitation axis. Levitation

of a sample of mass M may be described by
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∫
[
1

2
ρµ2 + p]dA = Mg (1.6)

where ρ is the gas density, µ is the flow velocity, and p the gas pressure[63]. Typically,

high purity noble gasses are used as a levitation gas, though there is the potential for applica-

tion of special reducing atmospheres, and oxygen-rich atmospheres are commonly applied for

oxide studies. The levitation mechanism is material agnostic, the main limitation on material

selection being that the surface tension of the sample in the liquid state must be sufficient

to maintain sample integrity. Typical setups employ a high powered CO2 laser aimed at the

top of the sample, though some employ RF heating. A pyrometer is used to measure sample

temperature from above.

A drawback of CNL is that the stable region of levitation for these setups is such that

only a hemispherical fraction of the sample is visible above the nozzle. For the purposes of

structural studies, this requires special nozzle materials (vanadium, or aluminum) or intensive

beam collimation that can affect statistics. In addition, the sample is heated only from the top,

while gas flow from below provides cooling power, establishing thermal gradients on the order

of 30 K for metals and up to 80 K for oxides [63]. Further, the flow of gas across the surface

can interfere with single and two color pyrometers, adding significantly to the measurement

uncertainty. This flow also interferes with determination of surface tension and viscosity.

1.2.2 Electromagnetic Levitation

A slightly more complicated setup, electromagnetic levitation furnaces, are based around

a specially designed levitation coil powered by an RF generator. The field produced by the

RF-coil induces eddy currents in the sample, which experiences a Lorentz force according to

F =
5B24π

6µ0
a3G(

a

δ
) (1.7)

where a is the sample radius, δ is the sample skin depth given by δ =
√

2/ωµµ0σ, σ is the

sample conductivity, and µ is the permeability[66]. The function G(x) is given by [63] as
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G(x) =
3

4
(1− 3

2x

sinh(2x)− sin(2x)

cosh(2x)− cos(2x)
) (1.8)

Critically, since the levitation mechanism depends on the development of eddy currents,

EML is limited to the study of metals of sufficient conductivity. Additionally, ohmic heating

due to resistive losses from the eddy currents leads to a power dissipation of

P =
B2ω

2µ0

4π

3
a3H[

a

δ
] (1.9)

where ω is the frequency of the field and H(x) is given by[63]

H(x) =
9

4x2
(x

sinh(2x) + sin(2x)

cosh(2x)− cos(2x)
− 1) (1.10)

Not only is the levitation mechanism coupled to the heating mechanism, but positional

variations of the sample in the coil will alter the power absorbed. Simply levitating a sample

is often enough to keep it in the liquid state;, a cooling gas is used to maintain some control of

the temperature and enable solidification. Temperature is measured via pyrometry. Typically,

samples are several hundred milligrams and on the order of 6 mm in diameter, though micro-

EML setups have been used for samples closer to 20 mg[67]. The geometry of levitation

apparatus, requiring coils surrounding the sample, make this technique more difficult to apply

to scattering environments, though it has been successfully installed for high-energy x-ray

investigations at the ILL and ESRF[68].

EML systems have also been used to measure resistivity by implementing a secondary

measurement coil and observing the voltage induced by magnetic fields produced by eddy

currents in the levitated sample [69]. This is of tremendous interest when applied to liquids,

controlling melt flow under the influence of an electromagnetic field or signifying structual

changes. However, the technique requires precise knowledge of the shape of the sample, which is

typically deformed when processing under normal gravity conditions. Microgravity experiments

are currently underway on the International Space Station to bypass this drawback.
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1.2.3 Acoustic Levitation

In the acoustic levitation scheme, materials are levitated by being placed in acoustic pressure

nodes. The technique has been applied to a range of materials, such as tungsten and liquid

mercury [63], with a viable temperature range up to ∼800 K, limited by the changes in gas

density near a hot sample[70]. The levitation force, driven by high intensity sound waves,

frequently results in deformation of the sample, increasing uncertainty in schemes to measure

surface tension or viscosity. However, the technique is optimal for systems that are liquid near

room temperature, such as sensitive biological samples. Some groups have used the technique

to levitate small insects and fishes, noting that the insects survived, while the ”vitality of the

young fish is reduced due to inadequacy of water supply” [71]. A promising application of the

acoustic technique is to hybrid systems, such as the aero-acoustic systems developed by Weber

et al[72]. The aero-acoustic system offers a full field of view of the sample, floating well out of

the levitation nozzle, while stabilizing it on the gas jet with a series of acoustic transducers.

1.2.4 Electrostatic Levitation

The history of the development of the electrostatic levitation technique is a fascinating

one, born out of microgravity research, and developed initially by several space agencies. A

detailed history of the development of ESL can be found in Ref. [73], which chronicles the

development of a number of ESL systems and hybrid furnaces around the globe in the last

two decades. Each furnace is unique. Available property measurements range from determi-

nation of hemispherical emissivity[74], electrical resistivity[75], creep[76], surface tension[77]

and viscosity measurements[78], density[79], triggered nucleation and growth front studies[80],

and structural determination through x-ray and neutron scattering. The technique is typically

performed in a high vacuum environment, eliminating any concern about metal-gas interac-

tions on thermophysical measurements, but high pressure variants are also in use for volatile

materials. Additionally, ESL features an open view of the sample for optical and scattering

measurements. Any material that can hold a charge is theoretically available for experiments,

though the need for a low vapor pressure remains a significant restriction on alloy choice. The
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technique is the most challenging in terms of operator skill and knowledge, requiring constant

attention and a firm mechanical intuition.

The first ESL experiments were carried out during parabolic flight by the European Space

Agency, first in 1977 and again in 1988. Beginning in the 1980s and continuing through the

90s, the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory

(JPL) invested considerable effort in the development of electrostatic levitation furnaces. While

the initial prototype system relied heavily on large concave electrodes for lateral control, the

second facility implemented an early version of the positioning system described in Chapter 2.

A set of four electromagnetic rotors were added in sequence around the top electrode to control

sample rotation.

Space Systems Lorals Electrostatic Containerless Processing System ESCAPES[81] was con-

structed soon after this, featuring a deuterium arc lamp for charging and a separate YAG laser

for heating. This system eventually became the Marshall Space Flight Centers (MSFC) ESL,

which was later modified for use in a high-energy x-ray scattering beamline at the Advanced

Photon Source (APS) at Argonne National Laboratory. The modified system was deemed the

BESL[82]. The early studies performed at the APS with the MSFC BESL focused on the

nature of the ordering in undercooled liquids. The BESL had been used to probe the nature

of the short range ordering in deeply undercooled liquid silicon as it related to the predicted

liquid-liquid transition [83, 84], as well as describe the influence of the icosahedral short range

ordering in the liquid on the nucleation barrier [85, 86].

A new system inspired by this BESL, as well as the system developed by the DLR in Ger-

many, the Washington University Beamline Electrostatic Levitator (WU-BESL)[87], followed

soon after. The WU-BESL was designed specifically for high-energy x-ray scattering studies

performed at the APS, and was the result of a collaboration between Washington University,

Iowa State, and NASA scientists. It was an attempt to design a more mobile and compact lev-

itator than the previous iteration, and was first successfully deployed to the APS in 2010. The

Washington University group has historically focused on glass-forming systems, and so many of

their experiments focused on zirconium based BMG alloys. The WU-BESL also implemented

density, viscosity, and surface tension based measurements [88, 89]. The combination of these



17

physical and structural capabilities has led to an increased understanding of the contribution

of liquid fragility to glass formability and a universal scaling relation of the viscosity of liq-

uid metals [90] relating log(ν/ν0) to TA/T , where TA represents the departure from Arrhenius

behavior and corresponds to the onset of cooperative motion in the liquid.

To further probe liquid short and medium range ordering, an ESL was commissioned for

the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Dubbed

the NESL[91], the levitator was designed for integration into multiple beamlines, and has so

far been tested in BL1B (NOMAD) and BL18 (ARCS). The first results from the instrument

used the contrast between neutron and x-ray liquid structure factors to describe the short

range ordering in ZrPt and ZrRh [92]. Recent experiments, in collaboration with the Iowa

State team, have been designed to further explore the ramifications of the universal viscosity

relation, using inelastic neutron scattering to find excitations relating to diffusion in the liquid

above and below TA.

Concurrent with the development of the WU-BESL, an ESL system was constructed at Iowa

State, dubbed the ISU-ESL[62]. Driving the construction was the implementation of a tunnel

diode oscillator (TDO) for high temperature resistivity and dynamic susceptibility measure-

ments [93]. In general, the ISU-ESL functions as a permanent thermophysical and electrical

property measurement system, and is considered more stable than its sister systems. The ISU-

ESL group works closely with the Washington University team for scattering experiments, but

has focused on materials deemed difficult to process. Initial studies at the 2010 commissioning

run of the WU-BESL included structural studies of undercooled CoPd, a material of interest

for its fascinating magnetic properties at deep undercooling [67], its potentially magnetically

triggered nucleation mechanism [94], and the possibility of study with the TDO. Later work

focused on gaining high quality x-ray diffraction data from undercooled liquid Si[95] and ger-

manium, and attempting to obtain similar structural data from neutron diffraction using the

NESL for direct comparison and evaluation of possible discrepancies in the x-ray atomic form

factor of liquid silicon. Additionally of interest have been transient phase formation in the NiZr

glass forming system[96], the AlPdMn quasicrystal forming system[97], and a number of other

alloys featuring complex metastable phases, including FeZr, FeSi, and NiB.
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Work on eutectic Fe-B began in the ISU-ESL lab in 2013 when x-ray data was acquired

during solidification of Fe83B17 samples during a WU-BESL experiment at the APS. The anal-

ysis of this data concluded in early 2015 with the surprising results presented in Chapter 3

and Appendix, at which point it became the topic of this dissertation. Chapters 3, 4, and 5

summarize the work performed since then.
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CHAPTER 2. EXPERIMENTAL BACKGROUND AND

METHODOLOGY

One of the greatest strengths of the electrostatic levitation technique is its versatility. The

wide range of accessible sample materials combined with the open field of view for a wealth of

thermophysical optical instrumentation and the availability of furnaces integrated into scatter-

ing beamlines for structural studies, can, in the hands of a skilled and lucky operator, lead to

a veritable wealth of data.

The studies presented in later chapters made combined use of many of the current capabili-

ties of the ISU-ESL, the WU-BESL, and the NESL. This chapter serves as an overview of these

techniques; each of these recently constructed levitation systems has extensive published work

associated with their construction and operation, and for a more thorough outline the reader

is invited to delve into the work of Rustan [93], Mauro[98, 99, 91], and Derendorf[100]. These

systems are complex and temperamental, and those seeking a more thorough understanding of

the ISU-ESL are referred to the excellent discussion in Ref. [62].

First, the preparation of levitation spheres will be explained. Then, the core components

of the ESL technique will be described, along with the basic thermophysical measurements

common among most systems. Next, the tunnel diode oscillator (TDO) circuit implemented

into the ISU-ESL for magnetic susceptibility measurements will be briefly discussed. Details

of the x-ray scattering performed will be presented in Section ??, with particular regards to

the design of the WU-BESL setup, the protocols and corrections required, and the Rietveld

refinement methods critical to Chapters 3 and 4. The NESL, and the neutron scattering

measurements performed with it, will then be described. Finally, as it is a much less common

formalism than those pertaining to crystal structures, a brief summary of the mathematics of

liquid scattering is presented, the application of the reverse Monte-Carlo (RMC) simulation
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technique to experimental diffraction data, and the various methodologies for interpreting the

resulting ensembles, will be laid out.

2.1 Sample Preparation

All Fe-B and Fe-C samples prepared for the studies in this thesis were prepared by a

combination of techniques at the Ames Laboratory Materials Preparation Center (MPC) and

within the ISU-ESL itself. Iron from Toho Zinc (99.99% purity, metals basis), Boron from first

Alfa Aesar (99.9999% purity, metals basis) and later B11 from Eagle Pritcher (99.54% purity),

and Carbon from Alfa Aesar (99.9995% purity, metals basis) were first arc melted to form ∼20

g ingots. First the iron was arcmelted several times under a reducing atmosphere. The boron

or carbon was then added, and the resulting ingot melted, flipped, and remelted six times to

promote homogenization.

The ingots were then broken into chunks sized appropriately for the levitator of choice;

20 to 100 mg for ESL and BESL studies, and 200 to 400 mg chunks for NESL studies. The

pieces were were then placed on polished copper or graphite blocks within the ISU-ESL, chosen

for their high thermal conductivity and easy of cleaning, and the chamber evacuated to high

vacuum conditions (∼ 10−7 torr). Each sample was melted once to form a sphere.

The chamber brought up to partial atmosphere (∼ 300 torr) by backfilling with a forming

gas (Airgas, 5% H, 95% Ar, 99.999% purity). The samples were then melted and held briefly

in the liquid state so that the surface of the sample could be observed via the visualization

camera to monitor the reduction of any surface oxides. This was typically performed multiple

times, and the samples flipped, the chamber evacuated, and backfilled again, to ensure the

entire surface of the sample was exposed to the reducing atmosphere. Examples of samples

before and after forming gas processing are shown in figure x.

Each sample was individually monitored, and the mass measured before the initial vacuum

melting, after any forming gas processing, and after any levitation processing, in order to

track evaporative mass-loss. Typically, no measurable mass loss was observed when melting

under an atmosphere. In addition, due to concerns of carbon contamination from the graphite

substrates, a batch of 20 Fe-B samples created on copper and a batch of 20 Fe-B samples
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created on graphite, all created from the same ingot, were analyzed using the MPC’s Leco

CS-444 Carbon/Sulfur determinator for variations in carbon content. The difference between

the arc-melted ingot, the copper processed spheres, and the graphite processed spheres was

found to be on the order of 1 ppm.

The same instrument was used to test if there was any stochiometry shift in the Fe-C

samples, comparing the arc-melted ingot and the sample that had been held in the liquid state

in the NESL for ∼20 minutes. The weight percent carbon of the ingot was determined to

be 4.19%, corresponding to 17.04 at%, and repeated measurement established a compositional

variability in the ingot of +/- 0.05 wt%. The processed sample was determined to be 4.19 wt %

carbon, corresponding to 16.9 at%. Given the small amount of mass available to test compared

to the recommended mass for the instrument, this variation was considered within the margin

of error.

The composition of a prepared Fe-B ingot was measured in bulk by inductively coupled

plasma mass spectrometry (ICP-MS). A composition of 82.9 at.% iron, 17.1 at.% boron was

determined over a number of samples, with a standard deviation of 0.2 at.%. The composition

of a sphere processed in the BESL during the experiments for the results in Chapters 4 and 5

was determined to be 82.55 +/- 0.2 at.% Fe after levitation processing.

2.2 Electrostatic Levitation

2.2.1 The Levitation Mechanism

All ESL systems share the same basic operational design principles. A set of conducting

electrodes provide the levitation control. While early iterations of the system relied solely on

large, curved top and bottom electrodes to provide both the levitation force and a stabilizing

lateral restoring force, current systems incorporate two sets of orthogonal lateral electrodes,

each set consisting of a grounded electrode and an electrically isolated electrode. The WU-BESL

and NESL use hemispherical top electrodes, while the ISU-ESL electrode set is composed of

copper cylinders, primarily to minimize the electrode filling factor when using the TDO system,

and can be seen in Fig. 2.1. The top electrode has a shaft drilled through it to allow samples
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Figure 2.1: Electrodes currently installed in the ISU-ESL.

to drop down from a carousel above; the bottom electrode has a similar shaft to enable the

vertical translation of a copper sample post. This post controls the initial vertical position

during the launch, an important parameter to attain stable levitation.

The top electrode is isolated electrically by a large Macor block and connected to a Trek

model 20/20c amplifier, capable of a slew rate of 450 kV/ms and operating between 0 and 20

kV. The ungrounded lateral electrodes are placed on Steatite standoffs and each is connected

to an individual amplifier outputting between -5 kV and 5 kV. When the electrodes are turned

on, a sample sitting on the grounded bottom electrode is capacitively charged and achieves

levitation when the electrostatic force is sufficient to overcome gravity such that FE = mg.

Earnshaw’s theorem[101] states that there can be no stable minimum in 3D from a collection

of static charges, and so to maintain a stationary sphere an active positioning system is required.

The positioning instrumentation is arrayed as shown in Fig. 2.2. Two orthogonal LED sources,

centered at 455 and 505 nm, are each aligned with one of the sets of lateral electrodes. Each

LED is centered on the levitation gap, and focused slighly behind the levitation position so

that the beam is roughly the same size as the gap when it hits the sample. As the LED

is a divergent light source, two bi-convex spherical singlet lens as seen in Fig. 2.3 focus the
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Figure 2.2: Top view schematic of the ISU-ESL furnace and surrounding instrumentation.

beams just behind the sample, projecting a shadow. This shadow is cast onto position sensitive

detectors (PSDs) and is converted into two voltages indicating lateral and vertical position.

The signal is converted via an analog to digital converter and sent to the target computer, an

independent PC running the control algorithm.

The algorithm operates at 500 Hz, a limitation of the National Instruments DAC, and is

derived from the gain-scheduled control scheme described in Ref. [102]. The Matlab-controlled

algorithm is based on two linear models (horizontal and vertical positioning) and uses an

LMI-based pole region assignment to determine three parameters, similar to those of a PID

algorithm, for each direction. These are input by the user during construction of a sample

algorithm, and affect system behavior such as initial launch time and equilibrium settling time.

An individual algorithm is built for each sample, with the primary inputs being the mass and

radius of the sphere, which determine a series of gains between the output of the PSDs and the

corresponding amplifier voltage signal.

The high voltages present are capable of causing dielectric breakdown if an atmosphere is

present at a sufficient pressure as seen in Fig. 2.4. At low pressures, the mean free paths of the
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Figure 2.3: The core of the positioning system. The ”iris” size for LEDs is indicated as a red
line.

gas molecules are sufficiently larger than the chamber such that collisions are prevented, while

at high pressures, the mean free path is low enough to prevent the accumulation of kinetic

energy required for ionization. In addition, the possible interaction with residual gas phases

may cause oxide formation or otherwise inhibit the undercooling desirable for levitation studies.

As a result, the ESL system is operated under high vacuum conditions, driven by a rotary vane

pump and a turbomolecular pump. The levitation system is not operated above 5x10−6 torr;

processing generally begins at 5x10−7 torr, a compromise between pump time (∼ 1/2 hour)

and oxygen partial pressure. The baseline pressure of the system is currently 9x10−9 torr.

The ISU-ESL is optimized for samples massing between 30 and 70 mg, with densities in the

region of 5 to 7 g cdotcm−3. Samples have been processed with densities as low as 2.3 g cdotcm−3

and as high as 16 g cdotcm−3. In theory, any sample shape can be levitated; in practice, highly

irregular, asymmetric shapes acquire an uncontrollable multi-axial spin very quickly. Spheres

are the easiest shape to process, as well as being the typical shape after levitation solidification,

so all samples are prepared as spheres. The only strict material requirement is a high enough

conductivity to capacitively charge during launch.
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Figure 2.4: A Paschen curve detailing the voltage required to produce dielectric breakdown.

2.2.2 Sample Heating

Once the sample is levitated, it is heated bi-directionally by the fiber coupled output of a

watercooled Apollo Instruments laser diode. The laser is nominally centered at 980 nm, with

a bandwidth of approximately 8 nm. While initially only one fiber output was used, it was

found that the radiation pressure from the laser at high power would push the sample out

of the center of the levitation gap, and thermal gradients would establish across the sample,

so a second fiber output was installed. The laser focusing optics were designed in house and

allow a spot size on the sample of 1 to 4 mm[62]. Alignment is performed via a low power

pilot beam incorporated into the laser. The fiber mounting mechanisms also allow deliberate

misalignment of the lasers to the side, inducing or damping a rotational spin via radiation

pressure[103]. While in the ISU-ESL lab this is primarily used to maintain spinning frequency

so that sample stability is not affected and to avoid sample bifurcation, other ESL groups use

this capability for creep measurements[76].

The lasers themselves are controlled via a LabVIEW interface. The laser may be controlled

manually, by specifying an output power, or in an automatic ramp mode. A PID algorithm
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was implemented for the purpose of controlled ramps. After tuning, the heating rate can be

adjusted to less than 0.1 K/s, while the maximum rate is dependent on the response of the

sample but may be on the order of ∼100 K/s. The cooling rate is limited on the upper end by

the ability of the sample to cool radiatively according to

mcp
dT

dt
= −εAsσB(T 4 − T 4

0 ) (2.1)

where m is the mass of the sample, cp is the specific heat, ε is the hemispherical emissivity

described below, As is the surface area, σB is the boltzmann constant, and T0 is the ambient

temperature in the chamber. In practice, this limits the cooling rate during solidification to

15-30 K/s, dependent on the sample and melting temperature, and to rates on the order of 2-5

K/s well below the melt. All initial processing must be performed manually since, when first

heated, samples tend towards instability and are extremely sensitive to the slightest changes

in the input power.

Heating with the laser has the effect of both outgassing any adsorbed gasses from the sample

as well as causing evaporative mass loss. Since the sample is isolated, this causes charge loss,

a corresponding increase in the levitation voltage, and can lead to levitation instability and

sample dropping. At high temperatures ( > 1000◦C), thermionic emission becomes efficient

enough to offset charge losses at a rate given by the Richardson-Dushman equation

j = AT 2exp(− φ

kBT
) (2.2)

where j is the thermionic emission current, A is a constant (120 A cm−2K−2), and φ is the

Boltzmann constant. At 1500 K this yields a value on the order of 1 nA [62] which, given

the charge of the sample is on the order of 1 nC, is a powerful effect. This is ineffective at

low temperatures, however, and alternative methods are required for sample charging. Several

groups overcome this transition region by melting the samples prior levitation and launching

them in a liquid state [73]. This has the downside of introducing post contamination, as well
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Figure 2.5: The HIS13 helium discharge lamp, properly ignited.

as a certain ”stickiness” to the post due to surface tension, and the ISU-ESL group has not

perfected the technique yet.

Instead, the ISU-ESL uses an Omicron HIS13 helium discharge lamp as a source of UV

photons to induce sample charging via the photoelectric effect. The lamp, pictured in Fig. 2.5,

features a watercooled ignition chamber with a constant flow of 99.9999% purity helium gas,

through which a set of high voltage electrodes induce an arc. The resulting plasma emits

primarily at the He I line, with an energy of 21.2 eV (∼60 nm). Most elemental work functions

are on the order of 4-6 eV, and so this photon energy is more than adequate for efficient

charging, and, as described in [62], serves to increase the efficiency of charging by a large

increase in the number density of excitable electrons. As the top electrode is negatively charged

and a levitated sample thus positively charged, ejected electrons have the effect of lowering the

required levitation voltage to an equilibrium voltage, derived in [62].

A thin capillary guides the emitted light from the ignition chamber to several centimeters

from the levitated the sample and reduces the potential of evaporated material making its

way into the UV source and contaminating the chamber. A stepper-driven shutter mechanism

enables shielding for the capillary once volatile samples have reached the thermionic region.
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The speed of processing samples is limited by the ability of the UV source to recharge the

sample after charge loss events. To maintain the high purity conditions required for optimal

ignition, the UV system requires its own differential pumping system, provided by a separate

rotary vane rough pump and a small turbo pump.

The evaporation of material at high temperatures poses a significant constraint on material

choice for the ESL. The Langmuir molar flux equation, which describes an evaporation rate

ṁ, may be modified as in Ref. [104] to describe the evaporation of an n component alloy over

time t. The total evaporation of each component i, having vapor pressure Pv, i and molecular

weight Mi, is given by

n∑
i

∫ t

0
ṁidt =

∑
i

∫ t

0

αAai(Pv,i − Pref,i)√
2πMiRT (t)

dt (2.3)

where ai is the activity, A is the molar surface area of component i, Pref,i is the reference

pressure, R is the gas constant, and T (t) is the temperature in kelvin as a function of time.

α is a constant to correct for deviation from an ideal vacuum, where it would be unity, and

is frequently empirically determined. In practice, an ideal mixing approximation is applied,

and the concentration of component i, ci, is substituted for ai for quick feasibility calculations,

though this tends to overestimate evaporative losses and is only a rough guide.

While the ISU-ESL is operationally very robust against evaporation, in one case processing

a single Al7Pd7Mn2 sample long enough to evaporate >10 mg of material, the WU-BESL

requires frequent cleaning during operation. In both systems, glass slides are installed in all

viewports, in order to ease cleaning of evaporated metals. However, the principle concern is not

operation, but stochiometry shift, as components of an alloy frequently have different vapor

pressures. It is critical to choose materials that have low vapor pressures, and to consistently

check the mass of the sample before and after processing.

2.2.3 Pyrometry

Sample temperature is measured via optical pyrometry. Blackbody radiation is emitted

from a material according to the well known Planck’s law:
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I(T, λ) =
2hc2

λ5
(

1

e
hc

λkBT

− 1) (2.4)

Single color pyrometers, such as the ones in use in the ISU-ESL (Metis MI16 from 300◦C to

1300◦C, and HI16 from 700◦C to 2300◦C ), sample one particular wavelength (1.6 µm in the

ISU-ESL) and relate the measured intensity to the temperature according to

I(T, λ) =

∫ λ2

λ1

ε(T, λ)
2hc2

λ5
(

1

e
hc

λkBT

− 1)dλ (2.5)

where ε = ε(T, λ) is the wavelength dependent emissivity of the material, ranging from 0 to 1.

Single color pyrometers depend heavily on the assumption that the (user-entered) emissivity is

not strongly temperature dependent, a belief which often proves to be true. The emissivity is

highly dependent on surface conditions and may change dramatically based on surface texture

or the presence of oxide impurity phases. In the particular case of levitation work, the sample

is not in a fixed position, and depending on the stability of the particular system, lateral and

vertical instability may also affect temperature readings. Instrumental error on the MI16 and

HI16 can be estimated as 0.1% of the signal under 1000 ◦C, and 0.5% above. The pyrometers

used in this work acquired data at 10 Hz, but are capable of acquiring up to 100 Hz.

As the emissivity is an unknown quantity and is difficult to measure directly, generally ob-

tainable in the form of cp(T )/εT (T )[74, 105], the pyrometer emissivity is typically recalibrated

by comparing transition temperatures measured by the pyrometer to known transition temper-

atures from the literature or calorimetric techniques such as DSC. This transformation can be

applied quickly and easily such that the emissivity may be recalculated according to

ε′λ = ελexp(
hc

λkB
(

1

T ′tr
− 1

Ttr
)) (2.6)

where T ′tr and Ttr represent the verified transition temperature and that observed experimen-

tally, respectively. This yields a new temperature T ′ determined by
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T ′ = (
1

T
+
kλ

ch
ln(

ε′λ
ελ

))−1 (2.7)

Two-color pyrometers, such as those in use on the BESL and NESL, sample two wavelengths

and compare the ratio using

T =
hc

kB

λ1 − λ2

λ1λ2
ln(

ω1λ
5
1ε2

ω2λ5
2ε1

)−1 (2.8)

which mitigates the need for extensive calibration. Two-color pyrometers have been shown to

correct many of the shortcomings of single color pyrometers [106]. However, on occasion, the

ratio measurement erroneously covers signals that may be present in the single-color reading,

such as seen in Fig. 2.6. There, a structural transition was identified through the corresponding

x-ray data as occuring during the solidification plateau. The ratio signal exhibited a small

signal, but largely overcorrected for the discrepancies in the individual wavelengths, K1 and

K2. The single color output showed a much clearer event, resembling a double recalescence.

Finally, a Thorlabs CMOS color camera, with a sensor resolution of 1280x1024, is used in

combination with magnification optics for sample visualization. While this is useful to observe

the stability of the sample and as an indication of a sample melting, it is best for observing the

surface of the sample, with particular regards to oxide and impurity phases.

Pictured in Fig. 2.7 is a levitated liquid AlPdMn sample featuring a large oxide patch, easily

visible in the image. Depending on the material, extended high temperature processing at high

vacuum is sometimes enough to clean these phases, at the cost of potential stochiometry shift;

Fig. 2.8 is the same sample, held at a higher temperature. In this way sample cleanliness can

be easily monitored during an experiment.

2.2.4 Density Measurements

Density measurements in the ESL use the machine vision method described in Ref. [79]

The sample is backlit by a violet (405 nm) LED source similar to the positioning LEDs, and
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Figure 2.6: The temperature data from a two color pyrometer on the WU-BESL during solid-
ification of a Ni50Zr50 sample. A structural transition during the solidification plateau could
be interpreted as noise in the ratio output (black), but the two individual color readings, K1
(red) and K2 (blue) show a clear second recalescence event

Figure 2.7: An AlPdMn sample, with a sig-
nificant oxide phase

Figure 2.8: An AlPdMn sample after a
high temperature hold
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video of the sample taken by a high resolution monochrome camera (Pixelink PL-B741) with a

corresponding bandpass filter. An Infinity K2 telephoto lens provides high magnification and

enables a resolution of approximately 3 µm/pixel. The contrast between the sample and the

surrounding background is used to define the cross-sectional area of the sample. An integration

proceeds either by numerical methods or approximation by legendre polynomials. To obtain

absolute units the calculated volume is compared to a well defined calibrant, for which the

ISU-ESL laboratory uses Grade 3 tungsten carbide spheres from McMaster-Carr. Tungsten

carbide is chosen as it is unlikely to deform during sample manipulation; stainless steel is also

acceptable.

The method relies on the sample possessing azimuthal symmetry so that a rotational integral

may be performed. This assumption generally holds well for liquids, where surface tension will

force the material into an ellipsoid with a very slight elongation in the z direction. In cases

where the spin of the sample is uni-axial, deformation in the lateral direction may also occur,

but preserve azimuthal symmetry. With a large multi-axial spin, the deformation will occur

along a diagonal axis and break the symmetry, making the volume calculation unreliable.

Unless specifically machined for low grade sphericity, even levitation-solidified spheres have

notable surface roughness, and small inhomogeneities on the surface will cause large errors in

the volume integration.

The precision of the method, as applied to grade three WC spheres, is approximately

0.04%[62]. When properly calibrated with a low-grade calibrant sphere, this technique will

have an error as low as 0.1% when studying liquids, with much of this coming from uncertainty

regarding mass loss during the experiment. When applied to solid spheres in the ESL, the error

becomes 1% to 2%, depending on surface conditions on the sample.

2.3 Magnetic Measurements using a Tunnel Diode Oscillator

There have been numerous attempts to integrate resistivity and dynamic susceptibility mea-

surements into containerless processing environments. For instance, the JAXA ESL system[75]

integrated a series of asynchronous electromagnetic rotors to induce rotation in a liquid sam-

ple, requiring precise measurement of the rotation of a featureless liquid, a complication that
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limits the utility of the technique. EML systems have attempted to measure the conductivity

of liquids through the use of an additional transformer coil, an approach challenged by sample

deformation and positional variation with temperature[107]. Measurements of magnetic sus-

ceptibility in EML and CNL are often carried out simply by placing a CoSm permanent magnet

near a levitated sample and measuring either the ensuing deviation from the levitation axis as

a function of temperature or the force on the magnet, creating a Faraday balance.

The approach to magnetic measurements in the ISU-ESL focused on the integration of a

tunnel diode oscillator (TDO) into the levitation chamber. Traditionally a low-temperature

technique, the TDO functions as a highly sensitive radio-frequency probe of resitivity, magnetic

susceptibility, and London penetration depth[108–110]. It consists of an LC tank circuit driven

by a tunnel diode, a special p-n junction that may be biased to a region of negative resistance.

The interaction of the circuit with a spherical sample in the AC field of the inductive coil

may be understood by closely following the derivation laid out in Refs. [62, 93]. The resonant

frequency f0 of the TDO circuit is given by

f0 =
1

2π
√
LC

(2.9)

Any change ∆L in the inductance of the resonator coil by, for example, placing a sample inside

of it, shifts the resonant frequency by ∆f as given by

f0 + ∆f =
1

2π
√

(L+ ∆L)C
(2.10)

The impedance of an AC circuit is given by Z = R0 + iωL. With a sample of complex

susceptibility χ = χ′ + iχ′′, changes in the impedance of the coil may be related to the sample

by

∆L

L0
= φχ′ (2.11)

∆R

R0
= −ωL0

R0
φχ′′ (2.12)
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where φ is the sample filling factor. Using the derivations in [111], it may be shown that the

real part of the susceptibility χ′ is given by

χ′ = −3

2
+

9δ

4a
(1 + χ) (2.13)

where the skin depth δ =
√

2ρ/µω, and ρ is the sample resistivity. This leads to a final

expression for the frequency shift given by

∆f

f0
=

3

4
φ(1− 3

2a

√
ρ

πf0µ0

√
1 + χ) (2.14)

2.3.1 Adaption for the ISU-ESL

The integration of the TDO circuit into the ISU-ESL required placing the pickup coil close

to the sample, remaining electrically isolated, and not interfering with the line of sight required

for the optical instrumentation. Further, traditional TDO measurements are performed at low

temperatures, often between 4 and 170 K, and require mK stability. By contrast, the melting

temperatures required for the solidification studies of interest to the ISU-ESL laboratory are

commonly between 1300 K and 1800 K. Thermal fluctuations in the inductive coil dramatically

increase the level of noise in the signal through altering the resistivity of the copper. Therefore,

any such system installed in the ESL required careful thermal management. At the same time,

given that the sample could not be placed directly inside the coil, the filling factor needs to

be maximized by keeping the coil as close to a levitating sample as possible. The effect of

fluctuations in sample positional stability on the coil measurement also drove an upgrade of

the positioning system from a HeNe laser based system to the high powered LEDs described

above[62, 93].
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A detailed examination of the instrumentation involved in the implementation of the ISU-

ESL TDO may be found in Ref. [93, 62]. The bottom electrode was replaced with a hot pressed

Boron Nitride (BN) cylinder, chosen for its excellent thermal conductivity. The pickup coil was

wound around a groove in the cylinder near the top, leaving a ’lip’ to provide a measure of

shielding. The coil was potted with an epoxy to ensure thermal transfer with the BN. The

passive cooling power of the BN and copper baseplate were not sufficient to stabilize the coil

against radiative heating from a molten sample, so an active temperature management scheme

was implemented. A nichrome heating wire is wound 1.5 cm below the inductive coil in order

to maintain the temperature above ambient conditions. The temperature of the inductive coil

is monitored with a platinum resistance temperature detector (RTD). A Lakeshore Model 331

Temperature Controller then stabilizes the temperature of the coil at a particular setpoint -

typically 350 K - using a carefully tuned PID algorithm.

The gate time on the frequency counter is set to 1 second, to reduce noise in signal. Crucially,

this limits the ability to resolve the temperature dependence of any signals in the TDO output

according to the heating or cooling rate of the sample. Typical sample freecools may have

cooling rates on the order of 10 K/s at high temperatures, and so whenever possible, controlled

ramps are preferred.

Initial calibration was performed by heating the TDO with the heating laser, reflected from

a mirror mounted onto the top electrode[93]. It was found that the frequency shift exhibited

by the coil in response to temperature drift was approximately 200 Hz / K. The frequency is

corrected for thermal drift using the coil temperature and heater power by

∆f ′ = ∆f −A∆Tcoil +B∆Pcoil (2.15)

where A and B are empirically determined constants. For the results presented in Chapter 4,

where only the large frequency shifts associated with magnetic transitions were of interest, the

coil was slowly heated(∼0.1K/min) from 340 K to 360 K using the nichrome heating element

and cooled back to 340 K with no sample in the gap. B was set to zero, using only the

second term in Eq. 2.15, which was sufficient to remove any signals clearly associated with
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rapid temperature changes. However, at high temperatures, determined by Rustan[93] to be

above 1700 K, the radiative heating of the electrodes from the sample (and the corresponding

shift in the resistivity of the copper electrodes) begins to affect the background signal in a way

that is much more difficult to model.

In typical TDO measurements, the sample is placed inside the coil, and φ is given by

Vsample/Vcoil. In the ESL, as the sample is located outside the coil in an inhomogenous field, the

filling factor must be determined empirically using well characterized standards, here copper.

The resistivity was measured through the well characterized zirconium hcp-bcc transition, and

used to calculated a conversion rate of 3.5 Hz/µΩ cm. By contrast, the ferromagnetic transition

in a low-carbon steel ball bearing (McMaster-Carr 96455K49, bcc Fe TC = 1043 K) produced a

frequency shift of 3370 Hz. Thus while careful calibration for temperature drift and a sufficiently

slow heating/cooling rate is required for resistivity studies, the frequency shifts associated with

ferromagnetic transitions have a magnitude much larger than typical temperature effects or

noise associated with the circuit.

2.4 Scattering Measurements

The advent of third generation synchrotron light sources and high intensity neutron facilities

has spurred the development of a number of containerless processing furnaces aimed at the study

of high temperature liquids and metastable solid phases. These systems enable in-situ study of

solidification processes and transient phases challenging to probe by more traditional means.

While the development of ESL furnaces for thermophysical measurements began in the

1980s, it was not until the early 2000s that the technique was widely adapted for scattering

environments[87, 112, 113]. NASA’s own BESL system was used for initial studies of liquid

metals and the nucleation barrier [86], as well as structural modeling of deeply undercooled

liquids [114]. The success of these studies helped spur the development of the Washington

University Beamline Electrostatic Levitator (WU-BESL), which first acquired data in 2010.

Concurrently, a complex, unique ESL system was designed to fit the requirements of neutron

TOF studies at the Spallation Neutron Source at Oak Ridge National Laboratory. The Neutron
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Electrostatic Levitator, or NESL, performed its first commissioning run in 2013, and the first

publishable data from the instrument was obtained in late 2014 [91, 92].

The BESL was used by the ISU-ESL group first in 2013 to obtain much of the x-ray data for

Chapter 3, and then again in 2016 for the studies presented in Chapters 4 and 5. A significant

effort during the course of this dissertation was spent on ensuring the NESL was operational

and reliable, and the liquid data taken on the NESL and presented in Chapter 5 represents

some of the first data obtained from the instrument.

2.4.1 High-energy x-Ray scattering

Diffracted x-rays obey the well known Bragg relation, given by nλ = 2dsinθ, wherein n is

an integer, λ is the wavelength of incident x-ray, d is the plane distance, and θ is the angle of

scattering. The scattering process may be characterized by the momentum transfer, Q = kf−ki,

where ki and kf are the incident and scattered wavevectors, respectively. In this work, only

elastic scattering is considered.

X-rays scatter from the electron cloud, and each element has a Q-dependent profile, denoted

the atomic form factor f(Q), as a fourier transform of the spatial distribution of the electron

cloud. A direct consequence of this is a decrease in scattering intensity at large Q. Another

consequence of this is a general insensitivity to light elements relative to larger, heavier atoms;

near Q = 0, f(Q) ∼ Z.

Diffracted x-rays may be used to establish the structure of a material or identify what

known structures are present. While available in a wide range of energies, all x-ray scattering

in this dissertation was performed using high-energy x-rays (E > 100 keV), providing a sig-

nificant penetration depth and thus excellent transmission through typical ESL sized samples,

as well as a small enough scattering cone to collect a large region of Q-space at high speed

on simple 2D detectors. This is important to the work in Chapter 5, as a large Q range is

critical to obtaining the accurate fourier transformations required to generate a high quality

pair distribution function, an important tool for the understanding of non-crystalline materials.

Much of the design of the BESL scattering environment was optimized for studies of this type.
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Figure 2.9: The BESL as installed at Beamline 6-ID-D. The GE 40RT Revolution 2D detector
is pictured to the left.

2.4.2 BESL

The ISU-ESL was based on the design of the BESL, and the vacuum chamber itself is a

near-carbon copy, pictured in Fig. 2.4.2. The system was designed for easy integration into

Beamline 6-ID-D at the Advanced Photon Source (APS) with the possibility of further work

at Beamline 1 for small angle scattering (SAX). A few key design choices differentiate the two

systems.

Due to the time constraints associated with beam-time and the safety requirements of

operating in an x-ray hutch, motorized carousel and post mechanisms were included in the

BESL. The carousel is capable of holding 32 samples, which drop through the top electrode,

and is driven by an external stepper motor. The motor mechanism for the post additionally

allows later sample ”kicking” by raising the post into the PSD path during levitation.

The original UV source for the BESL was a deuterium arc lamp. The photon energy was

7.8 eV (∼160 nm) and had a large, unfocused spot, leading to inefficient charging. Following

the success of the integration of the HIS-13 into the ISU-ESL, the BESL was updated with the

same model. However, during the 2013 studies the deuterium lamp was still installed on the

BESL to counteract x-ray charging difficulties. Long exposure to high energy x-rays charges
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the sample to the point of levitation instability, and so the deuterium lamp shutter was opened,

charging the electrodes and effectively raising the levitation voltage.

The access flange was replaced by a beryllium window to reduce secondary scatter effects

and optimize transmission. Critical to obtaining the high framerates necessary for thermal

cycling and rapid acquisition of isothermal liquid scans was the implementation of a 2D x-

ray detector. A GE 4RT Revolution amorphous silicon area detector was placed close to the

exit port of the BESL (working distance ∼ 500 mm). At the x-ray energies used (λ = 0.094

Å, E = 131 keV), this enable acquisition up to Q ∼ 22Å
−1

. The detector was operated at

full resolution (2048 x 2048) at between 1 and 8 Hz for measurements presented here. Some

attempts were made at higher framerates for solidification studies, but firmware issues and the

limited downtime during the experiment made this impossible.

The high-energy x-ray capabilities of the Advanced Photon Source (APS) at Argonne were

used for all x-ray measurements. High-energy is necessary to provide sufficient transmission

through the sample; at the operational energies used in this work, between 85 and 90% of the

x-ray intensity was transmitted through the sample, enabling bulk structural measurements.

A high flux is needed for the rapid acquisition needed for solidification events; solidification of

a 2 mm sample can happen in seconds or less, and when the sample is freely cooling at rates

upwards of 10 K/s a high framerate is needed for reasonable temperature resolution. The flux

at beamline 6-ID-D using the superconducting undulator was ∼5x1011 photons/second.

Initial experiments during the 2013 BESL run found a sample processing success rate of

approximately 15%, with most samples lost on launch or floating in a wildly unstable manner,

either positionally or with the voltage, during processing, until they were lost in the chamber.

The sample stability during the 2016 run was dramatically improved by some algorithmic

optimization as well as improved methodology for keeping the electrode spacing consistent

during chamber opening and cleaning. Launching and processing were subsequently successful

almost 80% of the time.

Samples were heated through the melt into a liquid and held at a constant temperature just

above the melt. Diffraction patterns were obtained in 30 s increments at 1 Hz. The temperature

was increased in a step-wise fashion, taking 30 s increments every 50 degrees, until the maximum
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desired temperature, before the process was repeated on cooling. Samples were freely cooled

according to by turning the laser off, and some attempts were made at controlled cools by

manually tuning the laser power in a decreasing fashion. As of the experiments included in

this dissertation the BESL had no implementation of automatic temperature control.

2.4.3 Neutron Scattering

While interpretation of a diffraction pattern obtained from neutron scattering remains fun-

damentally the same as those obtained from x-ray, there are several important differences

between the probes that may be leveraged for the characterization of levitated materials.

For one, even a powerful source such as the SNS produces a lower flux of neutrons than may

be obtainable at a synchrotron light source such as the APS (∼1 x 108 neutrons cm−2 sec−2

at NOMAD vs ∼1 x 1011 photons cm−2 sec−2, respectively). The interaction cross section for

neutron scattering is also significantly smaller. While x-rays primarily scatter from the electron

cloud, neutrons scattering occurs primarily from the atomic nuclei. The typical atomic nucleus

is several orders of magnitude smaller than the electron wavefunctions. As the atomic form

factor f(Q) is derived from the fourier transform of the density distribution of the scattering

element, the form factor for neutrons appears as a nearly flat line.

In addition, due to the strong dependence on nuclear scattering, different isotopes possess a

different coherent scattering length < b >, enabling the application of isotopic substitution to

vary the contrast between various elements in a scattering pattern. For the purposes of liquid

scattering, isotopic substitution allows easier derivation of experimentally observed partial pair

correlation functions.

2.4.4 NESL

While some ESLs have been developed for neutron beamlines in the past 10-15 years, they

tend to be limited to reactor sources, and more of an adaption of a traditional ESL design

than a radical redesign. The installation of a levitator into the beamlines at a pulsed neutron

source such as the SNS required just such an endeavor. The implementation of a complex ESL

system in a neutron environment requires a number of design modifications and compromises,
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for neutron safety, scattering optimization, and for optimized use of the system despite the

radiation hazards involved.

The NESL was commissioned in 2010 as a levitator designed to fit into the beamline wells

at the Spallation Neutron Source at Oak Ridge National Laboratory. The original plan was

to integrate the system into three beamlines: the Nanoscale Ordered Materials Diffractometer

(NOMAD) at BL1B for elastic measurements, the Wide Angular-Range Chopper Spectrometer

(ARCS) at BL18 for inelastic scattering, and the Backscattering Spectrometer (BASIS) at BL-

2. Commissioning at VULCAN was carried out as a viability test in early 2013. Commissioning

at NOMAD was first attempted in late 2013, but during the two week beamtime no samples

were successfully melted. After a significant effort from the most junior members of the WU

and ISU ESL groups to revamp and repair the system, a successful run was accomplished in

late 2014. The system has since had several successful runs at both NOMAD and ARCS.

The system is the most complex of the NASA derived electrostatic levitators. The beamline

detector tanks operate between 10−3 torr (NOMAD) and 10−7 torr (ARCS), so the entire

sample environment is designed to be lowered into a high vacuum environment. The differential

pumping system, water-cooling, and helium gas lines all route to a UV source, idential to the

ISU-ESL lamp, that sits inside the detector chamber. The vacuum environment of the detector

chambers, combined with the unobstrocted scattering path to the sample needed for high-Q

measurements with comparatively low energy neutrons, necessitate a radical redesign of the

positioning, heating, and thermophysical measurement components. All instrumentation is

mounted vertically, and a system of mirrors was constructed to enable line of sight to the

sample. In order to not interfere with neutron scattering, the UV source is mounted at an

angle, and the capillary is aimed at the sample from below. The entire lower section of the

chamber, denoted the tailpiece, is constructed of aluminum, and much of the area is covered

by a thin 1/16” aluminum window. The middle section of the levitator, featuring the electrode

assembly and mirror platforms, is designed to lift out of the tailpiece independently, allowing

the chamber to open up mid experiment without venting the detector tank.

While in both the BESL and the ESL, all alignment is performed by hand, the geometry

required necessitates that all optical components are inaccessible during the experiment, and



42

Figure 2.10: A sample being heated in the NESL. Notably, the entire bottom area of the picture
is filled by the sample catcher assembly, enabling easy sample retrieval.

so the PSDs are placed on motorized stages. The post is motorized, with all wiring routing

through the lower flange. The carousel is also motorized, connected by a drive shaft to an

external stepper motor placed near the turbo. The complexity of the interior mechanics, optics,

and electronics, added to the difficulty of replacing flanges under permanent optical mounts,

leads to a large rate of outgassing and possible leaks, both virtual (from trapped gasses or

surface outgassing) and real. The pump time is typically on the order of 6 to 8 hours until low

10−6 torr and 12 to 16 hours until mid 10−7 torr.

Critically, the lower interaction cross-section of neutrons compared to x-rays as well as the

lower flux of neutrons produced require both significantly longer measurement times as well as

larger samples for good statistics. The system uses a 30 kV amplifier instead of the standard 20

kV. The NESL is thus optimized for samples near 350 mg. Two separated lasers, each capable

of a maximum of 110 W and operating at 980 nm, heat the levitated samples bi-directionally.

Finally, the bottom of the tailpiece is sloped to encourage samples to roll towards a sample

catcher attached to the very bottom of the chamber. This catcher is inaccessible during the

experiment, but may be removed once the NESL is returned to the instrument floor. As all
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Figure 2.11: (a) Schematic of the NESL[3] (b) The electrode platform and mirror assembly (c)
port layout from above.
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samples not stuck in the electrode staging are in this catcher at the end of the experiment,

it can be challenging to sort them, as the best identifier is their mass. It is important to

keep consistent, well logged process knowledge; samples have to be carefully chosen to have

distinguishable initial masses, and evaporative mass loss on one sample may cause it to be

confused with another.

While all ESL systems exhibit varying degrees of robustness against sample evaporation,

the NESL has the unique disadvantage of relying on mirrors for positioning, heating, and

temperature measurement. While the positioning system functions well with coated mirrors,

the pyrometer readings can actively change as material is deposited on the mirrors. As was

learned during the processing of silicon, too much deposition on the heating laser mirrors can

cause a decrease in their reflectivity, heating the mirror and eventually destroying them. With

the long pumping times currently associated with the system, this must be avoided on the

beamline.

Epoxy spheres analogous to those described in the BESL section were attempted for neutron

scattering experiments using diamond powder, but were unable to charge sufficiently relative to

their increased mass. Several solutions have been suggested, including hollowing out vanadium

spheres and filling them with diamond powder, or coating the epoxy samples in a graphite layer

for potentially easier surface charging.

2.5 X-Ray Analysis

2.5.1 Corrections

The polycrystalline nature of the samples, as well as their large, often multiaxial spin, mean

the diffraction patterns obtained resemble well-averaged powder patterns. A proper quantita-

tive analysis of powder diffraction data, whether on crystalline samples or liquid droplets,

requires extensive data reduction and careful correction. High temperature solidification stud-

ies in a containerless environment add another layer of complications, such as the impossibility

of including standards in each sample for phase fraction quantification, translational instability

of the specimen, or even effects from the uncommon spherical sample geometry. The simple act
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Figure 2.12: (a) Raw data taken on solid sample (b) Data corrected for background and bad
pixels

of taking standards requires creative solutions. Many of the corrections are standard [115–117],

while several have been developed recently specifically for the particular requirements of ESL

scattering experiments [118, 89].

In order to obtain a polycrystalline silicon diffraction pattern for detector calibration, the

ISU team mixed NIST SRM-640c Si powder with Epoxy Technology Ep-Tek 353ND 2-Part

Epoxy in spherical molds. These spheres were capable of charging and levitation, and were

used in both BESL 2013 and 2016 runs. They were floated as close as possible to processing

position during acquisition. The GE detector itself was placed as close as possible to the

beryllium exit dinwo of the BESL, ∼550 mm from the sample for all data taken during the

BESL 2013 run. During the 2016 run, in addition to the 550 mm distance, the detector was

also moved back to ∼1250 mm, sacrificing range in Q for better resolution of crystal peaks for

the purpose of phase analysis.

All diffraction patterns were first corrected for background and dark current by subtracting

dark frames, obtained with the x-ray shutter closed. As there was virtually no discernible

difference between patterns taken with the shutter closed versus an open shutter on an empty

chamber, the empty chamber frame was used for background subtraction on all crystalline
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analysis via ImageJ scripts[119]. A gain map specific to the detector was applied to all frames

to remove signals from bad pixels.

Further correction for detector artifacts then proceeded via Fit2D[? ]. The sample-to-

detector distance and beam center was refined using the built-in capabilities of Fit2D. As the

detector proved difficult to align perfectly orthogonal to the incoming beam, a tilt correction

was applied, derived in [120].

For the purposes of liquid scattering analysis, additional inelastic contributions must be

subtracted from the the recorded intensity. The largest contribution comes from Compton

scattering,

n(q) = (Ec/E)αi(M) (2.16)

where (EC/E)α is the Breit-Dirac recoil factor and i(M) is the modified scattering intensity,

given by

i(M) =
∑

ciZi −
∑

ci(
∑
z

f2
e )i (2.17)

where ci is the fraction of element i and fe is the electron form factor. Flourescence contri-

butions, wherein an incident photon is absorbed and re-emitted at a longer wavelength, must

also be subtracted. Here the flourescence contributions were determined and subtracted on an

ad-hoc basis. A Laue diffuse scattering term, originating in samples of multiple atomic species,

is given by

(
∑

χif
2
i )− (

∑
χifi)

2 (2.18)

and is subtracted when calculating S(Q).

Specific to the BESL environment, Bendert et al.[118] derived an absorption correction for

spherical samples in an offset incident beam geometry. The derivation is long and complex,
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and the reader is referred to his derivation in Ref. [118] for details. This correction was applied

to all liquid scattering data obtained using x-rays.

2.5.2 Rietveld Refinement

The Rietveld technique[117] is a powerful method for the extraction of quantitative struc-

tural information from powder samples. A model of the phases of interest are constructed,

described by a wide range of parameters. The calculated scattering pattern from this model

is then compared to experimental data. The minimization function, Mp, is then computed

according to

Mp =
∑
i

wi(Ii − Ici)2 (2.19)

where wi is the statistical weight at point i, Ii is the observed intensity at point i, and Ici is

the calculated intensity at point i. Any number of parameters, chosen by the user, are then

modified. The resulting Mp is compared against the original, and the changes thrown out or

applied accordingly. Several goodness of fit parameters are used to evaluate the accuracy of

the model. The most commonly given parameter is the R-factor Rp, given by

Rp =

∑
|Io − Ic|∑
Io

(2.20)

where I0 refers to the observed intensity, and Ic is the calculated intensity. It is notable that

neither value is considered the intensity from an individual bragg peak, as peaks frequently

overlap.

The weighted pattern R-factor, Rwp, is more directly related to the residual and therefore

often considered a more accurate measure of fit. It is given by

Rwp =

√∑
w(Io − Ic)2∑

wI2
o

(2.21)
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The minimization function also yields

χ2 =
M

(Nobs −Nvar)
=

∑
iwi(Ii − Ici)2

(Nobs −Nvar)
(2.22)

which is another common indicator of fit, not unique to Rietveld. In general, a value of χ2 close

to unity is considered to indicate an accurate model, and Rwp less than ∼ .1 is a reasonable

profile factor. However, these parameters can be misleading when the dataset is overfitted or

reliant on poor statistics, and so they should be thought of as guidelines. The most reliable

way to judge a refinement is the residual function itself. During the course of this work, all

refinements were accomplished using the General Structural Analysis System (GSAS) [115]

using the EXPGUI user interface[121].

Care must be taken to avoid false minima in the residual function. Refinements of complex

structures and multi-phase materials frequently get ”stuck” at a non-local minimum. In the

studies presented here, 100 refinement cycles were allowed on each scan to reach convergence.

There are a variety of parameters which may be used to improve the calculated model. The

order in which these are applied and refined is crucial to both the stability of the refinement

and the reliability of the results. In refinements presented here, lattice parameters were first

refined, with a fixed scale factor and small half-width pseudo-voigt peak form factor (W ∼ 0.5).

The dimensionless phase scale factor Sph, representing the molar cell fracion, was then allowed

to freely refine. A simple background function was then applied using the built in Chebeschev

polynomial of the first kind, a functionality in GSAS, given by

Ii =

N∑
j=1

PjT
′
j−1 (2.23)

where T ′ is given by

T ′n =
i−1∑
m=0

CmX
m (2.24)
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and X is defined by

X =
2(T − Tmin)

Tmax − Tmin
− 1 (2.25)

The coefficients T ′j−1 and the values of Cm are taken from Ref.[122]. Once a reasonable fit was

obtained for the phase in question, the background was further refined. The peak profile shape

was described by a pseduo-Voigt function, given by

F (∆T ′) = ηL(∆T ′,Γ) + (1− η)G(∆T ′,Γ) (2.26)

where η is the mixing function and Γ is a function of the gaussian full width at half maximum,

both detailed in the GSAS manual. The width of the peak is described by

σ2 = Utan2Θ + V tanΘ +W +
P

cos2Θ
(2.27)

while the Lorentzian coefficient is

γ =
X +Xecosφ

cosΘ
+ (Y + Yecosφ+ γLd

2)tanΘ (2.28)

P in the gaussian contribution and the first term of the lorentzian contribution are directly

related to Scherrer broadening. Often, synchrotron beamline instruments have a set of param-

eters that are dependent upon the beam profile and are available in an instrument parameter

file. As the samples in these studies covered a wide range of temperatures and phases, several of

the profile coefficients were refined. In the course of these refinements, initially W was refined,

and later γX and γY were also refined.

The Debye-Waller (DW) factor, also known as the temperature factor, represents the q-

dependent effect of the thermal motion of atoms on the scattering pattern.
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T = exp[−(8π2Uisosin2Θ/λ2)] (2.29)

Here Uiso is measure of the mean square displacement from equilibrium. It is sometimes repre-

sented as Biso, given by

Biso = 8π2Uiso (2.30)

Only the isotropic form of the DW term was used in these refinements. The temperature

factor is known to couple to the atomic fractional occupancies fi, and frequently cannot be

simultaneously refined. As the temperature during crystalline studies varied from 900 to 1500

K, significant changes in the DW term were expected and observed during sequential refinement,

and so fractional occupancies were only refined as a sanity check at high and low temperatures.

Sequential refinements were performed using the SEQGSAS subroutine of the EXPGUI

interface. For each thermal processing cycle, there were typically 100 to 180 crystalline frames.

Sequences were started both at high and low temperatures in order to avoid biasing. Structural

transitions tend to cause divergence in the sequential refinement, and so starting points were

also picked in the middle of each transition region, when both phases were present.

Producing a successful Rietveld refinement is by nature an iterative process; completing a

long sequence of such refinements while maintaining confidence in any resulting trends, even

more so. Scans functioning as the base of a sequence were refined multiple times, from multiple

sets of starting parameters, to ensure that values obtained on final convergence were accurate.

The refinement state of all parameters, free or fixed, was kept consistent throughout regions

of sequences with a constant set of phases present. In addition, sequences had a tendency to

crash unexpectedly from extraneous terms diverging, and so the final set of refined parameters

was defined by the smallest set that could well describe the entire sequence.

All frames included in refinement converged. Each frame in all sequences had a final Rwp

less than 0.09, and was frequently closer to 0.05.
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2.5.3 Diffuse Background

The Chebeschev polynomial based background presented in the previous section provided

adequate modeling for individual frames at low temperatures. However, during the work in

Chapters 3 and 4, the high temperature diffraction data contained a large diffuse signal originat-

ing from residual liquid throughout solidification and a notable amount of disordered material

for several hundred degrees during the subsequent cooling. The Chebeschev polynomial func-

tion proved inadequate for subtracting this background, not matching the oscillations well,

and frequently had too much intensity, causing a negative residual. In addition, studies of the

lattice parameters as a function of temperature featured an artifact at the allotropic transi-

tion, wherein the profile function corresponding to the Fe2B phase coupled with the poorly

modeled background. While a graphically defined background could be a better match, it re-

quired upwards of 20 parameters to model accurately, and performed similarly poorly during

sequencing.

One solution to this problem is to create a polynomial function that subtracts all of the

background and leaves a flat residual. As the peaks were fairly broad, and sensitive coupling

with the background had been demonstrated, it was decided this would not be an ideal ap-

proach, as it was desirable to check the background function for individual frames to ensure

the integrity of the refinement process. Additionally, GSAS has built in functionality to model

diffuse scattering; however, at the time the work was being performed, no refinements would

stably converge with these terms activated.

It was found that the pre-solidification liquid diffraction pattern could be modeled by com-

bining two of the crystalline phases with very broad profile functions, carefully tuned thermal

parameters, and spherical harmonic based textural modeling. By allowing the scaling factors

and ”lattice parameters” (for thermal expansion/contraction effects) of the two-phase ”liquid”

function to freely refine during a sequence, the new background both matched the oscillations

corresponding to the diffuse scattering and assigned the correct intensities necessary to flatten

the residual function. All refinement artifacts subsequently disappeared when using this tech-
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Figure 2.13: Rietveld refinement performed at high temperatures using (a) a 16 term
Chebeschev polynomial background function (b) a 25 term Chebeschev polynomial (c) a custom
function modeled on the liquid. (see text)



53

nique, and divergences during sequential refinement were notably reduced. An example of the

technique is shown in Fig. 2.13.

There is a significant computaitonal cost associated with this approach, however, resulting

from the extremely wide peak profile functions required. A typical refinement cycle using

normal background functions requires a fraction of a second; with this background technique,

each cycle took up to 18 seconds. This caused sequential refinements to require 8 to 10 hours

per run. In this light, this should only be used when significantly overlapped peaks with broad

profile functions are present.

Similar approaches have being applied to studies of amorphous materials in the pharmaceu-

tical industry[123] and nanocrystalline composites[124] for the purpose of phase quantification.

No quantitative data was derived here. However, it is an approach that may be applied to

future ESL solidification studies. It would be advisable, however, to formalize the technique

somewhat in a separate program, which could pre-proces the data outside of the Rietveld

package of choice.

2.6 Liquid Scattering Analysis

Much of the formalism for the scattering of x-rays from liquids was developed in the 1960s.

Until the development of containerless systems, however, the field remained somewhat niche,

and compared to crystalline analysis, there is a scarcity of texts thoroughly describing the un-

derlying mathematical basis. Even after reduction to the normalized structure factor S(q), the

ensuing analysis and interpretation is a continually developing subject. Some of the techniques

described here for data renormalization and interpretation were only applied to levitation sys-

tems very recently, within the past 10 years. This section will begin by laying out some of the

mathematical foundations of the study of liquids, which will rely heavily on the excellent and

thorough derivations in Refs. [125, 126]. It will then discuss the computational modeling for

interpretation of experimental results, and some of the common indexing methods.

2.6.1 Mathematical Foundation

The amplitude of scattered x-rays is described by
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A(Q) =
∑
k

fk(Q)exp(−iQ · rk) (2.31)

where Q represents the momentum change given by Qfinal-Qinitial, and fk(Q) is the atomic

scattering factor for atom k at real-space position rk. The coherent scattering intensity is then

calculated through

Icoh(Q) =< |A(Q)|2 >=<
∑
j

∑
k

fj(Q)fk(Q)exp(−Q(rj − rk)) > (2.32)

where in a disordered system, such as a liquid, (rj − rk) is not described by a rigid structure,

but by an average distribution across all directions, such as represented by the pair distribution

function. The spherical symmetry allows Q to be represented by the magnitude Q.

For a one component system, fj = fk, and so

Icoh(Q = fk(Q)2 <
∑
k

exp(−Q(rj − rk)) > (2.33)

The normalized structure factor S(Q) is defined by

S(Q) =
Icoh(Q)− |f(q)|2

f2(Q)
+ 1 (2.34)

The equivalent expression for neutron scattering is given by

S(Q) =
Icoh(Q)+ < b >2 − < b2 >

< b >2
(2.35)

For a two component system, Eq. 2.32 may be expanded to
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Icoh(Q = f2
1 (Q) < |

N1∑
j=1

exp(−iQ · r1j)|2 > +f2
2 (Q) < |

N2∑
k=1

exp(−iQ · r2k)|2

+ 2f1(Q)f2(Q) <

N1∑
j=1

N2∑
k=1

exp(−iQ(r1j − r2k)) >

(2.36)

where N1 and N2 are the number of atoms of species 1 and 2, respectively, and f1(Q) and

f2(Q) are their atomic form factors. S(Q) may then be determined as

S(Q) =
Icoh(Q)−

∑n
i=1 ci|f(q)|2

|
∑n

i=1 cif
2
i (Q)|2

+ 1 (2.37)

where ci and fi(Q) are the atomic fraction and q-dependent form factor. It can be shown[125]

that S(Q) is obtained by a fourier transformation of the pair distribution function g(r) through

S(Q) = 1 + ρ0

∫
[g(r)− 1]exp(−iQ · r)dr (2.38)

Finally, the reduced pair distribution function G(r) may be obtained from

G(r) = 4πρ0(g(r)− 1) (2.39)

which is used for normalization processes during the analysis procedure.

To obtain Icoh(Q), inelastic contributions must be subtracted out. The compton scattering

correction is given by

n(q) = (Ec/E)αi(M) (2.40)

where the first term is the Breit-Dirac recoil factor and α is a detector-dependent term, and

i(M) is given by

i(M) =
∑

χiZi −
∑

χi(
∑
Z

f2
e )i (2.41)
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Figure 2.14: A representative neutron scattering S(q) from the NESL at NOMAD. The black
curve is the initial output from the NOMAD data reduction subroutines. The red curve is the
curvature attributed to inelastic and secondary scattering, determined via the Peterson metric.
The blue curve is the normalized S(q).

In addition, flouruescence and Laue diffuse scattering corrections are subtracted, and are

calculated in an ad-hoc manner.

2.6.2 Normalization

Proper normalization of any structure factor S(q) generated from liquid scattering experi-

ments is critical for both fourier transformation into the more intuitive pair distribution function

as well as for comparison between different experimental methods, such as x-ray and neutron

experiments. As it is not possible to add a standard to each sample for comparison, there is not

an easy way to ensure differences in the recorded structure factor between different techniques,

samples, or temperatures, is physically rooted, and not an artifact of the reduction process.

Frequently, damping functions are convoluted with S(q) to ensure it approaches unity at high

q, potentially masking real correlations in the liquid. Advances in analysis specific to such

levitated liquids for normalization and curvature correction were made during the last several

years to correct these issues, and applied to all results presented here.
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The reduced pair distribution function, G(r), ideally features a line below the hard sphere

cutoff, with a slope given by dG/dr = 4πρ0, where ρ0 is the number density. Non-linearity

in this region represents unphysical short-range correlations that can produce large, spurious

curvature in S(q). In additions, a deviation from the experimental slope will result in improper

normalization across S(q), a problem frequently seen in older liquid scattering data, giving

spurious coordination number calculations. Minimization of the Peterson metric[127], given by

∆Glow =

∫ rlow
0 [rG(r)− (r2/r3

low)
∫ rlow

0 rG(r)dr]2dr∫ rlow
0 [(r2/r3

low)
∫ rlow

0 rG(r)dr]2dr
(2.42)

can correct these effects, and together with proper correction for various physical effects, also

improves the limiting behavior at high Q.

Neutron diffraction S(q)s produced by the data reduction routines at NOMAD (BL-1B,

Spallation Neutron Source) tended to have extremely large curvatures as mentioned above. To

fix these, as well as improve the normalization of the x-ray data, Johnson [128, 92] developed a

LabVIEW program specifically to perform the minimization with significantly more user con-

trol. He noted that RMC simulations performed on the data undergoing absolute normalization

resulted in both significantly better fits and more realistic indexing results. An S(q) acquired

at NOMAD and corrected using this technique is demonstrated in Fig. 2.14.

2.6.3 Coordination Number

The coordination number (CN) in a liquid is a primary measure of short range order.

The radial distribution function, given by R(r) = 4πr2g(r), is generally integrated to find the

population of a coordination shell, as in

CN =

∫ r1

r0

4πr2g(r)dr (2.43)

where r0 is the minimum below the first peak of g(r), and r1 is either the first minimum after

the first peak of g(r) or the first minimum after the first peak of R(r). The subject of the
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Figure 2.15: Example of n4 distinguishing between two different HA topologies.

integration limits is hotly debated, and as the integration is exquisitely sensitive to the bounds,

can result in large variances in reported coordination numbers.

2.6.4 Honeycutt-Andersen Indexing

The method of Honeycutt and Andersen (HA) was first designed to describe the short range

ordering in Lennard-Jones cluster enesmbles generated by Molecular Dynamics and Monte

Carlo simulations. A bond length is defined, typically determined by the first minimum after

the first peak. The clusters are assigned a set of four indices (n1, n2, n3, n4). n1 is either a

1 for bonded root pairs, or a 0 for unbonded pairs. n2 denotes the number of shared nearest

neighbors between the two atoms in the root pair. n3 is the number of bonds among the shared

nearest neighbors from n2. The configurations described by n3 are often not topologically

unique, as described in Fig. 2.15. n4 is therefore a degeneracy breaking index, signifying only

different arrangements of the bonds counted by n3.

The different combinations of indices correspond to different structural motifs. The most

commonly reported indices are described in Table.2.1.

Initial HA analysis was performed by a Mathematica package written for the purposes of

this dissertation. It proved to be fast but inconsistent when differentiating between topologies

for n4. A python package written by the Washington University group [3] was obtained instead

and modified for the analysis in Chapter 5.
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Table 2.1: Voronoi and HA indices corresponding to common structural motifs.

Symmetry Voronoi HA Index

Perfect Icosahedral (0,0,12,0) 1551

Distorted Icosahedral (0,0,10,2),(0,2,8,1) 1541,1431,1311,1321

Trigonal Prism (0,3,6,0)

BCC (0,6,0,8) 1661,1441

FCC (0,12,0,0) 1421,1422

2.6.5 Voronoi Tesselation

Voronoi indexing is another measure of the local order in a system, which proceeds simi-

larly to the construction of a Wigner-Seitz cell. A vector is constructed between each nearest

neighbor in the ensemble. That vector is then bisected with a plane normal to the vector.

The polyhedron constructed by the intersection of these planes is then indexed by sorting and

counting the faces by the number of bounding edges, such that 0,2,10,2 would correspond to

0 faces with 3 edges, 2 faces with 4 edges, 10 faces with 5 edges, and 2 faces with 6 edges. In

general, the relative abundances of the different voronoi indices are used to characterize the

average local ordering in a system. A higher number of edges corresponds to a more close

packed system[98].

Common voronoi indices and the structural motifs they describe are listed in Table 2.1.

Voronoi indexing is also used as a measure of the average coordination number, by counting

the total faces of each polyhedron, and can be species specific. The number tends to be inflated

by extremely small faces from distant atoms, and so most voronoi packages include limitations

on the minimum countable face area, and the minimum countable edge length.

All voronoi tesselation here was performed with the Voro++ package [129] as implemented

by Ovito[130]. A custom python script was written to apply minimum face sizes and edges,

and to sort and count the output. For the calculations reported here, a minimum face size of

0.3 Å2 was used.

2.6.6 Reverse Monte Carlo simulations

Simulating the structure of disordered materials is traditionally the realm of Molecular

Dynamics (MD) simulations or other empirical potential based computational methods. By
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contrast, Reverse Monte Carlo (RMC) techniques enable the simulation of a structure without

the need for complicated potentials or large computation time. Unlike traditional Monte Carlo

methods, where a probability distribution or potential is used to generate the configuration of

interest, RMC is focused on a fit to experimentally obtained structure factors, using properly

scaled data as a constraint. Other experimentally derived quantities, such as number density,

can be used to constrain the data further.

RMC works by minimizing some quality factor (typically a χ2 value) between an experi-

mental structure factor and a simulated pattern from the atomic arrangement. In a similar

manner to a least squares refinement scheme, a number of atoms (the exact quantity defined by

the operator) are moved according to the metropolis algorithm [131]. In the case where there is

no potential used, a new S(q) or g(r) is generated and the effect on the χ2 value checked. In the

case of a decrease, the move is accepted. In the case of an increase, the move may be accepted

according to a weighted Boltzmann proability (exp[−(χ2
f − χ2

i )]), in order to help escape local

minima in the χ2 landscape. Other parameters to ease the simulation may be used, such as

enabling a certain percentage of moves as swaps between different atomic species. Atoms are

treated as hard spheres, and minimum hard cutoff distances are defined for each partial pair

correlation function (PPCF). Here, all cutoffs were determined from a combination of experi-

mental results and atomic sizes. The simulation may also take defined bin sizes, and here a bin

size was chosen to match the resolution of the scattering data at 0.01 Å. All simulations were

run until the χ2 value had stabilized at a minimum value. The bin size was then widened and

the maximum move size increased to enable the configuration to escape any local minima in

χ2 ,before continuing the simulation at the original parameters.

An initial configuration is needed to begin the simulation. The ideal choice uses the results

of an MD simulation to begin with a physically based atomic topology. In this case, the RMC

algorithm will act in the same way as a Rietveld refinement, and change the configuration to

better suit the experimentally defined pattern. When no MD results are available, as was the

case in Chapter 5 of this work, it is important to use a variety of starting configurations to

avoid biasing the final results.
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In the case of a single species system, a single pattern is all that is needed to generate

a configuration. As the simulation will tend towards the most disordered configuration that

fits the experimental data, however, conventional wisdom is that the RMC algorithm will

fit anything, but may not be physical. Constraints are required to ensure any results are

meaningful. In the case of two or more component systems, the situation becomes more difficult.

In a system of N components, there are N(N−1)/2 different PPCFs describing the distribution

of each pair type. For instance, in a two components system (N = 2), there are 1-1 pairs, 1-

2 pairs, and 2-2 pairs. As such, to have confidence in the refined structure, three different

constraints are needed. When, as was this case in the work in Chapter 5, one of the PPFCs

contributes very little to the scattering pattern, it is possible to constrain this contribution to

zero. This is common with light elements in x-ray diffraction experiments, or species composing

a small relative fraction of the sample.

A common criticism of the RMC method addresses the lack of ”uniqueness” of a simulation

result, and by extension, whether or not the generated model is correct. It has been thoroughly

documented that the configurations produced by RMC will tend towards the most disordered

state possible [131]. When modeling a liquid structure which lacks static symmetry with, say,

5000 atoms , there are an arbitrarily large number of ways to generate the same structure factor.

However, consistency with the experimental data is all that can be hoped for, and should be

the only criteria of ”correctness”. There is, by definition, not a ”unique” configuration for

a physical liquid. One can constrain the simulations with a number of parameters, such as

bond angle constraints, number density, coordination number, and any possible topological

constraints. By using a sufficiently large number of atoms, and repeating the simulation from

a number of starting configurations to avoid trapping in local minima of the residual function,

it is reasonable to believe that the sampled average is at least representative of the likely local

configurations of the liquid. Any claims beyond this, especially for configurations generated

without the use of a potential (as in this thesis), should be treated with a healthy dose of

skepticism.
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CHAPTER 3. THE SOLIDIFICATION PRODUCTS OF LEVITATED

FE83B17 STUIDIED BY HIGH-ENERGY X-RAY DIFFRACTION

This chapter has been published in Journal of Applied Physics in collaboration with G.E.

Rustan, A. Kreyssig, S. Lapidus, M.J. Kramer, and A. I. Goldman[132], and has been adapted

to be consistent with the formatting in this dissertation. The author’s contribution to this

work involved assisting in sample preparation and data acquisition, performing all analysis,

and preparation of the manuscript in conjunction with A.I. Goldman. G.E. Rustan prepared

samples and acquired data. A. Kreyssig assisted in experiments during BESL 2013 and helped

edit the manuscript. S. Lapidus performed the room temperature powder measurements pre-

sented in Fig. 3.9. M.J. Kramer assisted in editing the manuscript and provided invaluable

insight during the analysis process.

3.1 INTRODUCTION

The Fe-B binary alloy is an important system for investigations of glass-forming alloys,

as well as their mechanical and magnetic properties. In addition to being a good binary glass

forming system [133], Fe-B also forms the basis of a large body of multi-component glass forming

systems, ranging from ternary alloys such as Fe-B-Si [134] to five- and six-component bulk glass

forming alloys such as Fe43Cr16Mo16(C, B, P)25 [135] with critical cooling rates on the order of

100 K/sec. These materials exhibit excellent glass forming ability and important engineering

properties such as hardness [136], corrosion resistance [135], and soft ferromagnetism [137,

138]. The Fe-B binary system continues to receive significant attention, in both the glassy

[139, 140] and liquid states [141, 45, 142–145, 44, 146], as it is a valuable system for performing

fundamental studies to gain insight into the nature of the glass transition.
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According to the equilibrium stable phase diagram [147], Fe-B alloys with Fe contents ≥

66.7 at.% tend to form two-phase mixtures of Fe2B and Fe. However, when the Fe-B alloys

are initially formed into a glassy state and undergo crystallization during subsequent annealing

processes, it has been found that a wide variety of metastable intermetallic compounds can form

[148, 148]. Potentially, these metastable phases may play an important role in the production of

industrially relevant materials such as permanent magnets [29, 32]. The three most commonly

observed metastable phases are body-centered tetragonal (bct) Fe3B, orthorhombic (o) Fe3B,

and face-centered cubic (fcc) Fe23B6. Nevertheless, recent assessments of the Fe-B binary sys-

tem, including both experiments [148] and calculations [148], have verified that the only stable

intermetallic phase with Fe content greater than 50 at.% is Fe2B, and ab-initio calculations of

the cohesive energies of several Fe-B intermetallic phases have verified that bct-Fe3B, o-Fe3B,

and fcc-Fe23B6 are indeed metastable phases [28].

The solidification behavior of the Fe-B binary close to the eutectic composition, Fe83B17,

particularly with respect to metastable phase formation, has remained an open and interesting

question. The Fe23B6 structure has been studied in some detail due to its importance in the

formation of critical hard magnetic phases in the Nd-Fe-B system. Previous work has estab-

lished links between thermal history and the resulting microstructure [46] and phase selection

[141, 45], although little insight into the persistence of observed metastable phases has been

gained. More specifically, the mechanisms by which Fe23B6, a structure important as a soft

magnetic material and a critical intermediary in certain Nd-Fe-B magnets, [32] forms and is

stabilized, remains unclear.

Recently, we reported on a set of in-situ high-energy x-ray investigations of the phase se-

lection process for the eutectic Fe83B17 composition which revealed that the metastable Fe23B6

and fcc Fe phases grew coherently from the eutectic liquid and effectively suppressed the al-

lotropic transformation to bcc Fe at lower temperature (Appendix A). Here, we present further

evidence for this coherent growth, provide details of the different solidification pathways, de-

scribe the behavior of the lattice parameters of each phase over the studied temperature range,

and present initial results from ambient temperature studies comparing samples containing the

equilibrium or metastable phases.
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3.2 Experimental Details

3.2.1 Sample Preparation

Samples of Fe83B17 were prepared by arc melting appropriate quantities of high-purity start-

ing materials on a water-cooled copper hearth at the Ames Laboratory Materials Preparation

Center. The starting materials were 99.99% pure Fe from Toho Zinc Corporation and 99.9999%

pure B from Alfa Aesar; the purities are metals basis only. After the initial arc melting and

formation of the alloy button, it was remelted three times to ensure that the composition was

homogeneous throughout its volume. The alloy button was drop cast into rods with diameters

of approximately 3 mm and these rods were cut into pieces with masses ranging from 25 -

75 mg. To form spheres for electrostatic levitation these fragments were laser melted on a

substrate of either copper or graphite within the Iowa State Electrostatic Levitation Furnace

(ISU-ESL) [93]. A Process Sensors Metis MI16 pyrometer was used to measure the sample

temperature, and the sample surface condition was monitored by using a high-resolution color

imaging system.

3.2.2 X-ray Measurements

High-energy x-ray diffraction measurements were performed at beamline 6-ID-D of the

Advanced Photon Source (APS)- Argonne National Laboratory (E = 132 keV; λ = 0.09403 Å)

employing an incident beam cross-section of 0.2 x 0.2 mm. The samples were electrostatically

levitated in the Washington University Beamline Electrostatic Levitator, a full description

of which can be found in Ref. [99]. Two orthogonal LED sources combined with position

sensitive detectors and a feedback loop enabled full positional control. The temperature was

measured with a Process Sensors Metis MQ2 pyrometer, using two wavelengths to help account

for the unknown emissivity. The measured temperatures were later calibrated by matching the

measured melt temperature to established values, under the assumption that the emissivity

remained approximately constant over the measured temperature range.

X-ray diffraction patterns were collected using a two-dimensional (2D) Ge Revolution 41-RT

flat panel detector. The range of scattering angles accessible in transmission geometry using
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the 2D detector was 0.9◦ ≤ 2θ ≤ 19.5◦, allowing measurements over a range of momentum

transfers of 1 Å−1 ≤ Q ≤ 22.6 Å−1. Spheres of Si powder mixed with epoxy were levitated as

standards to determine detector tilt/rotation and flat-field corrections as well as refining the

sample to detector distance to a value of 565 mm, using Fit2D [120, 116]. The high energy

of the x-rays (132 keV) allowed a large penetration through the sample, and the resulting

scattering came from throughout the bulk of the approximately 2 mm diameter samples. The

linear attenuation coefficient was calculated based on sample geometry, giving a transmission

of approximately 88% of the x-ray intensity. Frame rates from 1 fps to 8 fps were used for

different heating/cooling cycles to ensure the acquisition of both rapid crystallization data as

well as high-quality liquid and crystal data. The acquisition rate of the data presented here

is generally 2 fps. Data storage restrictions of the detector system allowed a maximum of 188

frames, providing a maximum data collection time of 94 seconds at this frame rate.

In order to reduce outgassing and the ensuing charge loss during levitation, samples were

heated to a partially molten state several times on the molybdenum launch post using the

diode heating laser (λ = 980 nm). The samples were then floated and slowly brought up to

the melting temperature of 1447 K. Once molten, samples were overheated by 150 - 200 K

and held for 20 to 30 seconds to ensure the samples were fully molten and to facilitate the

dissolution of any oxide or impurity phases that may have been present. The laser was then

shut off and the samples radiatively cooled to a temperature below the measurement range of

the pyrometer (approximately 900 K). Data were obtained for multiple heating/cooling cycles

in order to ensure consistency in the structural refinements. Whereas only a few cycles were

taken at low temperatures below the allotropic transition, several cycles were taken at higher

frame rates in order to identify the initial phases that precipitated from the melt.

High resolution synchrotron powder diffraction data were collected at ambient temperature

using beamline 11-BM at the APS (E = 30 keV; λ = 0.414 Å). The sample was placed in a

Kapton capillary and held in place with the use of glass wool (which will contribute only a

glassy signal). A bank of 12 point detectors were used and the data from each was corrected

for detector offsets and sensitivities and merged into a final data file.



66

3.2.3 X-ray Data Analysis

Raw high-energy x-ray data were first corrected for bad detector pixels using the supplied

pixel intensity map, the dark current was subtracted using ImageJ [149], and each frame was

azimuthally integrated to produce x-ray powder diffraction profiles. The levitated samples spin

about a vertical axis as a result of the radiation pressure from the laser heating, providing

some degree of averaging over grains in the recrystallized material. Nevertheless, the raw x-ray

data from solidified samples did exhibit some degree of texturing resulting in peak intensity

fluctuations from frame to frame. For our structural refinements, a moving boxcar average over

seven frames was applied to damp these intensity fluctuations. The refinements of the resulting

powder diffraction patterns were accomplished using GSAS [115]. In general, the diffraction

patterns in each temperature series were refined sequentially using the results at one tempera-

ture point as input for the next temperature point. In addition, the refinement sequences were

initiated at both at the highest and lowest temperatures to ensure consistency in the structural

parameters across the full temperatrure range. Pseudo-Voigt functions were used to model the

peak shapes of the crystalline phases. Isotropic thermal factors were allowed to vary for the

Fe atoms, but constrained within each phase to one value shared at all positions. Tenth order

spherical harmonics were used to calculate texture corrections after boxcar averaging and, for

most patterns, the texture index generated by GSAS was between 1.0 and 1.05, indicating only

mild texturing. Our initial attempts to refiine the atomic occupancies found that the x-ray

data were insensitive to small changes in occupancy, so site occupancies were fixed at unity to

prevent correlations with the thermal parameter refinements.

A significant signal in frames from samples still partially liquid or containing disordered

material made conventional background modeling difficult. Therefore, a background function

was developed based on a fit to the observed scattering from the liquid phase. The use of

this background resulted in a significantly better quality of fit and improved consistency when

refining a large sequence of frames.
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Figure 3.1: (Color online) X-ray diffraction measurements taken during free-cooling from the
melt for (a) solidification directly into the equilibrium Fe2B + Fe phases; (b) precipitation of
metastable Fe23B6 + liquid phases in the region defined by the dashed green lines, followed
by solidification into the equilibrium Fe2B + Fe phase; (c) Solidification into the metastable
Fe23B6 + Fe phases followed by a transformation into Fe2B + Fe; and (d) primary solidification
into Fe23B6 + Fe, which persists down to the lowest temperature measured (900 K). The
precipitation of Fe3B is concomitant with the appearance of bcc Fe.
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3.3 Results

3.3.1 Overview

Cooling and heating cycles were run on several samples of Fe83B17 and key results are shown

in Fig. A.1. The data shown were taken on the same sample processed through a number of

heating/free-cooling cycles. These cycles are representative of all solidification pathways seen

during the experiment, and were observed to occur in a seemingly random order at identical

cooling rates, with no clear dependence on the thermal history of the sample.

Cycle 1, shown in [Fig. A.1(a)], describes the sample solidifying directly into the equilibrium

Fe2B + Fe phase, within the time resolution afforded by acquiring at 8 frames per second. Cycles

2 and 3 [Figs. A.1(b),1(c), 3 and 4] describe solidifications into an initial metastable Fe23B6 +

Fe phase, which then subsequently underwent a second recalescence into the equilibrium Fe2B

+ Fe phases within the solidification plateau. Cycle 4 [Fig. A.1(d)] describes solidifications

where the metastable Fe23B6 + Fe phases persisted down to the lowest temperatures measured

(∼900 K). When the metastable Fe23B6 + Fe phases persist down to low temperature, an

additional metastable Fe3B phase appears concomitant with the onset of the allotropic fcc to bcc

transition for Fe.

One of the most interesting observations from Fig. A.1 is the behavior of the allotropic

transition in the Fe phase fraction of the sample. In the presence of the equilibrium Fe2B

phase, the high-temperature fcc to bcc transition is clearly observed and sharp, as evident in

Figs. A.1(b) and (c). However, no distinct transition is found in the presence of the metastable

Fe23B6 phase in Fig. A.1(d). Instead, the fcc to bcc transformation appears to take place over

a rather extended range of temperature. To investigate the evolution of the crystallization

products of Fe83B17 with temperature in more detail, we performed Rietveld refinements on

the full sequence of diffraction data shown in Figs. A.1(b), (c) and (d).

3.3.2 Cycles 2 and 3: Liquid → Fe23B6 → Fe2B

Figure A.2 illustrates the refinements of the x-ray data at three selected temperatures for

Cycle 2 [Fig. A.1(b)] obtained on free-cooling the liquid. The R-factors (Rp) for each refinement
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Figure 3.2: (color online) Refinements of the x-ray data taken on cooling into the equilibrium
Fe2B + Fe phases [Fig. A.1(b)] for Cycle 2 (a) immediately after solidification is complete,
(b) during the Fe allotropic transformation, and (c) at the lowest recorded temperature. The
insets show an expanded view near the positions of the (2 0 0) bcc and (2 2 0) fcc Fe diffraction
peaks. The residual intensity at the position of the (2 2 0) fcc Fe diffraction peak in panel
(c) is due to diffraction peaks from Fe2B. The brown, blue, and red hash marks denote the
calculated positions of diffraction peaks from Fe2B, bcc Fe and fcc Fe, respectively. The line
below the hashmarks plots the residuals from the fits to the experimental data.
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Figure 3.3: (color online) (a) Sample temperature curve determined from the pyrometer data
taken during the high-energy x-ray diffraction measurement of Cycle 2. The initial temper-
ature signature corresponds to the precipitation of the metastable phase. The second, larger
recalescence indicates formation of the equilibrium Fe2B + fcc Fe phases. The event at ap-
proximately 42 seconds corresponds to the allotropic fcc to bcc transition in Fe on cooling. (b)
The weight fractions of the Fe2B phase and Fe allotropes as determined from the sequential
Rietveld refinements of the diffraction data.
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Figure 3.6: (color online) Refinements of the x-ray data taken on cooling into the metastable
Fe23B6 + Fe phases during Cycle 4 (a) after solidification is complete, (b) during the Fe
allotropic transformation, and (c) at the lowest recorded temperature. The red line corresponds
to the best calculated pattern with all phases included, while the black is the pattern calculated
from the same set of parameters refined without including fcc Fe. The insets show an expanded
view near the positions of the (2 2 0) fcc Fe diffraction peak. The (2 2 0) fcc Fe diffraction
peak appears as a shoulder on the low-angle side of a relatively strong diffraction peak from
Fe23B6. The green, blue and red, and purple hash marks denote the calculated positions of
diffraction peaks from Fe23B6, bcc Fe, fcc Fe, and Fe3B, respectively. The residual from the
final fit to the experimental data is shown in red, while the second line, in black, shows the
residual to the fit not including the fcc Fe.
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over the entire sequence of fits are quite reasonable, ranging from 0.037 at high temperature to

0.046 at 900 K. All diffraction peaks in the pattern were successfully indexed at all temperatures.

The insets to Fig. A.2 show an expanded view of the diffraction patterns in the region of the

most prominent fcc and bcc Fe Bragg peaks. Above the allotropic transition, no evidence of

the bcc Fe (2 0 0) Bragg peak is found, but it is clearly present during the transition and

for temperatures below the transition. The residual intensity close to the fcc Fe Bragg peak

position arises from the near coincident positions of diffraction peaks from the Fe2B phase.

The results of the refinements of the x-ray data in Cycle 2 are summarized in Figs. A.3

and 3.4. Figure A.3(a) displays the sample temperature as a function of time during the mea-

surement. For this run, approximately 30 K of undercooling (below the solidification plateau

of Fe2B) was attained before the metastable Fe23B6 phase first appeared. Very quickly (∼ 2

seconds later) the sample solidifies into the equilibrium Fe2B + Fe equilibrium phases. The dis-

tinct anomaly in the cooling curve at t = 42 seconds corresponds to the allotropic fcc Fe to bcc

Fe transition. Figure A.3(b) shows the relative weight fractions of Fe2B, bcc Fe, and fcc Fe as

a function of temperature determined from our refinements. The statistical uncertainty in the

phase fractions is 1% as judged from the scatter in the data of Figure A.3(b). The allotropic

transition in Fe is sharp and well-defined at the temperature indicated in Fig. A.3(a).

Figure 3.4 shows the temperature evolution of the weight fractions [Fig. 3.4(a)] and lattice

parameters [Fig. 3.4(b) and (c)] of the various crystalline components, all derived from the

refinement of the diffraction data. The weight fraction of the intermetallic Fe2B phase remains

constant over the entire temperature range and we find a sharp transition from fcc Fe to bcc

Fe at approximately 1123 K, somewhat lower than the equilibrium transition temperature of

1185 K, as expected for a first-order transition on cooling.

Fig. 3.5 shows the results from pyrometry obtained during Cycle 3 as well as the weight

fractions calculated from our refinements of the x-ray data. At high temperature, Fe23B6 is the

primary phase with a small amount of fcc Fe, but it transforms rapidly into the equilibrium

phases seen in Cycle 2. After the second recalescence event, all obtained refinement results

were nearly identical to that of Cycle 2. The phase fractions shown here match those shown in

Fig. 3.4 for Cycle 2 closely.
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Figure 3.7: (color online) (a) Sample temperature curve determined from the pyrometer data
taken during the high-energy x-ray diffraction measurement of Cycle 4. The initial temperature
signature corresponds to the solidification of the metastable Fe23B6 + Fe phases. Note the
absence of a distinct signature of the fcc to bcc transition for Fe as compared to the data in
Fig. 3.4(b). The weight fractions of the Fe23B6, Fe3B, and Fe allotropes as determined from
the sequential Rietveld refinements of the diffraction data.
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Figure 3.9: (color online) Rietveld refinement of x-ray diffraction data taken on powder pro-
duced from a levitation processed sample exhibiting behavior corresponding to metastable
phase formation. Green tick marks represent Fe23B6, red fcc Fe, and blue bcc Fe. The blue
line below the pattern represents the residual difference between the observed data and the
refined fit.

3.3.3 Cycle 4: Liquid → Fe23B6

The refinements of the x-ray data obtained on free-cooling the sample illustrated in Cycle

4 indicate quite different behavior. The refinements at three temperatures during free-cooling

are shown in Fig. 3.6. In contrast to what was found for Cycles 2 and 3, we find that the Fe23B6

metastable phase persists down to at least 900 K. The R-factors (Rp) for each refinement over

the entire sequence of fits are again quite reasonable, ranging from 0.037 at high temperature

to 0.033 at the lowest temperature measured. The insets to Figure 3.6 show an expanded view

of the diffraction patterns in the region of the most prominent fcc and bcc Fe Bragg peaks.

Above the allotropic transition, no evidence of the bcc Fe (2 0 0) Bragg peak is found, and the

fcc Fe (2 2 0) Bragg peak appears as a low-angle shoulder on a relatively strong diffraction

peak from Fe23B6. This shoulder decreases in intensity as temperature is lowered. However,

it can still be seen at T = 900 K, well below the equilibrium fcc Fe to bcc Fe transition. In

addition, several low intensity peaks were successfully indexed to a primitive tetragonal form

of Fe3B [27]. Inclusion of this phase improved the fit at the lowest temperature.
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The results of the refinements to this series of diffraction data are summarized in Figs. 3.7

and 3.8. Figure 3.7 displays the sample temperature as a function of time during the mea-

surement. For this run, approximately 20 K of undercooling below the solidification plateau of

Fe23B6 (corresponding to a 70 K undercooling relative to the solidification plateau of Fe2B) was

realized before recalescence of the metastable Fe23B6 + fcc Fe phases. In contrast to Cycle 3,

however, no clear evidence of a transformation to the equilibrium intermetallic Fe2B structure

was found down to the lowest temperature measured during this experiment (∼ 900 K). We

further note that we found no evidence of a transformation to Fe2B down to a temperature of

600 K in cooling curves obtained using the ISU-ESL[62].

Figure 3.8 shows the temperature evolution of the weight fractions [Fig. 3.8(a)] and lattice

parameters [Fig. 3.8(b) and (c)] of the crystalline components, again derived from the refinement

of the diffraction data. The weight fraction of the metastable Fe23B6 phase remains relatively

constant over the entire temperature range, although we see a small decrease in the amount of

the phase below the onset of the fcc to bcc transition for the Fe fraction of the sample. Rather

than the sharp transition from fcc Fe to bcc Fe described above in the presence of Fe2B, there

is only a gradual increase (decrease) in the weight fraction of bcc (fcc) Fe commencing at

approximately 1150 K. Furthermore, the onset of the transition to bcc Fe is accompanied by

the appearance of the primitive tetragonal Fe3B phase. The weight fraction of Fe3B increases

at the same rate as the bcc Fe until leveling out below 1050 K. Even at the lowest temperature

measured during the free cooling cycles, a finite weight fraction (∼10%) of fcc Fe is observed,

well below the equilibrium fcc Fe to bcc Fe transition.

However, the conversion of fcc Fe to bcc Fe apparently continues at lower temperatures.

After Cycle 4, this sample was ground into powder and studied at station 11-BM-B at the

APS. The refinement of this powder data, shown in Fig. 3.9, found that Fe23B6, with a lattice

parameter of 10.7138(1) Å, comprised 65% of the sample by weight with the balance identified

as bcc Fe (∼35%). The refinement also indicated that, if present at all, the weight fraction of

fcc Fe was less than a 1%. A more precise determination of the fcc Fe fraction was hampered

by the near coincidence of all fcc Fe peaks with those from Fe23B6, and cooling the sample
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Figure 3.10: (color online) Several frames of background-subtracted x-ray patterns. (a)-(d)
were obtained during the cycles in the BESL presented earlier while (e)-(f) were obtained at
ambient temperature on samples processed in the ISU-ESL. (a) Equilibrium solidification of
Fe2B + fcc Fe during Cycle 2 directly after the solidification plateau at 1410 K, (c) Same
sample a short time later at 900 K with Fe2B+ bcc Fe. (b) Frames from Cycle 4 with Fe23B6

+ fcc Fe immediately after solidification (d) Same cycle at 900 K with Fe23B6 + Fe3B + fcc
Fe + bcc Fe present. (e) Sample showing the same thermal profile in the ISU-ESL as those in
Cycle 2 (f) Sample with a thermal history resembling that in Cycle 4.
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down to 100 K failed to conclusively distinguish any of the fcc Fe peaks. Likewise, the weight

fraction of Fe3B present at ambient temperature was determined to be less than 1% by weight.

3.3.4 Evidence for the coherent growth of fcc Fe and Fe23B6

The data presented in the previous subsection demonstrates that both fcc Fe and Fe23B6

persist down to much lower temperatures than previously reported. To gain some insight into

the mechanism for stabilizing these phases we turn to the raw 2D diffraction patterns in Figures

3.10 and 3.11. The pattern in Fig. 3.10(a) was taken immediately following solidification into

the equilibrium Fe2B +fcc Fe phase (Cycle 2), and Figure 3.10(b) shows a pattern upon

crystallization into the metastable Fe23B6 phase (Cycle 4). Here, we see that a significantly

higher degree of texturing is observed for solidification into the metastable Fe23B6 phase than for

the equilibrium Fe2B product. Figures 3.10(c) and (d) display the raw 2D diffraction patterns

taken at the lowest temperatures measured, where the same trend in texturing is observed.

Figure 3.10(e) shows the ambient temperature diffraction pattern from a sample solidified into

the equilibrium Fe2B + Fe phases in the ISU-ESL, whereas Figure 3.10(f) displays ambient

temperature diffraction pattern from a sample that solidified into the metastable Fe23B6 + Fe

phases, also processed in the ISU-ESL. The striking difference in grain size is consistent with

the texturing in the Fe23B6 observed at all temperatures.

Figure 3.11 presents an enlarged portion of a diffraction pattern taken just after solidification

on a sample that has formed the Fe23B6 phase. Of note is the coincidence of features in the

Debye rings from the fcc Fe and Fe23B6 phases, most visible in the fcc Fe 220 and Fe23B6 660

diffraction rings, as well as the fcc Fe 222 and Fe23B6 666 rings. All incomplete arcs of these

rings match perfectly between the two phases, indicating a shared orientation.

At 900 K, the lowest temperature recorded during free cooling, the lattice parameters for

Fe23B6 and fcc Fe are found to be 10.7513(3) Å and 3.6258(4) Å, respectively. This corresponds

to a ratio of 2.965, or a 1.2% lattice mismatch. The small mismatch, the shared texturing in the

raw data, and the apparent necessity of the existence of the Fe23B6 phase for the persistence of

the fcc Fe phase below the allotropic transition together indicate coherent intergrowth between

the two phases.
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Figure 3.11: (color online) An enlarged section of a frame from Cycle 4, taken immediately
following solidification at 1390 K. The green labels on the left indicate the hkl index for each
ring belonging to Fe23B6, while the red indices on the right delineate the fcc Fe rings.

3.4 Summary and Discussion

Our high-energy x-ray diffraction have resulted in several interesting results. The solidi-

fication of the Fe2B + Fe phase, illustrated in Cycle 1 and 2, is expected and the calculated

weight fractions reasonably match the stochiometry of the sample to within a few percent. The

allotropic transition in Fe is observed slightly lower than in previous reports, but this is most

likely due to achieving some small degree of undercooling. From the 2D data available at both

high and low temperatures, the phases appear to be well dispersed, as evidenced by the smooth

diffraction rings.

The second solidification mode, however, provides some insight into the stabilization of the

metastable fcc Fe phase. Whereas the growth and persistence of metastable Fe23B6 have been

recognized for some time, previous investigations have suggested that its stability is dependent

on a high cooling rate [45], and other solidification studies indicate Fe3B as the initial solidified

phase. In contrast to these results, the samples studied here show no dependence on cooling rate

on either formation of the metastable Fe23B6 phase, or its persistence to lower temperatures.

After several initial melt cycles, exhibiting minimal evaporative mass loss or variation in melting
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temperature, the Fe23B6 phase generally nucleates before any equilibrium phases in the manner

of Cycle 2 or 3. The two subsequent behaviors, transformation to the equilibrium Fe2B phase

during the solidification plateau or persistence of the Fe23B6 phase to lower temperatures, occur

in seemingly random order in consecutive cycles. The consistent randomness of the solidification

product, in comparison to past observations, may be a result of high temperature cleaning or

mixing. While there is no clear evidence of Fe23B6 in those solidifications resembling Cycle 1,

any precipitation of a metastable precursor that occurs on a fast timescale could be difficult to

resolve at the 8 frames per second Cycle 1 was acquired at.

In addition, in previous studies finding persistent Fe23B6, either fcc Fe was not detected

or the data were not fully refined [45, 46]. Here, the clear presence of fcc Fe is confirmed via

refinement, at both high and low temperatures. The raw data reveals that these two phases

are highly textured, with large grains appearing to grow coherently with each other. While

the bcc Fe appears around the expected temperature, the transformation is slow. In addition,

Fe3B is shown to appear simultaneously with bcc Fe and the fractions of both phases increase

together. Previous work on Fe80B20 using electron microscopy has shown that the bcc Fe phase

grows coherently with Fe3B [25]. In direct contrast to the other phases present, both the bcc

Fe and Fe3B appear to be more finely dispersed in the raw data (Fig. 3.10).

Careful analysis of the lattice parameters of all observed phases reveals a few key relation-

ships. Previous work growing pseudomorphic thin films of fcc Fe on Cu (001) was successful

with a 1% epitaxial mismatch [150], and the bcc form of Fe was successfully grown with a

mismatch of 1.35% [151]. The lattice mismatch found in this study of 1.2% is close to these

results and a plausible value for heteroepitaxy. While fcc Fe layers formed on the Fe23B6 may

be strained to match the Fe23B6, our measurements only reveals the average lattice constant

of the grains, and are insensitive to deformations of the few layers near the boundary between

the two phases. The difficulty in confirming whether fcc Fe is retained at ambient temperature

may result from the near coincidence of diffraction peaks from Fe23B6 and fcc Fe due to a

further decrease in lattice mismatch with lowered temperature. Large grains visible on the

Debye rings corresponding to both Fe23B6 and fcc Fe at ambient temperature may indicate

the continued presence of the fcc Fe, but cannot be quantified without further experiments.
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Here the epitaxial relationship between the Fe23B6 and fcc Fe likely provides a mechanism

for the retention of fcc Fe by imposing a kinetic limitation on the allotropic transition. It

is likely that this coherency also facilitates the formation and retention of the Fe23B6, as

the fcc Fe is an equilibrium phase at the solidification temperature. The full details of this

stabilizing mechanism cannot be entirely explained based on the data presented here, but

is certainly worth further study. The nature of this growth raises questions about similar

binary systems. For example, one might expect formation of an Fe23C6 structure in the Fe-C

binary system. However, to our knowledge, the Fe23C6 structure is rarely observed in the

binary, and more generally seen as a secondary product in materials composed of at least

three components. Previous work investigated the properties and stability of this phase, with

the most stable lattice parameter predicted to be 10.4668 Å[48], while the lattice parameter

of Fe23C6 in (Fe0.8Cr0.2)79B17W2C2 was determined experimentally to be 10.639 Å[152]. All

reported values are smaller than the lattice parameter of Fe23B6 observed here and should

lead to a larger lattice mismatch between the Fe23C6 and fcc Fe phases, possibly preventing

stabilization via coherent growth between them. This mismatch may explain the rarity of

Fe23C6 in binary Fe-C alloys, and is worth investigation.

The fcc Fe lattice parameter given here, slightly larger at this temperature than previously

reported, also lends further motivation to a study of the magnetic structure of the material.

Previous attempts to grow fcc Fe, as thin films grown epitaxially on a copper substrate [153–

160] or in the bulk in Cu or Cu-Au matrices [161–164], resulted in lattice parameters between

3.57 Å and 3.75 Å, with the mixed magnetic properties of the films highly dependent upon

preparation conditions. Theoretical work has previously established that a fcc Fe lattice pa-

rameter below 3.57 Å would exhibit FM ordering, while a value of or above 3.62 Å could yield a

high-spin FM ordering state [165]. If fcc Fe is present in these samples to lower temperatures,

as the observed trend in phase fractions seem to indicate, it can be estimated from the Fe23B6

lattice parameter that the fcc Fe phase would have a lattice parameter of about 3.61 Å at

ambient temperature. This lattice parameter would be in the middle of this range, larger than

those predicted to exhibit AFM ordering and smaller than those with high-spin FM ordering.
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Further studies detailing the existence and potential magnetic ordering of the fcc Fe phase at

lower temperatures are in progress.
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CHAPTER 4. IN-SITU INVESTIGATION OF MAGNETISM

IN METASTABLE PHASES IN LEVITATED FE83B17

This chapter is currently being considered for publication as a letter in Physical Review:

Applied. It was drafted in collaboration with D. Messina, G.E. Rustan, A. Kreyssig, and A.I.

Goldman. The author prepared samples, performed all experiments, analyzed all data, and

drafted the manuscript. D. Messina assisted during sample preparation and the BESL run in

2016. G.E. Rustan performed the initial experiments that led to those performed here, and

was the driving force behind the implementation of the TDO. A. Kreyssig and A.I. Goldman

assisted in editing the manuscript.

Thermophysical properties such as density, specific heat, viscosity, surface tension, emissiv-

ity, conductivity and magnetization provide valuable insight into the nature of the metastable

solids and liquids, and critical data for quantitative modeling of phase selection and solidifica-

tion. However, metastable phases at high temperature are notoriously difficult to characterize,

particularly when environmental contamination is of concern. Nevertheless, the ability to de-

termine in-situ both the structure and properties of these metastable phases, their formation

with composition and temperature, and their role in the formation or inhibition of stable phases

at lower temperatures can add tremendously to our understanding of stable phase formation

in complex systems.

The Fe-B binary system has been the subject of intense study for decades since it is a

constituent of magnetic materials critical to a number of industries[166–168] as well as the

essential component of a number of metallic glasses[13, 169]. Devitrification experiments on

glassy samples have observed an abundance of metastable phases, such as primitive tetragonal
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(pt) Fe3B, body-centered tetragonal (bct) Fe3B, orthorhombic (o) Fe3B, and cubic Fe23B6.

In-situ studies [44, 141, 45] have provided some new insights into the solidification pathways

in eutectic Fe83B17. In particular our recent in-situ high-energy x-ray studies[146, 132] of

of Fe83B17 have revealed that this alloy solidifies either directly into the equilibrium Fe2B +

fcc-Fe phases, or a metastable phase mixture of Fe23B6 + fcc-Fe that, subsequently, either

transforms to the equilibrium high-temperature phases (Fe2B + fcc-Fe) or persists down to

ambient temperature. The selection of the solidification pathway for any given sample or

heating cycle appears to be a stochastic process, and the sequence of solidification products for

samples where the metastable Fe23B6 phase persists to ambient temperature is quite complex.

For example, in these instances, the Fe83B17 phase is accompanied by the presence of coherently

grown fcc-Fe which also persists to temperatures well below the allotropic fcc - bcc transition

at ∼1150 K on cooling, and the metastable pt-Fe3B is also observed at lower temperatures.

Given the past emphasis on the magnetic properties of the Fe23B6 phase[32], as well as

extensive investigations into the magnetism of fcc Fe structures stabilized on a variety of

substrates[170–172], there is considerable interest in the nature and formation of magnetism in

these non-equilibrium metastable phases. The complex nature of the solidification, however,

requires a probe that is well suited to the challenges of high temperature, the time dependence

of the solidification process itself, and the requisite sensitivity to detect the subtle signals of the

emergent magnetism. To overcome these challenges, the containerless processing environment

of an electrostatic levitation furnace has been combined with a tunnel-diode oscillating (TDO)

circuit for precision contactless measurements of dynamic magnetic susceptibility[93, 62]. While

the TDO method has traditionally been employed as a highly sensitive probe of resistivity,

susceptibility, and london penetration depth in the low temperature regime[173], here it has

been adapted for use in high temperature processing.

Applied concurrently with simultaneous volumetric measurements, and correlated with

high-energy x-ray diffraction experiments for phase determination, we have identified and char-

acterized a number of magnetic transitions during the solidification of Fe83B17. Several new

results, including an enhanced magnetic ordering temperature for Fe23B6 and the possibility
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of a magnetic contribution to the driving force for the allotropic fcc-Fe - to - bcc-Fe transition

are obtained from our measurements.

Fe83B17 ingots were prepared by arc melting 99.99% pure Fe from Toho Zinc Corporation

and 99.9999% pure B from Alfa Aesar under a reducing atmosphere. The ingots were broken

into 30 to 80 mg chunks and laser melted several times on a polished graphite surface, first

under forming gas and then under high vacuum (∼10−7 torr), to form spheres for levitation. All

material was carefully weighed several times throughout processing to monitor any evaporative

mass loss, and a Leco CS-444 carbon determinator was used to ensure there was no appreciable

carbon contamination from the graphite substrates.

The samples were levitated in the ISU-ESL[93, 62] where controlled heating and cooling

ramps were accomplished using a PID algorithm in the LabVIEW laser control program at

a rate of 2 K/s. Free cooling cycles were accomplished by simply turning off the laser. The

data presented here were taken on a 43 mg sample, exhibiting ∼0.1 mg of mass loss through

the course of 10 heating and cooling cycles. Volumetric measurements were performed in

the ISU-ESL using a well established videographic algorithm [79? , 62] and were performed

concurrently with the TDO measurements to ensure that the observed magnetic transitions

could be correlated consistently with the x-ray data.

The ISU-ESL TDO is described in detail in Refs. [93] and [62]. Briefly, a copper coil

was installed in the bottom electrode of the ESL and connected to a tank circuit driven by a

tunnel diode biased to the region of negative differential resistance on its V (I) curve. Samples

levitating above the coil are inductively coupled to coil (inductor) of the oscillator circuit

and changes in the sample conductivity and/or magnetization result in a shift of the circuit’s

resonant frequency f0 = (2π
√
LC)−1:

∆f

f0
=

3

4
φ
(

1− 3δ

2a

(
1 + χ)

)
(4.1)

where ∆f is the shift in frequency, f0 is the resonant frequency of the empty circuit without

the sample, φ is the sample filling factor, and χ = µ − 1 is the magnetic susceptibility. In

general, the frequency shift is proportional to the total magnetic susceptibility of the sample,

which consists of both skin-effect diamagnetism and electronic magnetism, either dia- or para-
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depending on the situation. The latter contributes from the skin depth layer accessible to the

AC excitation field. As we show below, the onset of magnetic ordering can produce frequency

shifts of 102-103 Hz.

High-energy x-ray diffraction measurements were performed at Beamline 6-ID-D (λ =

0.09411 Å, E = 131 keV) at the Advanced Photon Source (APS) at Argonne National Lab-

oratory. The samples were levitated in the Washington University Beamline Electrostatic

Levitator (WU-BESL), a more detailed description of which can be found in Ref. [99], using a

similar procedure to the one described in Ref. [132]. A two-dimensional GE Revolution 41-RT

amorphous silicon flat-panel detector was used for rapid acquisition of diffraction patterns in

transmission geometry, with ∼88% transmission through the sample. Data presented here were

obtained at 1 frame per second on a 46 mg sample. No automated temperature control was

available but efforts were made to match the ramp rates used for the TDO study. Gaps in

the x-ray data are due to detector memory limits on continuous acquisitions. ImageJ[149] was

used to correct diffraction images for dark current and background. Fit2D[116, 174] was used

to determine detector distance, correct for detector rotation and tilt, and azimuthally integrate

the 2D data. GSAS[175] was used for all sequential Rietveld refinements.

In Fig. A.1 we show the x-ray, volumetric and TDO data for a cooling/heating cycle where

the Fe83B17 sample solidifies into the equilibrium Fe2B + fcc-Fe phases from the melt. On

cooling from the melt, Fe2B is the primary equilibrium phase, accompanied by fcc-Fe at high

temperature which transforms to bcc-Fe near T = 1150 K. The transformation of fcc-Fe to bcc-

Fe represents a shift in average volume per Fe atom from 12.188 Å3/atom to 12.238 Å3/atom,

which is reflected in the cooling curve in Fig. A.1(c) as an expansion at the transition. On

heating, the transformation from bcc-Fe to fcc-Fe is observed in the x-ray data at 1220 K, and

the corresponding volume contraction is seen in Fig. A.1(c) at nearly the same temperature.

The TDO data in Fig. A.1(d) exhibits a sizeable frequency shift (proportional to the mag-

netic susceptibility of the sample) at 1040 K, with a magnitude of 1080 Hz, signifying a large

increase in magnetic susceptibility corresponding to the onset of magnetic ordering. This tem-

perature closely matches the known Curie temperature (TC) for the onset of ferromagnetism

for bcc-Fe of 1043 K. On heating, a comparable decrease in frequency is observed at the same
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Figure 4.1: (color online) (a) and (b) Results of Rietveld refinements of the x-ray data. The red
triangles represent fcc-Fe, blue triangles represent bcc-Fe, and the brown triangles represent
Fe2B. Weight fractions in panel (a) were measured on cooling, and those in (b) were measured
on heating. (c) Volumetric data taken in the ISU-ESL. Temperatures labeled as I and II denote
the allotropic transition on cooling and heating, respectively. (d) Frequency shift measured by
the TDO circuit. The inset displays the peak near 1018 K taken on a similarly-sized sample
with data taken at a lower cooling and heating rate (∼0.25 K/s) for higher resolution. Dark
blue circles correspond to cooling and orange squares represent the subsequent reheat. The
volume is represented as a fractional change from ambient temperature values to more easily
compare to the results from the x-ray data.
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temperature, signaling the transition from ferromagnetic order below, to paramagnetism above,

TC. Furthermore, there is a small but persistent peak at 1018 K. The well-established TC for

Fe2B of 1015 K[18] allows us to identify this feature as arising from the ferromagnetic ordering

of Fe2B. Both the shape and the magnitude of this feature, however, are quite different from

the step-like TDO frequency shift observed for the ferromagnetic ordering of bcc-Fe.

Extensive investigations into the TDO response to magnetic transitions have determined

that the large, step-like increases in the frequency shift are associated with the onset of itin-

erant ferromagnetism[108], consistent with the itinerant magnetism in bcc-Fe. On the other

hand, ferromagnetic transitions in local moment systems demonstrate small, sharp peaks in the

frequency shift[108, 110] due to critical fluctuations. We note that there is some evidence for

local moment magnetism in Fe2B[176], consistent with the shape and small frequency shift of

the transition with respect to the Fe2B weight fraction. These measurements further demon-

strate that the nature of the ordering (local vs. itinerant) in magnetic materials, as well as the

ordering temperature itself, may be elucidated through TDO measurements.

We now turn to our measurements, displayed in Fig. A.2, for a cooling/heating cycle where

where the Fe83B17 sample solidifies into the metastable Fe23B6 + fcc-Fe phases from the

melt. In order to ensure that we capture the kinetics of the metastable phase transitions with

temperature, all of these data were taken while free-cooling the sample from high temperature.

Fig. A.2(a) and (b) are again the calculated weight fractions from the Rietveld refinements of

the x-ray data during cooling and heating, respectively, and are consistent with our previous

results[146, 132]. In addition to the persistence of the metastable Fe23B6 phase over the full

temperature range probed here, several other features are noteworthy.

On cooling, the fcc-Fe - to - bcc-Fe transformation is suppressed to much lower temperature,

commencing at approximately 1050 K, and is quite broad in temperature. A small weight

fraction of the metastable pt-Fe3B precipitates, but does not continue to grow beyond ∼5% of

the sample weight. Rather than the sharp change in the volumetric data [Fig. A.1(c)] described

above, the allotropic transition is reflected in Fig. A.2(c) as an inflection midway through the

fcc-Fe to bcc-Fe transition region labeled I.
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Figure 4.2: (color online) (a) and (b) display results of Rietveld refinements on x-ray data.
Green squares represent Fe23B6, red triangles pointing down fcc Fe, blue triangles pointing
up bcc Fe, brown triangles pointing left Fe2B, and purple circles Fe3B. Fractions in (a) were
measured on cooling, and those in (b) were measured on heating. (c) Sample volume as
compared to an ambient temperature measurement. Points I through IV are temperatures
corresponding to transitions as described in the text. (d) The measured frequency shift in the
TDO. The inset presents a detailed view of the signal near 790 K.
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On heating, we note that the volume undergoes a slight increase at point II in comparison

to cooling at this temperature. This feature is likely due to the continued transformation of

any residual fcc-Fe in the sample to bcc-Fe as temperature is increased. The transformation

from Fe23B6 to Fe2B commences at approximately 1050 K, accompanied by an increase in the

weight fraction of Fe3B and bcc-Fe, consistent with the contraction in the volumetric data at

point III in Fig. A.2(c). Finally, as the sample is heated above approximately 1375 K, the

metastable Fe3B transforms to Fe2B and bcc-Fe.

Figure A.2(d) displays the corresponding TDO data for this Fe83B17 sample. In contrast to

the data shown in Fig. A.1(d), on cooling there is no evidence of a sharp ferromagnetic transition

at 1040 K, consistent with the absence of the bcc-Fe noted above. Rather, the TDO frequency

shift exhibits a slow rise beginning at 1040 K, concomitant with the slow increase in the weight

fraction of ferromagnetically ordered bcc Fe as temperature decreases. It is notable that the

fcc-Fe - to - bcc-Fe transformation here is coincident with the onset of magnetic ordering. In

light of previous studies of the magnetic contributions to the stability of the Fe allotropes[177],

and evidence of magnetic contributions to the driving force for nucleation in undercooled liquid

Co80Pd20[178], this observation suggests that magnetic interactions may play a role in the

fcc-Fe - to - bcc-Fe transformation. This point certainly bears further investigations.

At T = 850 K, there is a large increase in the TDO frequency, again indicating a transition

to a ferromagnetically ordered state. There is no known TC among the iron borides at 850 K,

with the closest belonging to bct-Fe3B at 786 K and o-Fe3B at 897 K [179]. The transition at

850 K is followed by a small, reversible signal at 790 K. This is most likely related to a magnetic

transition in Fe3B, being close to the reported TC of 786 K for bct-Fe3B, though far from the

reported TC of pt-Fe3B. The low magnitude of the transition, 25 Hz, is reasonable given the

small fraction of the sample occupied by Fe3B (<5%). Both these signals are again present

on heating, where bcc Fe shows a ferromagnetic to paramagnetic transition at 1040 K, with a

magnitude reflecting the low weight fraction relative to that in the equilibrium solidification.

Fig. A.3 corresponds to an anneal subsequent to the cooling cycle shown in Fig. A.2(d),

where the sample was heated to ∼990 K and held for eight minutes before cooling. A large

volume contraction (∼1%) indicated the transformation from Fe23B6 to Fe2B + Fe3B + bcc
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Figure 4.3: (color online) TDO output from an anneal following the solidification displayed
in Fig. A.2(c) and (d), where the sample was heated to the temperature region where Fe23B6

transforms to Fe2B + bcc Fe + Fe3B. Orange squares represent the initial heat and eight minute
anneal at 990 K, while blue circles represent the subsequent cool.

Fe. On cooling, the frequency shift at 850 K has almost disappeared, whereas the signal at 790

K is slightly enhanced. Given the expected increase in Fe3B content and decrease in Fe23B6,

the transition at 790 K must come from Fe3B, and the signal at 850 K can be associated with

ferromagnetic ordering in Fe23B6.

Studies have suggested that the flexibility of the Fe23B6 structure allows for different frac-

tional occupations of the Fe sites as well as variations in bond lengths[180], resulting in notice-

able differences in the magnetic order [48]. A series of investigations by Barinov et. al [181]

on single phase Fe23B6 found a range of Curie temperatures from 623 K to 701 K, related to

the Fe site vacancies and B concentration, cB, of the structure given by Tc = [101 + 26.1cB] K.

Nominally, Fe23B6 has a cB of 20.7%, while our recorded TC would require a cB of 28.7%.

Two other explanations for the higher TC for Fe23B6 seem plausible. The first, and most

likely, is that this higher TC is a result of the coherent growth of Fe23B6 on large grains of

metastable fcc Fe. It is unclear from the Rietveld refinements and raw x-ray data if any of

the fcc Fe remains at room temperature, and as past work has demonstrated[132], the overlap

of peaks resulting from coherency together with extremely strong texturing make quantitative
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measurements of the fcc Fe and Fe23B6 fractions challenging. The nature of the coherent

stabilization might imply a kinetic barrier to further transformation at low temperature, leaving

some small grains of fcc Fe throughout the sample, and the volume expansion seen in Fig. A.2(c)

at (II) may support this.

If some fcc Fe is still indeed present at ambient temperatures, the possibility remains

that this signal comes from stabilized fcc Fe clusters. There have been numerous efforts

to characterize magnetic ordering in thin films of fcc Fe grown on Cu substrates[182] or in

Cu[163] or Cu-Au[183] matrices. While fcc Fe is antiferromagnetic in the ground state, with

a Néel temperature of 70 K[184], metastable low-temperature fcc Fe growth is predicted to

exhibit a sensitive dependence on its lattice parameter, varying from low-spin to high-spin

ferromagnetism between 3.57 and 3.62 Å [165, 185]. The lowest temperature where we have

obtained a reliable lattice parameter of fcc Fe during the most recent course of work with the

BESL yielded 3.628 Å at 850 K. This would imply any stabilized fcc Fe could be within the

predicted high-spin regime.

The work performed by combination of x-ray diffraction, volume thermal expansion, and

TDO susceptibility measurements paints a clear picture of magnetic transitions in the system.

The equilibrium solidification displays the signature of ferromagnetic transitions in bcc Fe and

what appears to be a primarily local moment ferromagnet, Fe2B. Among the metastable phases,

a transition at 790 K is ascribed to Fe3B. A transition at 850 K can be safely attributed to a

high Curie temperature phase resulting from Fe23B6 coherently grown with fcc Fe. This study

provides an excellent example of the capacity of containerless instrumentation to map the

magnetic phase diagram of sensitive non-equilibrium phases and high-temperature materials.
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CHAPTER 5. THE STRUCTURE OF LIQUID FE83B17 AND FE83C17

5.1 Introduction

The physics of liquids has been an evolving area of study since the 1960s. Knowledge

of thermophysical properties of the melt, such as viscosity and density, are crucial to many

industrial casting process[60]. Advances in levitation-based containerless processing method-

ology combined with the development of third generation synchrotron light sources and high

intensity neutron scattering laboratories over the past two decades have begun to produce

a rich literature of structural studies on liquids. Combined with advances in computational

power and the corresponding algorithms [186, 131], a number of studies have probed the rela-

tionship between the structure[85, 86, 187, 188] and dynamics[189, 190] of the liquid as they

relate to non-equilibrium transformation processes such as the glass transition[88], liquid-liquid

transitions[191], and metastable phase selection[192, 193]. By comparing structural motifs in

the undercooled liquid to those in metastable phases, kinetic arguments for phase selection

pathways may be made[187, 194]. Recent investigation combining x-ray and neutron scattering

with computational methodology were able to compare the liquid ordering prior to solidification

in ZrRh and ZrPt to those observed on solidification[92].

The Fe-B and Fe-C systems are both exhaustively well studied systems, as the former is

relevant to metallic glass and permanent magnets as thoroughly detailed in Chapter 1, and the

latter the foundation of steel, one of the most important and ubiquitous materials in the modern

world. Many theoretical models for the liquid structure have been proposed and investigated

via molecular dynamics simulations[145, 195]. However, due to the prohibitive experimental

complications associated with isothermal holds of high temperature reactive liquids, experi-
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mental studies of the liquid structure are scarce, with most investigations into liquid Fe80B20

and Fe83C17 being decades old[196, 197].

Here we perform a comparison study on the Fe83B17 and Fe83C17 eutectic compositions.

Past work [132] has demonstrated that electrostatically levitated Fe83B17 solidifies into either

equilibrium bcc-Fe + Fe2B or a metastable coherently intergrown Fe23B6 phase in a manner

that appeared to be near-stochastic[146]. This observation ran counter to a body of work

claiming some form of Fe3B as the main solidification product. As a primary devitrification

product from glassy Fe-B binary alloys[32], the similarity of the Fe23B6 structure to that of

the the amorphous phase is well documented[198], and it may be expected that this similarity

extends to the liquid as well.

The Fe23C6 structure, while also definitively metastable, is expected to have a cohesive

energy very close to that of θ-Fe3C (19.5 meV/atom and 20.6 meV/atom, respectively), and is

considered by some to be more stable[49]. However, it is never observed in the binary, appearing

only in the grain boundaries of materials of three or more components, and commonly stabilized

by the substitution of rare earth elements and large atoms. While a variety of explanations have

been proposed to explain its absence [49], it remains a mystery why it is not more common.

The number of in-situ structural studies during the solidification process is limited, and

the possibility remains that, as often seen during solidification in the Fe-B system, the Fe23C6

functions as a transient metastable state. The nominal composition of the structure is close to

that of the eutectic, implying the same kinetic limitations that make θ-Fe3C more commonly

observed than the equilibrium γ-Fe + graphite phase would favor the growth of Fe23C6 as

well. However, of the 50+ containerless solidifications observed during the experiments that

contributed to this work, none observed the structure. It could be that the lifetime of the

phase was shorter than what was observable within the time resolution of the experimental

apparatus. However, it may also be the case that the local ordering in the Fe-C liquid is less

favorable to the formation of the Fe23C6 structure than in the Fe-B system.

We have investigated the liquid structure of both alloys using the high-energy x-ray ca-

pabilities of a synchrotron light source combined with the Beamline Electrostatic Levitation

Furnace (WU-BESL)[99] and time of flight (TOF) neutron studies using the Neutron Elec-
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trostatic Levitator (NESL)[100]. The x-ray scattering strength of the metalloid (M) atoms,

roughly proportional to Z, is small enough relative to the larger Fe atoms that they are nearly

invisible to x-rays. However, the metalloid neutron scattering lengths are much larger, and

thus simultaneous measurements provide enough contrast to determine the Fe-M partial pair

correlation function. By modeling the resulting diffraction patterns using reverse monte carlo

techniques, we provide a qualititative comparison between local ordering in the two liquids,

and relate it to the structure of common solidification products.

5.2 Experimental Methods

5.2.1 X-ray and Neutron Scattering

Arc melted ingots were prepared at the Ames Laboratory Materials Preparation Center

(MPC) using iron from Toho Zinc Corp. (99.99% purity, metals basis), boron-11 from Eagle

Pritcher (99.54% purity), and carbon from Alfa Aesar(99.9995% purity, metals basis), and

were melted under a reducing atmosphere. The ingots were then broken into small pieces

and remelted under a forming gas on polished graphite blocks to form levitation spheres. In

order to confirm the samples were free of contamination from the graphite, carbon analysis

was performed on the raw ingots and the processed spheres at the MPC on a Leco CS-444

Carbon Determinator. All samples were prepared from the same batch. Samples for the BESL

were sized between 30 and 80 mg, while samples for the NESL were chosen to be 150 mg to

400 mg, reflecting the greater volume required for neutron scattering statistics. Samples were

massed before and after processing on the graphite and in the levitation furnaces to track

stochiometry shifts. Initial sample procesing was carried out in the ISU-ESL[62]. Number

density (n = NA/Mρm, NA is Avogadro’s number, M is the molar mass, and ρm the mass

density) for normalization of G(r) was acquired from volumetric data obtained via the machine

vision method presented in [79].

For high-energy x-ray diffraction measurements, the WU-BESL was installed at beamline

6-ID-D at the Advanced Photon Source (APS) at Argonne National Laboratory. In the BESL,

upon melting, samples (∼30-70 mg) were held isothermally in the liquid for 30 s while ac-
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quiring x-ray diffraction patterns with a two-dimensional GE Revolution 40RT detector. The

temperature was first stepped up in increments of 50 K to a maximum of 150 K above the

melt before cooling down in similar steps in order to ensure complete dissolution of any solid

material present.

To obtain the normalized structure factor S(q) and pair distribution function g(r), x-ray

data was corrected for compton scattering, flourescence, Laue diffuse scattering, polarization,

geometric corrections, and normalized by the atomic scattering functions as described in Chap-

ter 2. All analysis was performed using the Washington University X-ray Batch Analysis

package[199], which contains specific corrections for the WU-BESL sample environment, such

as an absorption calculation for offset spherical samples. X-ray data was obtained out to 22

Å−1, and is here presented truncated to 16 Å−1.

Neutron diffraction measurements were performed at the Spallation Neutron Source (SNS)

at Oak Ridge National Laboratory. The NESL was installed at the SNS at BL-1B, the Nanoscale

Ordered Materials Diffractometer (NOMAD). In the NESL, once molten, samples (∼200 mg)

were held at two temperatures, one ten degrees above the melting temperature and one 50 K

higher, for 18 minutes each. Due to the low statistics obtained, these scans were compared,

found to be virtually identical, and have been subsequently summed. While it is now known

the sample could have been held in the liquid state for longer, during the experiment there

were concerns about evaporation, both regarding stochiometry shifts of the samples themselves

as well as the effect on the mirrors used for positioning, pyrometry, and the heating laser.

All neutron data was corrected for absorption and secondary scattering and normalized to

the neutron scattering lengths by a set of IDL scripts and python programs developed at the

NOMAD beamline. The neutron data was collected out to 30 Å−1. Data presented here is

truncated to 16 Å−1.

Additional normalization for both x-ray and neutron data was performed by the method

described in Chapter 2 as implemented in a LabVIEW VI by Johnson [128, 92]. To verify that

there was no significant stochiometry shift via preferential evaporative mass loss, Fe-C samples

were later analyzed by the Leco CS-444 Carbon Determinator and Fe-B samples by inductively
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coupled plasma mass spectrometry (ICP-MS), where any compositional shift was determined

to be within the measurement error of the instruments.

5.2.2 Computational Methods

Reverse Monte-Carlo (RMC) simulations were performed using the RMC POT program

[200], chosen for its ability to easily parallelize computation. The hard-sphere cutoff distance

was determined using the minimum before the first peak in g(r), and verified against those

used in published MD simulations [201, 58]. A move-out option, forcing atoms below the cutoff

distance to separate during the move generation process, was enforced to ensure there were

no correlations below the hard sphere cutoff. An optimal grid was empirically determined to

consist of 7 atoms as the minimum grid size that did not dramatically increase computational

time. An r-spacing of 0.02 Åwas used, based off of the original resolution of the scattering

data.

All RMC fits were performed using experimental S(q) from both x-ray and neutron scat-

tering as simultaneous constraints; previous work has demonstrated that the use of the q-

dependent atomic scattering functions as indirect constraints results in more physical fits than

simply using the weighting factors for g(r)[202]. For the neutron results, the weighting fac-

tors of each partial pair correlation function (PPCF) were determined using the approximation

given by Ref. [126] and were given by cFe-Fe = 0.865 and cFe-(B,C) = 0.135. The q-dependent

weighting factor of each PPCF was generated using the x-Ray batch analysis package and used

directly by RMC POT. Critically, in both materials, the metalloid-metalloid PPCF was cal-

culated to be nearly invisible in the x-ray data (normalized weighting factor of ∼ 0.007) and

within the noise ratio in the neutron data (∼ .01), and so was set to zero in both sets of RMC

simulations. The statistical error on the neutron scattering data collected was notably higher

than the x-ray data; as such, for the purposes of RMC simulation, the x-ray data was weighted

more strongly by assigning it a lower standard deviation.

Each RMC instance was run for 10 hours or until both the χ2 and Rp quality factors con-

verged to a stable value. Atoms were initially allowed 0.25 Å per move; after the quality factors

of the fit converged, moves of 0.5 Å were allowed to enable the ensemble to escape any local
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Figure 5.1: Black circles represent experimental S(q) data, while red lines are the corresponding
RMC fits. (a) X-ray and (b) neutron diffraction on Fe83B17 at 1470 K (c) X-ray and (d) neutron
diffraction on liquid Fe83C17 at 1450 K

equilibria, before the move length was reduced back down. In addition to starting configura-

tions generated using fcc and bcc ensembles, a series of 8 pseudo-random starting configurations

of 5000 atoms each were generated using Mathematica[203]. Ten simulations were performed

for each composition, one using each of the starting configurations. The simulations were in-

dividually examined to ensure no exceptional bias from the starting configuration was present.

The analysis presented on each composition is an average of results from all simulations.

Voronoi analysis was accomplished using the Voro++[204] implementation in the Open

Visualization Tool (OVITO)[130] as controlled by a custom python script written for this work.

It can be shown that weighted bisecting planes based on atomic radii produce more physical

results than traditional voronoi tesselation[205]. Polydispersive tesselation was performed by

specifying Goldschmidt radii for each element as given in Ref. [206]. In order to reduce spurious

nearest neighbor geometries, a minimum face size cutoff of 0.25 Å2 was applied.

Honeycutt Anderson (HA) calculations were performed through a python program written

by collaborators from Washington University used for previous publications [84]. All results
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were verified by comparing the output with a Mathematica package written during the course

of this dissertation. Both packages use a cutoff scheme to determine the bonded nature of root

pairs in the system. Here, bond lengths were calculated by using the first minimum in g(r) after

the first peak, and in both systems were found to be ∼3.4 Å. While unbonded root pairs were

also examined, results presented here are based only on the bonded root pairs, and all non-

physical root pair clusters have been removed from the results. Honeycutt Anderson indices

were also calculated for the crystal structures in the system. The indices are an extremely

sensitive function of the bond length; for each crystal structure, the cutoff length was chosen

according to the first wide minimum in the pair distribution function

All structure visualization was performed with the use of the Visualization of Electronic

and Structural Analyis package (VESTA)[207].

5.3 Results

5.3.1 The Structure factor S(q) and pair distribution function g(r)

Normalized S(q) obtained 20 K above the melt temperature for each sample (1470 K for

Fe83B17 and 1450 K for Fe83C17) and the results of corresponding RMC simulations are dis-

played in Fig. 5.1. The fit to the x-ray data is excellent in both cases (χ2 ∼ 1.2). The fit to

the neutron data is worse (χ2 ∼ 3) but still good. While it generally follows the experimental

structure, there are large deviations in the first peak in both materials. This is most likely a

result of the secondary scattering curvature correction described in Chapter 2.

There are several subtle differences between the compositions visible in the structure data.

Most notably, a high-q shoulder on the second peak becomes much more pronounced in Fe-

B sample than the Fe-C, so much so that in the neutron S(q), the high-q side of the of the

second peak in the Fe-C pattern is almost flat. The coherent scattering length < b > of B11

and C are nearly identical (6.65 and 6.646 fm, respectively)[208], allowing direct comparison

of the S(q) data, and so it can be assumed this difference in features is due to a difference in

structural ordering. Given the increased contribution of the Fe-(B,C) PPCF in the neutron

scattering results, it is likely that this shoulder is largely a result of the Fe-Fe PPCF in both
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Figure 5.2: (a) Comparison of the g(r) obtained for both materials by (a) x-ray scattering and
(b) neutron scattering. Brown lines correspond to Fe83B17 while green represent Fe83C17

systems. Typically, this feature has been associated with a degree of icosahedral ordering in

the melt[209]. In addition, there is a slight difference in the spacing of the peaks, representing

a slightly increased number density in liquid Fe83B17 over Fe83C17. The coordination number

was determined by integrating the first peak in the g(r), and was determined to be 13.6(5) and

14.1(5) for Fe-C and Fe-B, respectively.

Figure 5.2 contains the g(r) data obtained from x-ray and neutron scattering. The second

peak, representing the second coordination shell, exhibits a double peak in Fe83B17 that is

not present in the Fe83C17 data. This structure is replicated in published MD results [58],

appearing even more strongly in pure iron [57]. By contrast this feature is not present in

the Fe83C17 peaks, with the second coordination shell asymmetric and skewed towards high

r. Additionally, there is a subtle feature at low r in the Fe83C17 data, just below 2 Å, that is

present in increased magnitude in the neutron results, implying the contribution comes from

the Fe-C PPCF. It may be tempting to dismiss this feature as a termination ripple or other

artifact of the fourier transformation, but it was consistently produced while the data reduction

process was refined, appearing no matter what Qmax or damping functions were applied. This

feature has also been observed in MD simulations on the Fe-C liquid [201], corresponding to a

peak in the Fe-C PPCF.
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Figure 5.3: Most prevalent Honeycutt-Andersen indices among root pairs in the liquid, arranged
by prevalence in the Fe-B system

5.3.2 Honeycutt-Andersen Index

The results of Honeycutt-Andersen indexing on the RMC configurations are presented in

Fig. 5.3. Here we classify only the topological ordering of the system and ignore any potential

differences in the local environment between the chemical species. We also focus only on bonded

root pairs. The most striking result is the dominance of the (1,5,5,1) index in the Fe-B liquid.

Root pairs characterized by the (1,5,5,1) index were twice as common as the the next most

common root pair in the Fe-B liquid. The (1,5,5,1) index is also the most common ordering in

the Fe-C liquid, but the Fe-C liquid appears to contain a larger relative fraction of distorted

icosahedral environments, such as the (1,5,4) and (1,4,3) indices. These indexes represent

stress-relieving disclinations from the ideal icosahedral cap. It is important to note, however,

that an HA index is not representative of a complete cluster, and a complete icosahedron would

require 12 of these structures associated with it.
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Figure 5.4: Most prevalent Voronoi indices in the liquid, arranged by prevalence in the Fe83B17

system
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5.3.3 Voronoi Tesselation

Figure 5.4 charts the most common voronoi indices (n3, n4, n5, n6, n7) appearing in the

system. The fraction of atoms that exhibit a local order resembling an icosahedron is largest in

the Fe83B17 liquid. Notably, the system is dominated by (0, 2, 8, 4, 0) type indices followed by

(0, 1, 10, 2, 0). This result is consistent with both RMC studies of other glass forming materials,

such as Zr80Pt20 [87], and the results of previous XRD on liquid Fe80B20[58]. (0, 2, 8, 4, 0) and

(0, 1, 10, 2, 0) structures are closely related topologically [61], representing distortions of the

perfect icosahedral (0, 0, 12, 0, 0) cell. Icosahedron are closely related to the glass formability of

a material, causing a degree of structural frustration[210] as well as being associated with slow

moving clusters in the liquid[61], and thus to see these dominate the glass-forming Fe83B17 is

consistent with conventional knowledge of the structure of metallic glass forming liquids[? ].

By contrast, the most common Fe-C liquid index comes from (0, 3, 6, 4, 0) clusters, representing

a distortion of ideal fcc ordering of (0, 12, 0, 0, 0). This is consistent with the results of MD

simulations[195]. Though the high occurrence of (0,1,10,2) was not observed in that study,

those simulations demonstrated that (0,1,10,2) Fe-centered clusters exhibited particularly long

lifetimes. The overall spread of indexes is fairly broad, as one would expect from a disordered

liquid, with the vast majority of indexes appearing only once or twice.

5.4 Discussion

Given the features observed in the liquid structures in Fig. 5.1 and the well known glass-

formability of the Fe-B system, it is reasonable to see a predominance of icosahedral ordering.

More insight may be gained by comparing the ordering in the liquid to the local atomic envi-

ronments in the most common structures appearing in the system.

The Fe2B structure consists of two inequivalent atomic sites, one Fe and one B. Locally, the

boron atoms are characterized by bicapped Archimedes antiprisms [211], while the Fe atoms are

surrounded by rectangular pyramids. These structures correspond to voronoi indices of (0,2,8,0)

and (0,0,12,3), respectively. Notably, Fe2B is the only boride with B-B nearest neighbor pairs.
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Figure 5.5: Coordination polyhedra of (a) boron atoms and (b) iron atoms in the Fe2B structure

Ganesh et. al[144] found a B-B coordination number of 0.4 in the liquid as modeled by ab

initio MD.

The Fe23B6 structure features five inequivalent positions. Due to the flexibility of the

structure, the local atomic environments have been characterized in a number of different

configurations[62, 180]. The environments in Fig. 5.6 were developed from the structure re-

fined during the course of the work in Chapter 3. Boron atoms, occupying 24e sites, are

characterized by a square antiprism (CN = 8). Fe atoms on the 8c sites are surrounded by

atoms in a tetrahedral geometry (4, 0, 0, 0). The Fe atoms occupying 4a sites, with a coordi-

nation number of 12, are characterized by a 14 sided polyhedra. The 32f site Fe atoms are

13 coordinated (0, 3, 6, 4), and the 48h sites are 14 coordinated (0, 0, 12, 2). These match well

with the description in Ref. [180] aside from the 48h site Fe polyhedra. Others have reported

more Frank Kasper polyhedra in the structure [62] and describe voronoi indices of (0, 0, 12, 2),

(0, 3, 6, 4), (0, 5, 4, 0), (0, 0, 12, 4), and (0, 6, 0, 12).

Finally, the θ-Fe3C structure, as seen in Fig. 5.7, is characterized by 14 and 15 coordinated

FK polyhedra on the Fe sites, with voronoi indices ((0, 0, 12, 2) and (0, 0, 12, 3), respectively,
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Figure 5.6: Coordination polyhedra of (a) boron atoms and (b-d) iron atoms in the Fe23B6

structure. (b), (c), (d), and (e) represent 8c, 4a, 32f , and 48h sites, respectively.
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Table 5.1: The voronoi indices of common structures near the Fe-B and Fe-C eutectic.

Structure Voronoi Index Fraction

Fe23B6

(0,0,12,2) .37

(0,3,6,4) .28

(0,2,8,2) .12

(0,3,6,1) .12

(0,7,6,4) .09

θ-Fe3C

(0,2,8,5) .444

(0,3,6,0) .31

(0,1,10,4) .24

bct-Fe3B

(0,3,6,0) .25

(0,3,6,5) .25

(0,3,6,7) .25

(0,1,10,4) .25

Fe2B
(0,0,12,3) .63

(0,2,8,0) .36

bcc-Fe (0,6,0,8) 1

fcc-Fe (0,3,6,0) 1

and a trigonal prism on the C site, < 0, 3, 6, 0 >, which is common among many of the TM-B

compounds.

The HA indices for θ-Fe3 and the Fe23B6 are given in Fig. 5.8. The Fe23B6 structure is

dominated by the < 1, 5, 5 > index, mirroring the strong dominance of the pure (1, 5, 5) cluster

in the liquid. On the other hand, the θ-Fe3C structure appears to be composed equally of

disclinated < 1, 5, 4 > indices. This mirrors the relative increase in disclinated icosahedral

clusters in the Fe-C liquid. While our Voronoi tesselation on the Fe-C liquid does not reveal a

large number of (0,3,6,0) polyhedra, MD simulations have suggested that these are the dominant

local environments of the carbon atoms in the liquid[195], matching very well with the local

environment of the C sites in θ-Fe3C.

This similarity may form the basis for a kinetic argument as to the nature of phase selection

in undercooled Fe83B17. Previously, we observed that the Fe23B6 structure frequently nucleated

prior to the formation of the equilibrium Fe2B. We were unable to determine a structural

difference that may have led to the structure transforming versus persisting through cooling,

and simply ascribed it to the metastable nature of the phase. However, the formation of a

transient metastable phase that serves to reduce the nucleation barrier to the formation of
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Figure 5.7: Coordination polyhedra of (a) 4c carbon atoms, (b) 4c iron atoms and (c) 8d iron
atoms in the θ-Fe3C structure.

the equilibrium structure has recently been observed in Ni50Zr50[96]. Given the compositions

of Fe23B6 and Fe2B (80.3% Fe (nominal) and 66.6% Fe, respectively) compared to the liquid,

coupled with a reportedly large variability in composition of Fe23B6[180, 48], one may expect

kinetic limitations would favor the formation of the Fe23B6 structure over Fe2B in a similar

manner. Indeed, once samples have been processed several times in the ESL, they tend to form

the Fe23B6 phase far more frequently, raising the question of whether or not it forms every time

as a transient metastable phase. Unfortunately, the limitations of our experimental resolution,

both spatially and with regards to acquisition time, prevented us from being able to state

definitively whether or not Fe23B6 always formed before the equilibrium structure. Similarly,

if the Fe23C6 phase ever nucleated in the Fe-C liquid, it could happen on a timescale far too

quick to observe using the BESL environment.

It is very important to recognize the limitations of this study. The original plan for the neu-

tron scattering experiment had been to include isotopically substituted samples, using the con-

trasting Fe scattering lengths to establish a constraint on the third PPCF (metalloid-metalloid).

The samples proved to be too dirty to process in the NESL. While approximating the PPCF

from the M-M pairs as zero is mathematically sound as related to the scattering lengths and

atomic form factors, it means that the RMC modelling is blind to any structure from B-B

pairs or C-C pairs. Fortunately, previous MD work and liquid structure studies have suggested
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Figure 5.8: Most common HA indices in Fe23B6 (black) θ-Fe3C (red) as fraction of total root
pairs
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that the metalloid-metalloid coordination number is either zero or very low[195]. However,

as a result, we have shied away from identifying Voronoi polyhedra related to specific atomic

species.

MD simulations have suggested that the distinctive high-Q shoulder on the second peak is

largely a result of vertex and face sharing of boron-centered tri-capped trigonal prisms[145].

Likewise, MD work on the Fe-C liquids suggest that the most common Voronoi polyhedra are

(0,4,4,0) and (0,3,6,0) coming from carbon atoms[195]. In both systems, it is likely that the

local chemical order associated with the metalloid atoms plays a critical role in the different

behavior of the liquid. The next step in this work, then, should be to add another constraint

to allow proper modeling of the B-B PPCF.

However, what is presented here is a promising foundation for future work. The detectors at

NOMAD have been heavily optimized in the year since this data was obtained, and any future

scattering studies would likely gain a statistical advantage. There is now a better understanding

of the stochiometry shift associated with long processing holds in the liquid state, as well as

the tolerance of the NESL itself with regard to evaporation. It is possible that with the

increasing robustness of the NESL system, even samples with large impurity populations, such

as the isotopically substituted samples attempted in this investigation, may be processable.

Alternatively, a number of successes in liquid structure modeling have come from constraining

RMC ensembles with PPCFs generated from MD simulations. If these could be obtained, the

chemical ordering in the liquid may resolve the unanswered questions in these systems.

It has been established that by generating a large body of statistics through repeated RMC

simulations, even a partially constrained simulation such as the one presented here may offer

insight into the topological order in the liquid[128]. Due to the incomplete constraint of the

simulations performed here, this study has deliberately avoided insinuating any insight beyond

general topological structure into the chemical ordering, and focused on general topological

features of the liquid. From this perspective, we have determined a qualitatively stronger

similarity between the Fe-B liquid and the Fe23B6 structure than in the Fe-C liquid, and noted

similarities between the local environments in the θ-Fe3C structure and the Fe-C liquid. In

particular, the dominance of the pure icosahedral ordering in the Fe-B liquid reflects a similar
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ordering in the Fe23B6 structure far more than in the Fe-C liquid. While this is far from

a quantitative explanation regarding the absence of the Fe23C6 structure in the binary, this

suggests an alternative line of inquiry that has not previously been considered, and show that

there may be some basis for further exploration.
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CHAPTER 6. CONCLUSIONS AND OUTLOOK

Through Chapters 3, 4, and 5, we have successfully demonstrated the use of ESL systems in

versatile and multi-faceted approaches to characterize one particular system, and have produced

novel results of wide interest. The coherent intergrowth stabilizing Fe23B6 and fcc-Fe to low

temperatures is a new effect not noticed despite decades of intense research into this material,

including solidification work using containerless processing. The magnetic properties of this

enhanced phase have not been observed before, and applying the first use of the TDO to

map out high temperature magnetic phase diagrams of the metastable phases in the system

has shown that this intergrown structure has a new, previously unobserved, high TC. The

application to scattering environments, including some of the first data obtained with the

NESL at the SNS, provides a comparison of two liquid systems that has not been done before,

may answer a question of some considerable interest in the solidification of eutectic Fe-C, and

at the very least provides the highest quality liquid structure on both eutectic Fe-B and Fe-C

to date.

This work has demonstrated the varied capabilities of levitation environments in regards to

the study of solidification, metastable phases, and undercooled liquids. During the course of

this dissertation, the capabilities of the ISU-ESL have advanced to the point of experimental

reliability, and analysis programs and protocols have been developed to understand the output

of the system. Multiple scattering ESL environments have also been fully tested at the APS

and the SNS, and the capabilities of these instruments are now better understood.

As with any good scientific investigation, however, more new questions have been raised

than have been answered. There is still much work to do. The low temperature presence

of metastable fcc-Fe needs clarification, whether through electron microscopy or still higher

resolution x-ray work. The precise magnetic ordering of the Fe23B6+fcc-Fe phase is an open
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question. With the NESL soon undergoing a series of planned upgrades for operational robust-

ness, ease of deployment, and hardiness against evaporative materials, it may be possible to

perform neutron scattering that clarifies this question. By performing a series of anneals above

and below the magnetic transition temperature, it may be possible to observe a difference in

peak intensity due magnetic scattering. Modifications to the detector banks at NOMAD have

already fixed some of the statistical issues present in the work in Chapter 5. This may also allow

neutron data to be taken on isotopically substituted samples as originally planned, adding a

third constraint to allow full modeling of the liquid structures. MD results could be performed

as well, and has been shown in the past, constraining the results of RMC simulations with MD

partials enables an easy, repeatable, and accurate probe into the local ordering of the liquid.

A number of studies could spring from the science demonstrated here. For one, a thorough

characterization of the off-eutectic solidification of Fe-rich Fe-B alloys may provide an easier

look at retained fcc-Fe. Similar systems that form the (TM)23M6 structure could also be

investigated, to see if this metastable intergrowth is attainable elsewhere, preferably focusing

on materials where the (TM)23M6 structure has a lattice parameter large enough that stabilized

fcc-Fe would be close to the high-spin regime. Such a system may provide an alternate venue

for the exploration of potential ferromagnetism in metastable fcc-Fe, and the different lattice

parameters associated with the different (TM)23M6 structures could also allow a tuning of the

fcc-Fe lattice parameter. At one point, a thorough electron microscopy investigation of the

metastably solidified Fe-B samples was planned to explore whether fcc-Fe was still present

at room temperature and to determine the precise nature of the coherency with the Fe23B6

structure, and time constraints have so far held this work up. The pieces are all in place for

the work to be performed at the Sensitive Instrument Facility.

To take advantage of the capabilities developed during the last several years, new projects

in the laboratory should veer towards unexplored territory, using the hardware that has been

established and now characterized. One significant project springs to mind. When the TDO

was first implemented in the ISU-ESL, early experiments were performed on the Co80Pd20

alloy in order to test claims of ferromagnetic ordering in the deeply undercooled liquid. Those

studies were largely unsuccessful due to sample impurity issues leading to heterogenous nu-
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cleation, prohibiting deep undercooling. Much of the work of Rustan was on sample purity

issues, and the laboratory now has a more advanced understanding of the techniques useful

to produce clean samples. In addition, collaborators at the SNS have, or will have, access to

multiple aerodynamic levitation environments, which could be used with a variety of reducing

atmospheres to help purify samples.

Beyond that, however, the concept of magnetic ordering in liquids has not been well explored

outside of the Co80Pd20 alloy, and the deep undercooling required to observe the effects there

are prohibitive to many probes. Other materials should be explored, such as the (Co,Fe)-RE

eutectic systems. Further, all investigations to date searching for magnetic ordering in liquids

have focused exclusively on materials with a crystal structure with high TC. Few candidates

have been found with a TC within the undercooling limit.

The search should broaden to include two other parameters. For one, part of the success of

the Co80Pd20 studies was attributed to the uncommonly small volume expansion on melting,

limiting the impact of any changes to the exchange energies among Co atoms and causing the

projected liquid TC to only lower by 20 K. Tetrahedrally coordinated liquids, such as silicon or

germanium, experience a large volume contraction on melting, and alloying with ferromagnetic

elements may provide the reverse effect on TC. Further, the advent of ferromagnetic glasses and

amorphous alloys suggests a new way at looking at the potential development of magnetism

in a liquid, as the topological structure of a liquid will be much more similar to the glassy

phase than to many common crystalline phases. Indeed, some compositions, such as those in

the Co-Y system, have exhibited a uniformly higher TC in the amorphous phase than in the

crystalline phase. As a second search criteria, it would be wise to begin investigation on similar

materials. If such a material could be found that requires less of a dramatic undercooling effect

than in the CoPd system, it is possible that either the new NESL system or another levitation

facility integrated into the SNS may be able to probe magnetic excitations in the liquid.
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APPENDIX. SYNERGISTIC STABILIZATION OF METASTABLE

FE23B6 AND γ-FE IN UNDERCOOLED FE83B17

Fe-B alloys are well known glass formers. When rapidly cooled at rates on the order of 106

K/s, alloys with B concentrations ranging from 12 - 28% can be quenched into a glassy state,

with the eutectic composition (approximately Fe83B17) requiring the lowest cooling rate.[212]

Much of the work in recent years has focused on the development of multi-component systems

based on the Fe-B binary particularly with respect to their glass forming ability and engineering

properties such as hardness,[136] corrosion resistance,[135] and soft ferromagnetism.[137, 138]

According to the equilibrium phase diagram,[213] Fe-B alloys with Fe contents ≥ 66.7 at.%

form two-phase mixtures of Fe2B and Fe. However, when Fe-B and related alloys are quenched

into a glassy state and undergo crystallization during subsequent annealing processes, it has

been found that a wide variety of metastable intermetallic compounds can form that may

play an important role in the production of industrially relevant materials such as perma-

nent magnets.[32] The three most commonly observed metastable phases are body-centered

tetragonal (bct) Fe3B, orthorhombic (o) Fe3B, and face-centered cubic (fcc) Fe23B6.

It is well known that the formation of metastable phases during the solidification of under-

cooled liquids can profoundly affect crystallization pathways and products.[65] The interactions

among the high-temperature products of solidification can also play an important role in ei-

ther enhancing or suppressing the transformation from metastable to equilibrium phases. By

suppressing heterogeneous nucleation using a variety of techniques, several groups[44, 141, 45]

have shown that non-equilibrium solidification of the undercooled Fe83B17 liquid can lead to

the formation of metastable Fe3B in the hypercooling regime (∆T ∼ 386K)[141] or Fe23B6 for

more modest undercooling.[45] In the latter case, the transformation of the metastable Fe23B6

phase to the equilibrium Fe2B can be suppressed for cooling rates greater than 30 K/s, but the
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Figure A.1: (color online) Time-resolved high-energy x-ray diffraction measurements of Fe83B17.
Cycles A and B denote two of the seventeen melting/cooling sequences on one of several samples
in this study. The x-ray data were obtained at a rate of 2 fps. Panels (a) - (c) and (d) - (f)
show the measured temperature of the sample, the corresponding x-ray diffraction pattern with
the intensity color-coded and the weight fractions of the crystallization products determined
from Rietveld refinements of the x-ray data for Cycles A and B, respectively. For both Cycles
the total proportions of Fe and B, calculated from the composition and weight fractions of
the constituent phases, remained constant within our experimental uncertainty of 1 -2 %,
demonstrating the constant composition of the sample over the course of the measurement.
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Figure A.2: (color online) Rietveld refinements of the x-ray data from (a) Cycle A and (b)
Cycle B at T = 925 K, well below the allotropic fcc γ-Fe to bcc α-Fe transition. The hash
marks correspond to the expected peak positions for the constituent phases. The lines through
the data represent the fits from the refinement and the lines below the hash marks represent
the residuals from these fits. No additional unindexed diffraction peaks, within the limits
of detection were observed. For panel (a) Rp = 0.027. In panel (b) the fits and residuals
including all four phases in the fit (red lines) (Rp = 0.038) or excluding γ-Fe (black lines)
(Rp = 0.073) demonstrate a significant improvement in the fit including γ-Fe. The top insets
to both panels show portions of the Debye-Scherrer rings recorded at T = 1390 K illustrating
a smooth continuous nature for Cycle A [panel (a)] and the larger grain structure for Cycle
B [panel (b)] in the grayscale encoded intensity. The smaller insets to each panel display an
expanded view of the region close to the γ-Fe (220) Bragg peak illustrating the quality of the
refinement.
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mechanism underlying this suppression has not yet been identified. In particular, the role of

the second solidification product, Fe, and its potential interaction with the Fe-B phase(s) have

not been studied in any detail, motivating the present study using time-resolved high-energy

x-ray diffraction and volume expansion studies of electrostatically levitated samples of Fe-B at

the Fe-rich eutectic composition.

The Fe83B17 samples were prepared by arc melting appropriate quantities of high purity

starting materials (99.99% pure Fe, 99.9999% pure B) and remelted several times to ensure

a homogeneous composition throughout the volume. The alloy button was drop cast into

rods that were cut into pieces with masses ranging from 25 - 75 mg. To form spheres for

levitation these pieces were laser melted on a copper substrate within the Iowa State University

electrostatic levitation furnace (ISU-ESL).[93] Measurements of the volume thermal expansion

of levitated samples were also performed in the ISU-ESL using the machine vision video volume

method described in detail previously.[79]

High energy x-ray diffraction measurements were performed at beamline 6-ID-D of the Ad-

vanced Photon Source (E = 132 keV; λ = 0.0939 Å) employing an incident beam cross-section

of 0.2 x 0.2 mm. The samples were electrostatically levitated in the Washington University

Beamline Electrostatic Levitator, a full description of which can be found in Ref. [99]. Once

molten, samples were overheated 150 to 200 K above the apparent melting temperature and

held for 20 to 30 seconds to ensure the samples were fully molten and to facilitate the disso-

lution of any oxide or impurity phases that may have been present. The laser was then shut

off and the samples radiatively cooled to a temperature below the measurement range of the

pyrometer (approximately 900 K). This cycle was repeated multiple times for each sample.

X-ray powder diffraction patterns were collected using a two dimensional Ge Revolution

41-RT flat panel detector. The range of scattering angles accessible was 0.9◦ ≤ 2θ ≤ 19.5◦,

allowing measurements over a range of momentum transfers of 1 Å−1 ≤ Q ≤ 22.6 Å−1. The ac-

quisition speed of the data presented here was 2 fps. The sample-to-detector distance, detector

tilt/rotation and flat-field corrections were refined using powder data taken on levitated spheres

of Si powder mixed with epoxy, and the x-ray frames were azimuthally integrated to produce

x-ray powder profiles, all using Fit2D.[120] The levitated samples spin about a vertical axis as
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a result of the radiation pressure from the laser heating, providing some degree of averaging

over grains in the recrystallized material. Nevertheless, the raw x-ray data from some solidified

samples did exhibit texturing resulting in peak intensity fluctuations from frame to frame. For

Rietveld refinements, a moving boxcar average over seven frames was applied to damp these

intensity fluctuations. The refinements were performed on the x-ray data over the measured

temperature range using the sequential refinement capabilities included in GSAS.[175] Peak

profiles were modeled with a pseudo-Voigt function, and the half widths were allowed to vary.

For all data sets, the lattice parameters, atomic positions, and isotropic thermal parameters of

the Fe atoms were allowed to vary but, since the scattering of x-rays by B is relatively small,

the positions and thermal parameters for B were fixed.

Figure A.1 summarizes key results of our high-energy x-ray study. In agreement with the

previous study, the metastable Fe23B6 phase is the first binary product observed during solidi-

fication of the undercooled liquid.[45] The sample then either undergoes a second recalescence

into the equilibrium Fe2B phase (Cycle A), or the metastable Fe23B6 phase persists down to

the lowest temperatures measured in the x-ray experiments (∼ 900 K) (Cycle B). For similar

undercoolings ∆T ∼ 75 K below the melting plateau of the equilibrium Fe2B phase, we find no

clear correlation between cooling rate and the preservation of Fe23B6 down to low temperature.

Furthermore, thermometric measurements on a number of samples using the ISU-ESL found no

clear correlations among thermal history and heating/cooling rates that indicate whether any

given processing protocol will result in the solidification of the equilibrium Fe2B + Fe or the

metastable Fe23B6 + Fe phases for initial cooling rates on the order of 30 - 50 K/s; sequential

heating/cooling cycles on any given sample result in either set of crystallization products in a

seemingly stochastic fashion.

As illustrated in Fig. A.1, there are several clear and interesting differences between Cycles A

and B. For Cycle A a double recalescence is observed: the first associated with the solidification

of the metastable Fe23B6 + γ-Fe at approximately 1390 K, and a second recalescence to the

equilibrium Fe2B binary phase at 1410 K. For Cycle B, only the plateau associated with the

solidification of Fe23B6 + γ-Fe is observed. Whereas the cooling curve of Fig. A.1(a) for Cycle

A evidences a distinct feature at the allotropic fcc to bcc transition for Fe at approximately



121

1130 K on cooling, no clear feature is observed in Fig. A.1(d) for Cycle B. This is consistent

with the presence of a sharp fcc to bcc transition in the diffraction data of Fig. A.1(b) and

its absence in Fig. A.1(e). The weight fractions of the crystalline components in Fig. A.1(f),

taken from a full series of Rietveld refinements of the x-ray data, demonstrate the persistence

of fcc γ-Fe and the metastable Fe23B6 phase down to at least 900 K. In addition, below the

nominal temperature of the γ-Fe to α-Fe transition, we find additional Bragg diffraction peaks

corresponding to α-Fe and a not often seen, but previously identified, primitive tetragonal form

of metastable Fe3B.[? 214] The weight fractions of these phases increase gradually as those

for Fe23B6 and γ-Fe decrease. We note that previous studies of the crystallization of glassy

Fe80B20 have observed an orientational relationship between the primitive tetragonal Fe3B and

bcc α-Fe phases, and proposed that the presence of α-Fe may be a prerequisite for the formation

of Fe3B.[214] This is consistent with our observation of the simultaneous appearance of these

two phases and concomitant growth.

A detailed analysis of both the raw diffraction data and Rietveld refinements in Fig. A.2

provides support for the interpretation above and additional evidence concerning the mechanism

responsible for the persistence of the Fe23B6 + γ-Fe phase mixture to lower temperature in Cycle

B. In Fig. A.2(a) the refinement of x-ray data from Cycle A at T = 925 K, well below the nominal

fcc to bcc transition for Fe, shows only the presence of Fe2B and α-Fe. Figure A.2(b) displays

the diffraction data and refinement at the same temperature for Cycle B. Keeping in mind

that the refinement shown in this panel is for data taken well below the fcc to bcc transition,

Fig. A.2(b) manifests a much more complex mixture of phases including Fe23B6, γ-Fe, α-Fe

and primitive tetragonal Fe3B.[? 214] All of these phases, with the weight fractions given in

Fig. A.1(f), were required for a reasonable fit of the diffraction data for temperatures below

approximately 1150 K. This point is reinforced by the small insets to both panels in Fig. A.2

which focus on the region close to the γ-Fe (220) Bragg diffraction peak. For Cycle A, only

peaks from Fe2B are in evidence whereas, for Cycle B, the fit is qualitatively improved when all

phases are included. The presence of γ-Fe is difficult to discern because of the nearly complete

overlap of the γ-Fe diffraction peaks with those from Fe23B6 since the lattice parameter of fcc
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Fe23B6 [10.70(1) Å at T = 906 K] is almost precisely three times that of γ-Fe [3.61(1) Å at

T = 906 K].

The diffraction data also provide strong evidence for the coherent growth of γ-Fe and

Fe23B6, which provides a mechanism for the persistence of these phases to low temperature.

The uniformity of the Debye-Scherrer rings in the top inset of Fig. A.2(a) indicates that the

grains of both Fe2B and γ-Fe are quite small and randomly oriented at high temperature.

However, in the top inset to Fig. A.2(b) we see gaps forming in the Debye-Scherrer rings and

discrete reflections are observed, indicating that the grains of both Fe23B6 and γ-Fe are larger.

Most importantly, the coincidence of the structure in the rings for both γ-Fe and Fe23B6 are

indicative of a coherent orientational relationship between these two phases, as would occur

for intergrowth or epitaxial growth. It has already been established that coherently oriented

fcc γ-Fe precipitates can be stabilized to low temperature in a Cu matrix[161–163], in Cu-Au

alloys,[183] or via epitaxial growth on Cu surfaces.[182] From our refinements we find that

the longitudinal widths of the γ-Fe diffraction peaks are resolution limited, corresponding to a

mimimum grain size on the order of a few tens of nanometers, similar to the grain sizes of γ-Fe

precipitates in supersaturated Cu-Fe solid solutions.[161, 162] However, the strong texturing

we observed suggests that the size of the coherently grown grains is likely much larger.

The stabilization of γ-Fe via coherent growth with Fe23B6 is particularly interesting in

light of the many experimental and theoretical investigations of magnetism in fcc Fe over the

past five decades. The nature of the magnetic ground state remains a matter of some de-

bate although there is agreement that the paramagnetic and low-spin/high-spin antiferromag-

netic/ferromagnetic ground states are all sensitive functions of the fcc lattice parameter.[215,

216, 165, 185, 217] Coherent precipitates of γ-Fe in a Cu matrix order antiferromagnetically

with a small moment (< 0.5µB/Fe) at a Néel temperatures of less than 70 K.[184, 218] On

the other hand, ferromagnetic order at ambient temperature for Fe in a high-spin state was

proposed for coherent precipitates of γ-Fe in Cu-Au alloys, with an expanded lattice parameter,

via Mössbauer spectroscopy.[183] According to some theoretical calculations[165, 185, 217] our

measured lattice parameter for γ-Fe [3.61(1) Å at T = 906 K] lies close to the boundary

between the proposed antiferromagnetic and ferromagnetic ground states. Neutron diffraction
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Figure A.3: (color online) Volume thermal expansion measurements of Fe83B17. The volumes
are normalized to the lowest temperature measured on cooling from the liquid. The data
acquisition began at (I), with the sample in the equilibrium Fe2B + γ-Fe solid phases at a
temperature of 1420 K. The heating laser power was increased in a single step (black curve)
such that the sample melted and was heated to a maximum temperature of 1565 K (II). The
heating laser was turned off and the sample underwent free radiative cooling (green curve). At
(III) the liquid reached its minimum temperature of 1368 K, corresponding to an undercooling
below the Fe2B melt plateau of ∆T ∼ 79K, and underwent recalescence and solidification into
the metastable Fe23B6 + γ-Fe phases. A gradual positive deviation (IV) from linear behavior
occurred as the sample temperature decreases down to 640 K. After a two minute hold at this
temperature, the sample temperature was increased at a constant rate of 3 K/s to 1420 K
(orange curve). The cooling and heating curves begin to diverge at (IV) with a step in the
volume at (V). After heating to 1420 K, the temperature was decreased to 670 K (blue curve)
and increased to 1420 K (red curve) at a rate of 3 K/s. The cooling and heating curves are
featureless beyond the expected first-order allotropic phase transition for Fe (VI).

measurements are planned to resolve the question of magnetic ordering in the metastable γ-Fe

phase present in our samples.

Measurements of the volume thermal expansion of Fe83B17 using the ISU-ESL confirm that

the metastable solid phases persist down to at least 640 K. The data from a representative

run are shown in Fig. A.3. Upon cooling from the melt (green curve) no distinct signature in

the volume thermal expansion is observed through the region of the Fe allotropic transition, in

agreement with the x-ray results described above. Rather, we see a gradual positive deviation

(IV) from linear behavior as the sample temperature decreases. The curvature may result from
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the evolution of the phases described above, or from magnetoelastic effects due to the onset

of ferromagnetism in this temperature range. Upon reheating (orange curve) we attribute the

clear step at (V) to the transformation of the Fe23B6 metastable phase and remaining γ-Fe

fraction to the equilibrium Fe2B + α-Fe phases. This is consistent with the relatively sharp

transition from α-Fe to γ-Fe now observed at (VI) on warming. After this point both the cooling

(blue) and heating (red) curves are featureless beyond the expected allotropic phase transition

for Fe found at 1147 K on cooling and 1224 K on heating due to hysteresis in the first-order

transition. The average value of the transition temperature is 1186 K, in good agreement with

the value indicated in the equilibrium phase diagram.[213]

Based on the time-resolved high-energy x-ray diffraction data and volume thermal expan-

sion measurements we propose the following scenario for the evolution of crystalline phases

in undercooled Fe83B17. First we note that, if during the initial solidification of the liquid a

second recalescence to the equilibrium Fe2B + γ-Fe phases occurs, the allotropic fcc to bcc

transition for Fe is well-defined and complete. However, in the absence of a second recalescence

event in the melt plateau, sizeable coherently grown grains of Fe23B6 and γ-Fe are found that

appear to stabilize both metastable phases well below the allotropic fcc to bcc transition for

Fe. With further decreasing temperature we see a gradual increase in the weight fraction of

α-Fe, a corresponding decrease in the weight fraction of γ-Fe, and the slow conversion of Fe23B6

into another metastable phase: primitive tetragonal Fe3B, which is closely related to the phase

previously identified under hypercooling the liquid by ∆T ∼ 386 K.[141] Taken together, the

time-resolved high-energy x-ray diffraction data and volume thermal expansion measurements

provide strong evidence for the persistence of coherently oriented Fe23B6 and γ-Fe to low tem-

perature, emphasizing the importance of interactions between metastable phases during the

solidification of undercooled liquids.
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[107] Georg Lohöfer. Electrical resistivity measurement of liquid metals. Measurement Science

and Technology, 16(2):417–425, feb 2005.

[108] M. D. Vannette, A. S. Sefat, S. Jia, S. A. Law, G. Lapertot, S. L. Bud’ko, P. C. Canfield,

J. Schmalian, and R. Prozorov. Precise measurements of radio-frequency magnetic sus-

ceptibility in ferromagnetic and antiferromagnetic materials. Journal of Magnetism and

Magnetic Materials, 320(3-4):354–363, 2008.

[109] R. Prozorov, M. D. Vannette, R. T. Gordon, C. Martin, S. L. Bud’ko, and P. C. Can-

field. Coexistence of Long-Range Magnetic Order and Superconductivity from Campbell

Penetration Depth Measurements. (September 2008):1–11, 2008.

[110] Matthew Dano Vannette. Dynamic magnetic susceptibility of systems with long-range

magnetic order. 2009.

[111] John David Jackson and Ronald F Fox. Classical electrodynamics. American Journal of

Physics, 67(9):841–842, 1999.



137

[112] Hirokatsu Aoki, Paul-François Paradis, Takehiko Ishikawa, Tomotsugu Aoyama,

Tadahiko Masaki, Shinich Yoda, Yoshinobu Ishii, and Toshio Itami. Development of

an electrostatic levitator for neutron diffraction structure analysis. Review of scientific

instruments, 74(2):1147–1149, 2003.

[113] Tobias Kordel, Dirk Holland-Moritz, Fan Yang, J Peters, T Unruh, Thomas Hansen, and

Andreas Meyer. Neutron scattering experiments on liquid droplets using electrostatic

levitation. Physical Review B, 83(10):104205, 2011.

[114] T H Kim and K F Kelton. Structural study of supercooled liquid transition metals. The

Journal of chemical physics, 126(5):054513, feb 2007.

[115] Allen C Larson and Robert B Von Dreele. Gsas. General Structure Analysis System.

LANSCE, MS-H805, Los Alamos, New Mexico, 1994.

[116] AP Hammersley. Internal report esrf97ha02t. ESRF, Grenoble, France, 1997.

[117] Donald S Young, Bruce S Sachais, and Leigh C Jefferies. The rietveld method. 1993.

[118] J. C. Bendert, M. E. Blodgett, and K. F. Kelton. Calculation of absorption and secondary

scattering of X-rays by spherical amorphous materials in an asymmetric transmission

geometry. Acta Crystallographica Section A: Foundations of Crystallography, 69(2):131–

139, mar 2013.

[119] Johannes Schindelin, Curtis T Rueden, Mark C Hiner, and Kevin W Eliceiri. The imagej

ecosystem: an open platform for biomedical image analysis. Molecular reproduction and

development, 82(7-8):518–529, 2015.

[120] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann. Two-

dimensional detector software: From real detector to idealised image or two-theta scan.

High Pressure Research, 14(4-6):235–248, 1996.

[121] Brian H Toby. Expgui, a graphical user interface for gsas. Journal of applied crystallog-

raphy, 34(2):210–213, 2001.



138

[122] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with

formulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1964.

[123] Simon Bates, George Zografi, David Engers, Kenneth Morris, Kieran Crowley, and Ann

Newman. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction

patterns. Pharmaceutical research, 23(10):2333–49, oct 2006.

[124] M. Baricco, S. Enzo, T.a. Baser, M. Satta, G. Vaughan, and a.R. Yavari. Amor-

phous/nanocrystalline composites analysed by the Rietveld method. Journal of Alloys

and Compounds, 495(2):377–381, apr 2010.

[125] Yoshio Waseda. The structure of non-crystalline materials: liquids and amorphous solids.

McGraw-Hill, 1980.

[126] Takeshi Egami and Simon JL Billinge. Underneath the Bragg peaks: structural analysis

of complex materials, volume 16. Newnes, 2012.
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[157] W Kümmerle and U Gradmann. Magnetic properties of ferromagnetic γ-fe films on cu

(111). physica status solidi (a), 45(1):171–180, 1978.

[158] C Rau, C Schneider, G Xing, and K Jamison. Ferromagnetic order at surfaces of ultrathin

epitaxial fcc γ-fe (111) p (11) films on cu (111). Physical review letters, 57(25):3221, 1986.

[159] A Amiri-Hezaveh, G Jennings, DJ Joyner, and RF Willis. Electronic and magnetic states

of ultra-thin fe films. Le Journal de Physique Colloques, 45(C5):C5–371, 1984.

[160] F Pontkees and H Neddermeyer. Electronic and structural properties of thin films of

fe on cu (1 1 1) and of the system cu/fe/cu (1 1 1). Physica B: Condensed Matter,

161(1-3):276–280, 1990.

[161] JB Newkirk. Mechanism of precipitation in a cu-2. 5 pct fe alloy. AIME TRANS,

209:1214–1220, 1957.

[162] P Ehrhart, B Schönfeld, HH Ettwig, and W Pepperhoff. The lattice structure of antifer-

romagnetic γ-iron. Journal of Magnetism and Magnetic Materials, 22(1):79–85, 1980.

[163] Y Tsunoda, S Imada, and N Kunitomi. Anomalous lattice contraction and magnetism of

γ-fe precipitates in cu. Journal of Physics F: Metal Physics, 18(7):1421, 1988.



142

[164] Y Tsunoda and N Kunitomi. Structural phase transition of γ-fe precipitates in cu. Journal

of Physics F: Metal Physics, 18(7):1405, 1988.

[165] L. T. Kong and B. X. Liu. Correlation of magnetic moment versus spacing distance of

metastable fcc structured iron. Applied Physics Letters, 84(18):3627, 2004.

[166] John J Croat, Jan F Herbst, Robert W Lee, and Frederick E Pinkerton. Pr-fe and nd-

fe-based materials: A new class of high-performance permanent magnets. Journal of

Applied Physics, 55(6):2078–2082, 1984.

[167] David Brown, Bao-Min Ma, and Zhongmin Chen. Developments in the processing and

properties of ndfeb-type permanent magnets. Journal of Magnetism and Magnetic Ma-

terials, 248(3):432–440, 2002.

[168] D Givord, HS Li, and JM Moreau. Magnetic properties and crystal structure of nd2fe14b.

Solid State Communications, 50(6):497–499, 1984.

[169] M. Palumbo, G. Cacciamani, E. Bosco, and M. Baricco. Thermodynamic Analysis of

Glass Formation in Fe-B System. 25(4):625–637, 2002.

[170] Ernesto J Escorcia-Aparicio, RK Kawakami, and ZQ Qiu. fcc fe films grown on a ferro-

magnetic fcc co (100) substrate. Physical Review B, 54(6):4155, 1996.

[171] S Müller, P Bayer, C Reischl, K Heinz, B Feldmann, H Zillgen, and M Wuttig. Structural

instability of ferromagnetic fcc fe films on cu (100). Physical review letters, 74(5):765,

1995.

[172] D. Bagayoko and J. Callaway. Lattice-parameter dependence of ferromagnetism in bcc

and fcc iron. Physical Review B, 28(10):5419–5422, 1983.

[173] R Prozorov, RW Giannetta, A Carrington, P Fournier, RL Greene, P Guptasarma,

DG Hinks, and AR Banks. Measurements of the absolute value of the penetration depth

in high-t c superconductors using a low-t c superconductive coating. Applied Physics

Letters, 77(25):4202–4204, 2000.



143

[174] AP Hammersley. High press. res., 1996, 14, 235;(b) ap hammersley, so svensson and a.

thomson. Nucl. Instrum. Methods Phys. Res., Sect. A, 346:321, 1994.

[175] Allen C Larson and RB Von Dreele. Technical report, 2004.

[176] PJ Brown and JL Cox. Charge and spin density distributions in the ferromagnetic alloy

fe2b. Philosophical Magazine, 23(183):705–725, 1971.

[177] Thaddeus B. Massalski and David E. Laughlin. The surprising role of magnetism on the

phase stability of Fe (Ferro). Calphad, 33(1):3–7, mar 2009.

[178] T Schenk, D Holland-Moritz, and DM Herlach. Observation of magnetically induced

crystallization of undercooled co-pd alloys. EPL (Europhysics Letters), 50(3):402, 2000.

[179] D Fruchart, P Chaudouet, R Fruchart, A Rouault, and JP Senateur. Etudes structurales

de compose´ s de type ce´ mentite: Effet de l’hydrogene sur fe3c suivi par diffraction

neutronique. spectrome´ trie mo¨ ssbauer sur feco2b et co3b dope´ s au57fe. Journal of

Solid State Chemistry, 51(2):246–252, 1984.

[180] V A Barinov and V T Surikov. Short-Range Atomic Order in the Metastable Fe 23 B 6

Phase. 105(3):262–270, 2008.

[181] V. a. Barinov, V. a. Tsurin, V. I. Voronin, S. I. Novikov, and V. T. Surikov. Mössbauer
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