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the segmentation stage as input to the polar transform operation. For more details on how

this operation works see Chapter 2, Section 2.2.3 for an overview and Section 4.1.2.2 in this

chapter for further details. An example of an unwrapped iris is shown in Figure 4.8.

Figure 4.8: Normalization: Unwrapped image

Once the iris has been unwrapped using the approach above, we attempt to remove noise

from reflections and eyelid occlusions. One can spot the noise in the unwrapped image.

Figure 4.9 gives labeled examples of noise in this iris image. The noise mask generated from

reflection and eyelid detection is shown on the bottom left. The iris after the noise mask is

applied is shown on the bottom right.

Figure 4.9: Normalization: Noise in the unwrapped image
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In this work we use a white-pixel value to threshold the unwrapped image. This results

in a mask that is used to removed the light reflections. Another threshold is used to attempt

to detect eyelids. It is not always the case, but often the eyelid is a lighter-shade than the

rest of the pupil. We also know that eyelids occlude the iris at 45-135 degrees and 225-315

degrees. This information helps in identifiying eyelid occlusions. After thresholding the

unwrapepd image we can find contours that correspond to eyelid occlusions. If a contour or

two contours are found, then a mask is built using the contour information to remove eyelid

occlusions. Figure 4.9 shows a mask built to remove noise from the unwrapped image.

4.1.4 Feature Extraction

The feature extraction stage seeks to build a bit-string feature vector for the normalized,

segmented iris. Feature extraction identifies key traits of the iris and extracts them into

a form that is easier to classify. In this software prototype, the Ridge-Energy Direction

method is used, for its simplicity, as a feature extractor.

The Ridge-Energy Direction approach considers the ”energy” of the unwrapped image.

As its explained in [19], energy refers to the magnitude of the ridges that appear in the

iris. The direction of the ridges is calculated using two filters, a horizontal and a vertical.

First, the unwrapped image is further normalized using local-adaptive histogram equaliza-

tion. Then, the method builds two separated images using 9x9 convolutional filters on the

unwrapped image. The filters are given in the Equations 4.8 and 4.9.
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Horizontalfilter =



−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1



(4.8)

V erticalfilter =



−1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

−1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1



(4.9)

Examples of the filtered images are shown in Figure 4.10. The horizontally filtered iris

is shown on the left. The vertically filtered iris is shown on the right. To finish feature

extraction we use the two filtered images to build the result and a mask that signifies what

bits in the template are valid to compare in the next stage. The template bit-string and

mask are the same size in bits as filtered images are in pixels. At every pixel location in

the filtered images we compare the values. If the horizontally filtered pixel is greater then

we append a ’1’ to the bit-string, else we append a ’0’. This resulting bit identifies the
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direction of a ridge in the unwrapped iris image. Also, if the greater-valued pixel is less

than an energy threshold—defined in this work as the mid-point between a black pixel and

a white pixel (128)—then we append a ’0’ to the mask, otherwise we append a ’1’ to the

mask. A value of ’1’ in the mask signifies that the corresponding bit in the iris template

is valid. A example iris template and it’s corresponding mask are displayed as images in

Figure 4.11. The iris template is shown on the left. The iris-template mask is shown on the

right.

Figure 4.10: Feature Extraction: Filtered iris

Figure 4.11: Feature Extraction: Iris template

4.1.5 Classification

The classification stages seeks to identify a match between the computed local iris tem-

plate and any number of database templates. For this stage the Hamming Distance metric

is used to gauge whether a compelling enough match exists between the local template and

a database template. The Hamming Distance is defined as

HD =
||(templatelocal ⊕ templatedatabase) ∧masklocal ∧maskdatabase||

||masklocal ∧maskdatabase||
(4.10)



31

where ⊕ is the bitwise XOR operator, ∧ is the bitwise AND operator, and (|| ||) is the

NORM operator which counts the number of ones remaining in a bit-string after internal

operations. The result of this computation is a floating-point number between 0.0 and 1.0.

The closer the templates are to being a match, the closer the result is to 0.0, with 0.0

being an exact match. In this work, a Hamming Distance result less than or equal to 0.35

is considered a match. If a match is found, then a unique identifier corresponding to the

matched database template is returned. If a match is not found, the user is prompted if

they would like to enroll the local template as a new identifier. In a more practical system

enrollment would be controlled by an administrator or other authority.

4.2 Results

This section presents the runtime performance results of the software-prototype iris

recognition system. The runtime performance is given for the software-prototype running

on two different platforms: x64 (Windows)1 and ARMv7 (ArchLinux)2. Table 4.1 and Table

4.2 give each stage’s runtime performance and the total overall performance of one iteration

of the iris recognition pipeline.

Table 4.1: Software Prototype Overall Runtime Performance

Stage x64 Runtime (ms) ARMv7 Runtime (ms)

Acquisition1 441 15615

Segmentation 34 869

Normalization 0 2

Feature Extraction 0 9

Classification 3 6

Total1 37 886

1 Acquisition is not counted in the total.

1Built using Visual Studio 2015 with Visual C++ 14.0 (/O2 optimization)
2Built using CMake with C++ (GCC) 5.3.0 (-O3 optimization)
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Table 4.2: Software Prototype Percentages of Total Runtime

Stage Percentage of Total (x64) Percentage of Total (ARMv7)

Segmentation 91.9% 98.1%

Normalization 0.0% 0.2%

Feature Extraction 0.0% 1.0%

Classification 8.1% 0.7%

Table 4.3: Segmentation Stage Overall Runtime Performance

Sub-Stage x64 Runtime (ms) ARMv7 Runtime (ms)

Pupillary Segmentation 15 423

Limbic Segmentation 19 446

Total 34 869

We do not consider the acquisition stage a bottleneck due to the disk reading and

cascade classifier operations that could be avoided in a more practical system. Therefore, the

segmentation stage is considered the most performance heavy. Table 4.3 gives the runtime

performance results of the sub-stages of segmentation. Table 4.4 further breaks down the

segmentation sub-stages’ performance into internal-operation runtime per instance.

We can use the experimentally-gathered results presented here to make a decision on

what to target for a hardware/software co-design solution. One can observe that the seg-

mentation stage is responsible for the majority of the runtime of the software prototype—

discounting aquisition—on both platforms. When split into the sub-stages of pupillary

segmentation and limbic segmentation, the two are nearly equal in runtime performance.

When broken down further, we notice that the pupillary segmentation sub-stage involves

operations that are commonly found in computer vision systems, such as thresholding and

morphological operators. However, the limbic segmentation sub-stage uses methods not

commonly found in computer vision systems, such as the modified polar-coordinate trans-

formation (Rubber sheet model) and best-fit band computation. Another reason to consider

the limbic segmentation sub-stage for hardware acceleration, is because it involves several
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Table 4.4: Segmentation Stage Internal-Operations Runtime Performance

Operation x64 Runtime (ms) ARMv7 Runtime (ms)

Pupillary segmentation sub-stage

Threshold 0 11

Morphology 3 178

Component filtering 12 203

Other1 0 31

Total 15 423

Limbic segmentation sub-stage

Boundary array calculations (x25) 0 14

Polar Transform (x25) 15 326

Best-fit Band (x25) 1 13

Other ops (Blur, gradient, etc.) 3 93

Total 19 446

1 The values in this row are a result of loop overhead, variable initialization, and component

comparisons.

data-independent computations which could be exploited through parallelism. Each one

of these independent computations essentially contains a polar-coordinate transformation

followed by a best-fit band operation. For these reasons, a digital hardware design was cre-

ated to improve performance for the limbic segmentation sub-stage. In a thorough imple-

mentation of a high-performance iris recognition system, digital hardware IP such as those

contained in Xilinx’s HLS Video Library can be used for hardware accelerating the pupillary

segmentation sub-stage—thresholding and morphological operations—and the other com-

mon computer vision algorithms used in limbic segmentation—Gaussian blur and gradient

operations.
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CHAPTER 5. HARDWARE ACCELERATOR FOR IRIS

SEGMENTATION

This chapter introduces our hardware architecture that provides hardware acceleration

for the limbic segmentation sub-stage. We describe a hardware accelerator designed to exist

in a hardware/software co-implementation of an iris recognition system. We present the

runtime performance of the design and compare it to the software prototype’s performance

when running the same operations. The chapter concludes with a discussion of several

implementation considerations for integrating our hardware module into a real system based

on a Xilinx Zynq-7000 SoC.

5.1 Approach

In this section we use results presented in the previous chapter to help explain why a

hardware accelerator for the limbic segmentation sub-stage would be advantageous to run-

time performance and the possible approaches to using the module. In Chapter 4, Section

4.2 the software prototype results are given. Table 4.4 in that section shows the internal

operations of the limbic segmentation sub-stage. We see in this table, under the limbic seg-

mentation half, that the polar-coordinate transform operation takes up the majority of the

sub-stage’s runtime—over 70 percent on either platform. Another thing to note about the

polar-coordinate transform is that it’s computed several times, along with other operations,

to get higher accuracy in segmentation of the limbic boundary. As mentioned in Chapter

4, Section 4.1.2.2 there is a polar-coordinate transform and best-fit band operation for each

possible center point that the limbic boundary could take—up to twenty-five in this work.
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Each of these computations is data-independent; therefore, if the platform’s resources can

support it, a hardware accelerator can be instantiated for each separate computation of the

limbic boundary center point. This would be advantageous for performance due to the serial

nature of the computations in the software prototype. If a platform lacks enough resources

to support total parallelism of these computations, then resources can be shared to achieve

a hybrid serial-parallel architecture where some number of limbic boundary center points

are calculated in parallel, followed by another set of center points, until all are accounted

for. In this work, we target a completely parallel solution—all twenty-five computations

run at the same time. In the future, if a different design needs to support more possible

center points, then a hybrid serial-parallel approach can be used. This hybrid approach can

be used for platforms with less available resources or to save resources for other needs in an

application like the image processing operations in the pupillary segmentation sub-stage.

5.2 Architecture Overview

In this section we present an overview of the hardware accelerator for the limbic seg-

mentation sub-stage. One must first consider the inputs and outputs that are necessary for

the module. The I/O requirements for the polar-coordinate transformation are as follows

• Inputs

– The binary-threshold image to be unwrapped

– The boundary-point arrays which outline the inner and outer boundaries of the

area to look for the limbic circle

• Outputs

– The unwrapped image
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In this work, we’ve normalized the sizes of the polar-coordinate transform images to

convenient sizes for designing hardware whilst still maintaing accuracy1. For fast read and

write access, it would be more convenient to store the images required for this operation

in programmable logic memory, such as block RAMs (BRAMs) or in distributed memory,

versus loading values individually or in burst from DDR memory. The binary-threshold

image size is 256x256 bits—8 kilobytes—and the unwrapped image size is 128x176 bits—2.75

kilobytes. All dimensions of the images are conveniently normalized to be divisble by eight;

allowing easy byte-to-bit conversion, simple and compact storage, and easier write/read

logic. Due to the large enough sizes of the I/O in the polar-coordinate transformation,

the decision was made to use block RAMs to store the binary-threshold and unwrapped

images. In this work, each image gets their own block RAM to simplify the design; however,

because the target platform supports 36 kilobyte dual-port block RAMs, it would be possible

to pack the images into a single block RAM. The modified polar-coordinate transformation

also requires the boundary-point arrays which specify the annulus area to unwrap. Again

for simplification, these arrays are stored in separate block RAMs. Each boundary-point

array’s size is 176 bytes, one byte for each bit of resolution in the radial dimension (i.e. 176

bytes represent 360 degrees).

Since the decision was made to store the unwrapped image result from the polar-

coordinate transform in a block RAM on the programmable logic side of the SoC, it may

also be convenient to include the best-fit band operation in the hardware accelerator. This

would allow the hardware accelerator to provide a simple result in the form of the size of

the best-fit circle’s radius and total number of counted ones. Then, the software would

only have to compare the results of the best-fit circles calculated by the several instantiated

hardware modules to find the one with the highest number of ones—corresponding to the

best-fit limbic boundary.

1The results obtained from the software prototype also use these size normalizations in order to maintain
consistency.
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With the information from the two previous paragraphs we can build an idea of what the

high-level hardware accelerator’s interface should be. In summary, the hardware accelera-

tor is responsible for the polar-coordinate transformation and the best-fit band operation.

Because this hardware accelerator resembles and replaces the integro-differential operation

in the software prototype’s limbic segmentation sub-stage, we call the module IDOSegmen-

tation. With the basic idea of the functionality that the IDOSegmentation module will

provide, we must redefine the I/O specification as follows

• Inputs

– The binary-threshold image to be unwrapped

– The boundary-point arrays which outline the inner and outer boundaries of the

area to look for the limbic circle

• Outputs

– The best-fit band’s location (i.e. the radius of the best-fit circle)

– The best-fit band’s total number of ones (so software can compare against other

best-fit circles)

In this interface specification the inputs did not change, but the unwrapped image

(previously an output) became an internal-use-only construct. This saves the system design

some complexity by not having to stream the unwrapped image back to DDR memory for

software analysis. However, the software still has to stream the binary-threshold image

and boundary-point arrays to the corresponding block RAMs as per the input specification.

After the IDOSegmentation module has completed it’s computation of the best-fit band, the

software simply reads the resulting location and number of ones and uses this information

to compare against the other best-fit bands to find the one with the highest number of

ones—corresponding to the limbic boundary. The interface diagram (shown with external

block RAM memories) for the IDOSegmentation module is given in Figure 5.1.
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Figure 5.1: IDOSegmentation module: Interface

To represent the two main functions of the IDOSegmentation module, the two internal

modules PolarTransformController and BestFitBandController were created. These con-

trollers contain the corresponding functionality all-in-one. The internal composition of the

IDOSegmentation module is shown in Figure 5.2.

Figure 5.2: IDOSegmentation module: Internal components



39

5.3 Polar Transform Module

This section discusses the polar-coordinate transform functionality of the IDOSegmen-

tation module. As a reminder, the polar-coordinate transform, as it’s referred to in this

work, is an operation that takes an input of an images and two boundary-point arrays. To-

gether, the boundary-point arrays describe an annulus. This annulus is then unwrapped to

a resulting rectangular image. For more details on this modified polar-coordinate transform

operation, see Sections 2.2.3 and 4.1.2.2 of this thesis.

The polar-coordinate transform calculates each location, (x, y), of the unwrapped image

pixels in the binary-threshold image. The locations are calculated using the equations 4.2

and 4.3 for each possible (ri, θj). These locations are loaded from the binary-threshold

image and stored in the unwrapped image to be processed by the best-fit band operation

after the entire unwrapped image is built.

Because there are multiple reads and read-location calculations the polar transform

functionality is complex enough to warrant a controller. This controller is responsible for

transitioning between each set of (ri, θj) locations in the unwrapped image. At each (r, θ),

the location of the read-data in the binary-threshold image must be calculated, loaded, and

stored in the unwrapped image. The location of the read-data in the binary-threshold image

is computed using Equations 4.2 and 4.3 manipulated to use only integer operations. The

process starts at (r = 0, θ = 0). The controller increments θ until the maximum angle is

reached at (r = 0, θ = 176). At this point the controller resets θ and moves to the next row

in the unwrapped image at (r = 1, θ = 0). This process continues until the controller reaches

(r = 128, θ = 176) and the unwrapped image is completed. The architecture diagram for

the PolarTransformController module is shown in Figure 5.3.

5.4 Best-Fit Band Module

This section discusses the best-fit band functionality of the IDOSegmentation module.

As a reminder, the best-fit band operation takes the unwrapped image as input and produces
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Figure 5.3: PolarTransformController architectural diagram

a location and number of ones corresponding to the best-fit circle for the limbic boundary.

For more details on the best-fit band operation, see Section 4.1.2.2 of this thesis.

Similar to the PolarTransformController, a controller was created for the best-fit band

function to deal with the overall operation’s complexity. Each band in the unwrapped image

is ten rows, each of 176 bits. There are ten bands in total. The goal of this module is to

compute these bands in parallel and after doing so compare their number of counted ones.

The band with the highest number of ones is considered the best-fit. The module stores the

best-fit band’s location (radius) and number of ones in software accessible registers to serve

as output. To avoid having massive memory overhead in the BandFitController module,

we use FIFOs to buffer data from the unwrapped image. There are ten FIFOs, one for

each band. Each band in the unwrapped contains 1,760 bits. For simplicity we make the

FIFO depth 176 bits; therefore, we must fill the FIFOs ten times to account for all relevant
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Figure 5.4: PolarTransform architectural diagram

data in the unwrapped image. We use the controller to manage transfers of data to the

FIFOs and to control when the internal functionality—counting the number of bits that

are one—is activated. The internal module, BestFitBand, reads the FIFO data and counts

the number of ones in each band. When all band-data is accounted for the BestFitBand

module compares each band and stores the resulting location and number of ones in output

registers. Figure 5.5 shows the architectural diagram of the BestFitBandController.

5.5 Verification

The digital hardware design was evaluated using simulation and synthesis tools. All

modules were written in VHDL and verified separately before being combined into to the

top-level IDOSegmentation module. Consistency was evaluated by checking the hardware

output against the same operations done in software. Separate testbenches were created for

each internal module. The automated testbenches allow fine-grain matching to the software

output at each level of detail. After the results were verified for the PolarTransformCon-

troller and BestFitBandController, the two modules were combined into the IDOSegmen-
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Figure 5.5: BestFitBandController architectural diagram

tation module. Four simulation-only memories were used to test the IDOSegmentation

module. At the pre-simulation stage, the binary-threshold image memory is filled with

the binary-threshold image and the inner- and outer boundary-point memories are filled

with the inner (pupillary) and outer boundary-point array, respectively. The values for

these memories were saved previously from the software-only prototype. The unwrapped

image memoru is used as an intermediate construct during the IDOSegmentations compute

process. Therefore, it does not need to be filled with data pre-simulation. The IDOSeg-

mentation testbench executes two series of tests which are verified by the results in the

software-only prototype when using the same inputs. All modules were verified successfully

when compared to software-only prototype output. In an actual system implementation,

the external memories are filled by the software during runtime.

5.6 Results

In this section we present results of hardware acceleration for the limbic segmentation

stage of the iris recognition system. The runtime performance of the operations targeted

for hardware acceleration are compared between each software platforms (x64 and ARMv7)
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Figure 5.6: BestFitBand architectural diagram

and the IDOSegmentation IP described in this chapter. The results for the IDOSegmen-

tation IP were gathered using both simulation and synthesis data. The Xilinx Zynq-7000

SoC XC7Z020 is targeted during synthesis. Simulation was used to verify consistency in

the results between the software-only prototype and the IDOSegmentation module. Sim-

ulation also provides the number of clock cycles it takes to complete an instance of the

IDOSegmentation module. Synthesis2 reports the maximum path delay of the IDOSegmen-

tation module. This provides a maximum clock frequency which is used—along with the

simulation information—to infer IDOSegmentation runtime performance. The maximum

path delay of the IDOSegmentation module is 9.659ns which results in a maximum clock

frequency of 100 megahertz. Table 5.1 gives the runtime performance of the operations

targeted for hardware acceleration.

The speedup factor of the hardware accelerator is computed using the information

from Table 5.1 and the results are given in Table 5.2. The speedup is given in terms

of operations-targeted-for-hardware-acceleration when comparing IDOSegmentation to the

other platforms. Overall we observe a 22× speedup when comparing the hardware accel-

2This work uses Xilinx Vivado 2017.1 as a synthesis tool
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eration method to an x64 platform and a 468× speedup when compared to an ARMv7

platform.

Table 5.1: HW Results: Runtime performance

Internal operation x64 (ms) ARMv7 (ms) IDOSegmentation1(ms)

Polar transform (x25) 15 326 0.68

Best-fit band (x25) 1 13 0.05

Total2 16 339 0.73

1 The values for IDSegmentation IP are inferred based on simulation and synthesis reports.
2 The total only includes the operations targeted for hardware acceleration (i.e. polar

transform and best-fit band).

Table 5.2: HW Results: Speedup

Accelerated operation IDOSegmentation vs. x64 IDOSegmentation vs. ARMv7

Polar transform (x25) 22.2 482.3

Best-fit band (x25) 21.0 273.1

Total1 22.1 468.6

1 The total only includes the operations targeted for hardware acceleration (i.e. polar transform

and best-fit band).

Table 5.3: HW Results: Resource Utilization (XC7Z020)

Resource type Used Available Utilization % Utilization % × 251

Slice LUTs 2053 53200 3.86 96.48

Slice Registers (FF) 3878 106400 3.64 91.12

F7 Muxes 49 26600 0.18 4.61

Block RAMs 4 140 2.86 71.43

A summary of the runtime performance of various related works is given in table 5.4.

The stages vary for these works. This table is not meant for direct comparison.

The synthesis report also provides a resource utilization summary. Table 5.3 provides

resource utilization results for the IDOSegmentation module on the XC7Z020 platform. We

see from these results that its theoretically possible to instantiate twenty-five instances of
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Table 5.4: Related Work Performance

Author Stage Platform Type Runtime (ms)

Daugman2007 Limbic Segmentation CPU(Desktop) 3.5

Daugman2004 Limbic Segmentation CPU(Embedded) 90

Barra2015 Entire Segmentation CPU(Embedded) 2000

Abate2015 Entire Segmentation CPU(Embedded) 2000

Haindl2015 Entire Segmentation CPU(Embedded) 15000

Yang2015 Entire Segmentation CPU(Embedded) 35000

Hematian2013 Entire Segmentation FPGA 6

Grabowski2011 Entire Segmentation FPGA 25

Avey2018 Limbic Segmentation FPGA 0.7

Sakr2012 Entire Segmentation GPU 24

the IDOSegmentation module on the target FPGA. However, up to this point we haven’t

considered the extra resources it will take to set up the DMAs and other supporting IP

that would be necessary for a working hardware/software co-designed iris recognition sys-

tem. With these extra resources it’s likely not possible, given the current design, to fit all

twenty-five parallel instances of the IDOSegmentation module into the target platform’s

programmable logic section. Although, this issue doesn’t end the possibilty of a improved-

performance system for at least three reasons

1. The twenty-five instances is a somewhat arbitrary number chosen as an upper bound

in an attempt to get the best accuracy limbic segmentation. This number could be

reduced with potentially small to no consequences in accuracy. This thesis did not

experiment with variations in this number due to the scope, which was to build a

hardware accelerator for the bottleneck stage of an iris recognition system. Therefore,

the number twenty-five was kept consistant so as to not confuse verfication and results.

2. As mentioned earlier in Section 5.1, an actual implementation of a hardware/software

co-designed iris recognition system can use a parallel-serial hybrid approach. This

would mean a smaller number of IDOSegmentation modules than the total number

needed to achieve a fully-parallel solution could be used. This number of IDOSegmen-
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tation modules would run in parallel, and when finished their result would be saved

in software and the next round of IDOSegmentation computations would run. This

process would happen iteratively until all IDOSegmentation computations completed,

at which point the software would compare all of the results. This alternative would

have an interesting trade-off analysis suited for future work.

3. Although its a very simple alternative, the target platform can be swapped out with

one that has a larger programmable logic section. The XC7Z020 is an upper mid-

range platform in the Zynq-7000 series. It contains 85,000 programmable logic cells.

There are other SoCs in the Zynq-7000 series which contain more resources—up to

three times as many as the XC7Z020 [38].
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CHAPTER 6. CONCLUSION

Iris Recognition has the potential to be a serious contender in the race to replace tradi-

tional authentication methods with biometrics. The iris provides a feature set that is highly

unique from individual to individual and is not dynamic with time nor as prone to changes

like the face and fingerprint. However, in order to compete with the alternative biometric

methods it must support widely-available devices and be quick and convenient to use.

Many related works have proposed solutions to the many problems of iris recognition. In

the 1990s and early 2000s Dr. John Daugman published the well established algorithms that

are used in extant systems today. But these systems require specialized resources like NIR

cameras and high performance computers or patient users. The MICHE contest introduced

in 2015 aimed to remove the necessity of NIR cameras and controlled environments by using

RGB cameras commonly found in mobile phones. However, the runtime results of MICHE

show there is more work to do to increase performance to be used as an everyday tool.

This thesis introduces a hardware/software co-design iris recognition system. A software-

only iris recognition system prototype was created for analysis of performance and verifica-

tion of a potential hardware accelerator’s results. We then propose a hardware accelerator

design that maintains the same accuracy as its corresponding functionality in the software

prototype while speeding up the performance when compared to the software-only proto-

type on both x64 and ARMv7 platforms. We saw a 22× speedup versus an x64 platform and

a 468× speedup versus an ARMv7 platform when comparing the hardware accelerator to

equivalent functionality in the software-only prototype. We chose to test with the MICHE
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RGB image dataset to demonstrate that the system can work with commonly found RGB

cameras, like the ones found in mobile phones.

Future work includes the following items

• An accuracy/performance trade-off analysis of various numbers of instantiated IDOSeg-

mentation modules. As mentioned in Section 5.6, an arbitrary upper-bound of twenty-

five instances of IDOSegmentation wasn’t chosen for this work. This upper bound was

kept through-out the time of this work to keep results consistant. We would likely

see a saturation point where more center points does not increase accuracy but only

continues to decrease performance.

• An actual working implementation of the hardware/software co-design iris recogni-

tion system presented here. A high performance implementation would also include

hardware acceleration for the pupillary segmentation sub-stage, which uses common

computer vision algorithms like thresholding and morphology. This would be useful

for measuring real-world, experiemental results and gauging the everyday-usability of

such a system with a live RGB-camera feed and an authentication-protected applica-

tion like a home-room door lock or other low-security mechanism.

• Experimenting with the hybrid approach briefly described in Section 5.1. This ap-

proach may contain an interesting trade-off analysis to find the closest to ideal con-

figuration of IDOSegmentation modules that provides the best accuracy and runtime

performance whilst still supporting the maximum resource utilization of the target

SoC’s programmable logic section.

• Heuristics for determining whether or not segmentation was successful. An example

of a method for this would be determining success based on the ratio of pupil to iris

sizes. There is a range of acceptable ratios—0.1 to 0.8—for example, as mentioned in

[4].
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• Experimenting with different feature extraction methods for best matching results.

This idea didn’t fit the scope of this thesis, but would be interesting nonetheless.

• A feature to help with noise removal in the normalization and feature extraction

stages. There are related works that give methods for better detection and removal

of noise objects like the eyelids, eyelashes, and eyeglasses [20].
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[15] Michal Haindl and Mikuláš Krupička. Unsupervised detection of non-iris occlusions.

Pattern Recognition Letters, 57:60–65, 2015.

[16] Amirshahram Hematian, Suriayati Chuprat, Azizah Abdul Manaf, Sepideh Yazdani,

and Nadia Parsazadeh. Real-time fpga-based human iris recognition embedded system:

https://www.theguardian.com/world/2016/jun/28/india-village-compile-worlds-biggest-id-database-aadhaar
https://www.theguardian.com/world/2016/jun/28/india-village-compile-worlds-biggest-id-database-aadhaar


52

Zero-delay human iris feature extraction. In The 9th International Conference on

Computing and InformationTechnology (IC2IT2013), pages 195–204. Springer, 2013.

[17] Itseez. Cascade classifier class reference. [Online]. Available: https://docs.opencv.

org.

[18] Itseez. Opencv library. [Online]. Available: https://opencv.org.

[19] Robert W Ives, Randy P Broussard, Lauren R Kennell, Ryan N Rakvic, and Delores M

Etter. Iris recognition using the ridge energy direction (red) algorithm. In Signals,

Systems and Computers, 2008 42nd Asilomar Conference on, pages 1219–1223. IEEE,

2008.

[20] Yujin Jung, Dongik Kim, Byungjun Son, and Jaihie Kim. An eye detection method

robust to eyeglasses for mobile iris recognition. Expert Systems with Applications,

67:178–188, 2017.

[21] Lauren R Kennell, Robert W Ives, and Ruth M Gaunt. Binary morphology and local

statistics applied to iris segmentation for recognition. In Image Processing, 2006 IEEE

International Conference on, pages 293–296. IEEE, 2006.

[22] Dongik Kim, Yujin Jung, Kar-Ann Toh, Byungjun Son, and Jaihie Kim. An empirical

study on iris recognition in a mobile phone. Expert Systems with Applications, 54:328–

339, 2016.

[23] Stan Kurkovsky, Tommy Carpenter, and Caleb MacDonald. Experiments with sim-

ple iris recognition for mobile phones. In Information Technology: New Generations

(ITNG), 2010 Seventh International Conference on, pages 1293–1294. IEEE, 2010.

[24] Chen Liu, Benjamin Petroski, Guthrie Cordone, Gildo Torres, and Stephanie Schuckers.

Iris matching algorithm on many-core platforms. In Technologies for Homeland Security

(HST), 2015 IEEE International Symposium on, pages 1–6. IEEE, 2015.

https://docs.opencv.org
https://docs.opencv.org
https://opencv.org


53

[25] Judith Liu-Jimenez, Raul Sanchez-Reillo, and Belen Fernandez-Saavedra. Iris biomet-

rics for embedded systems. IEEE transactions on very large scale integration (vlsi)

systems, 19(2):274–282, 2011.

[26] Li Ma, Tieniu Tan, Yunhong Wang, and Dexin Zhang. Efficient iris recognition by

characterizing key local variations. IEEE Transactions on Image processing, 13(6):739–

750, 2004.

[27] Maria De Marsico, Michele Nappi, and Hugo Proena. Results from miche ii mobile

iris challenge evaluation ii. Pattern Recognition Letters, 91:3 – 10, 2017. Mobile Iris

CHallenge Evaluation (MICHE-II).

[28] Mayuri M Memane and Sanjay R Ganorkar. Red algorithm based iris recognition.

genetics, 1:2, 2012.

[29] Hentati Raida and Mohamed Abid YassineAoudni. Hw\sw implementation of iris

recognition algorithm in the fpga. International Journal of Engineering Science, 4,

2012.

[30] Ryan N Rakvic, Bradley J Ulis, Randy P Broussard, Robert W Ives, and Neil Steiner.

Parallelizing iris recognition. IEEE transactions on information forensics and security,

4(4):812–823, 2009.

[31] Arun Ross. Iris recognition: The path forward. Computer, 43(2), 2010.

[32] Hamid Reza Sahebi and S Askari. A novel method for iris recognition using bp neural

network and parallel computing. Advances in Computer Science: an International

Journal, 5(2):1–6, 2016.

[33] Fatma Zaky Sakr, Mohamed Taher, Ahmed M Ei-Bialy, and Ayman M Wahba. Ac-

celerating iris recognition algorithms on gpus. In Biomedical Engineering Conference

(CIBEC), 2012 Cairo International, pages 73–76. IEEE, 2012.



54

[34] Kwang Yong Shin, Gi Pyo Nam, Dae Sik Jeong, Dal Ho Cho, Byung Jun Kang,

Kang Ryoung Park, and Jaihie Kim. New iris recognition method for noisy iris images.

Pattern Recognition Letters, 33(8):991–999, 2012.

[35] Shejin Thavalengal, Petronel Bigioi, and Peter Corcoran. Evaluation of combined

visible/nir camera for iris authentication on smartphones. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops, pages 42–49,

2015.

[36] Sudeep D Thepade and Pooja V Bidwai. Contemplation of image based iris recognition.

International journal of Engg. Research and application ISSN-2248-9622, 3(2):1056–

1066, 2013.

[37] Mateusz Trokielewicz, Ewelina Bartuzi, Katarzyna Michowska, Antonina Andrzejew-

ska, and Monika Selegrat. Exploring the feasibility of iris recognition for visible spec-

trum iris images obtained using smartphone camera. In Photonics Applications in

Astronomy, Communications, Industry, and High-Energy Physics Experiments 2015,

volume 9662, page 96622C. International Society for Optics and Photonics, 2015.

[38] Xilinx. Zynq-7000 all programmable soc data sheet: Overview. [Online]. Available:

https://www.xilinx.com/support.

https://www.xilinx.com/support

