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Figure 3.5: The geometry of PATE under different assumptions on PF and PZ|F

Note: The header row specifies the assumptions on PZ jF and the header column specifies

the assumptions on PF . Each cell is a plot of the geometry of PATE under a combination
of assumptions on PZ jF and PF . The X-axis denotes the average treatment effect of the
first treatment. The Y-axis denotes the average treatment effect of the second treatment.
In each plot, multiple identified regions under the corrupted sampling model are presented,
with different colors denoting the maximum misclassification rates: 0% in red, 10% in orange,
20% in yellow and 30% in green.
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Figure 3.6: The geometry of PTE1 under different assumptions on E

Note: The header row specifies which variable is subject to misclassification and the header
column specifies the type of misclassification. Each cell is a plot of the geometry of PTE1

based on the assumptions of MTR on average and select for better outcome probabilistically.
The X-axis denotes the probability of zero treatment effect. The Y-axis denotes the prob-
ability of unit treatment effect. Since a complete ordering does not exist for W = (Y,Z),
the left bottom is left blank. In each plot, multiple identified regions are presented, with
different colors denoting the maximum misclassification rates: 0% in red, 10% in orange,
20% in yellow and 30% in green.
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Figure 3.7: The geometry of PATE under different assumptions on E

Note: The header row specifies which variable is subject to misclassification and the header
column specifies the type of misclassification. Each cell is a plot of the geometry of PATE

based on the assumptions of MTR on average and select for better outcome probabilistically.
The X-axis denotes the average treatment effect of the first treatment. The Y-axis denotes
the average treatment effect of the second treatment. Since a complete ordering does not
exist for W = (Y,Z), the left bottom is left blank. In each plot, multiple identified regions
are presented, with different colors denoting the maximum misclassification rates: 0% in red,
10% in orange, 20% in yellow and 30% in green.
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 1

A.1 Additional simulation results

Table A.1: Percent Rejected under H0 : τ = 1 at Nominal Level of 10%

ρ tj tk ARj ARk AR LM CLR

Panel A: Υj = Υk = 1

0.0 0.4 0.8 10.8 10.1 10.6 10.5 10.4

-0.9 21.4 18.8 10.2 10.2 10.3 10.0 10.1

0.9 19.1 20.0 10.1 9.3 10.0 10.5 7.4

Panel B: Υj = Υk = 10

0.0 4.6 4.8 9.8 9.6 10.1 9.8 10.0

-0.9 11.5 11.3 10.1 10.8 9.9 10.4 10.8

0.9 10.5 10.4 9.5 9.8 9.4 9.8 10.4

Panel C: Υj = Υk = 100

0.0 9.0 9.3 9.6 9.7 9.4 10.2 10.5

-0.9 8.3 9.8 10.2 10.4 10.0 10.1 10.2

0.9 10.2 10.1 11.2 10.5 11.2 10.1 10.1



95

Table A.2: Percent Rejected at Nominal Level of 5% with N = 500

Method M1 M2 M3 M1 M2 M3

Bias correction No No No Yes Yes Yes

Test Panel A: µY1 and µT1

AR 9.5 9.6 16.9 7.8 7.5 10.4

LM 9.8 10.0 12.4 7.8 7.2 8.6

CLR 9.6 9.8 13.9 7.8 7.2 9.4

Panel B: µY2 and µT1

AR 16.1 11.9 14.1 14.6 11.1 11.8

LM 15.4 12.2 12.2 14.7 10.6 10.9

CLR 14.3 12.8 11.7 14.1 10.8 10.4

Panel C: µY1 and µT2

AR 9.6 9.8 17.0 7.8 7.8 10.0

LM 10.1 10.0 12.6 8.0 7.7 8.7

CLR 9.6 10.3 13.5 7.6 7.6 9.2

Panel D: µY2 and µT2

AR 15.8 12.2 14.5 14.5 11.3 12.2

LM 15.4 12.2 12.5 14.7 10.2 11.3

CLR 14.3 12.3 11.8 14.1 10.4 11.0
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Table A.3: Percent Rejected at Nominal Level of 5% with N = 10000

Method M1 M2 M3 M1 M2 M3

Bias correction No No No Yes Yes Yes

Test Panel A: µY1 and µT1

AR 22.4 48.8 13.2 9.1 20.2 7.0

LM 22.8 51.6 11.8 11.1 22.9 6.9

CLR 22.9 52.3 12.0 11.5 23.2 7.0

Panel B: µY2 and µT1

AR 5.8 7.1 6.5 5.5 5.4 4.8

LM 5.2 7.2 6.6 5.2 5.1 5.6

CLR 5.4 6.7 6.8 5.2 5.3 6.0

Panel C: µY1 and µT2

AR 22.1 50.5 13.4 8.9 20.6 6.8

LM 22.9 51.7 11.9 11.1 23.8 6.4

CLR 23.0 52.4 12.1 11.4 24.0 6.9

Panel D: µY2 and µT2

AR 5.4 6.6 7.0 5.5 5.4 5.1

LM 5.2 6.8 6.8 5.0 5.0 5.8

CLR 5.2 6.8 6.7 5.3 5.2 6.1
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Figure A.2: Power of Bias-corrected Tests at Nominal Level of 5% with N = 500
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Figure A.4: Power of Bias-corrected Tests at Nominal Level of 5% with N = 10000
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A.2 Proofs

A.2.1 Proof of Lemma 1.1

The distribution of Wn is Wn ∼ N(µ,Ωn) with

µ = (τΠ, τΠ′ + τ ′Π,Π,Π′).

Given a single observation of Wn, w, and a known variance Ωn, w is a sufficient statistic for θ

because the factorization theorem naturally holds for

f(w|θ) = (2π)−1/2|Ω|−1/2 exp

(
−1

2
(w − µ)Ω−1(w − µ)′

)
.

Note that Wn is a function of Sn and Tn

W T
n = [STn : T Tn ][B0(BT

0 ΩnB0)−
1
2 : Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 ]−1,

hence Sn and Tn are sufficient statistics for θ, and part (a) of this lemma holds.

To prove part (b), firstly note that Sn and Tn are jointly normal. Their mean and variance are

E(Sn) = (BT
0 ΩnB0)−

1
2 (B0 −B +B)T E(Wn) = (BT

0 ΩnB0)−
1
2 (B0 −B)Tµ,

V(Sn) = (BT
0 ΩnB0)−

1
2BT

0 V(W T
n )B0(BT

0 ΩnB0)−
1
2 = I2,

E(Tn) = (AT0 Ω−1
n A0)−

1
2AT0 Ω−1

n E(Wn) = (AT0 Ω−1
n A0)−

1
2AT0 Ω−1

n µ,

V(Tn) = (AT0 Ω−1
n A0)−

1
2AT0 Ω−1

n V(W T
n )Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 = I2.

In addition, the covariance between Sn and Tn is

Cov(Sn, Tn) = Cov
(
(BT

0 ΩnB0)−
1
2BT

0 Wn, (A
T
0 Ω−1

n A0)−
1
2AT0 Ω−1

n Wn

)
= (BT

0 ΩnB0)−
1
2BT

0 V(Wn)Ω−1
n A0(AT0 Ω−1

n A0)−
1
2

= (BT
0 ΩnB0)−

1
2BT

0 A0(AT0 Ω−1
n A0)−

1
2

= 0,

where the last equality holds because B0 and A0 are designed to be orthogonal. As a result, Sn

and Tn are independent.
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A.2.2 Proof of Theorem 1.1

Firstly notice that since Ŵn is asymptotically normal, Ŝn and T̂n are asymptotically joint normal

as they are linear transformations of Ŵn. We show that Ŝn →d Sn, T̂n →d Tn, and Ŝn and T̂n are

asymptotically uncorrelated.

Ŝn = BT
0 Ω̂nB0)−

1
2BT

0 Ŵn

= (BT
0 Ω̂nB0)−

1
2BT

0 (Ŵn − µ) + (BT
0 Ω̂nB0)−

1
2BT

0 µ

= (BT
0 Ω̂nB0)−

1
2BT

0 (Ŵn − µ) + (BT
0 Ω̂nB0)−

1
2 (B0 −B)Tµ.

By Cramer-Wold Device, we have (BT
0 Ω̂nB0)−

1
2BT

0 (Ŵn − µ)→d N(0, I2); by Slutsky Theorem, we

have (BT
0 Ω̂nB0)−

1
2 (B0 −B)Tµ→p (BT

0 ΩnB0)−
1
2 (B0 −B)Tµ. Hence Ŝn →d Sn. Analogously,

T̂n = (AT0 Ω̂−1
n A0)−

1
2AT0 Ω̂−1

n Ŵn

= (AT0 Ω̂−1
n A0)−

1
2AT0 Ω̂−1

n (Ŵn − µ) + (AT0 Ω̂−1
n A0)−

1
2AT0 Ω̂−1

n µ,

where its first part converge in distribution to standard normal and the second part converge in

probability to the mean of Tn. As a result, T̂n →d Tn. Finally,

Cov(Ŝn, T̂n) = Cov
(
(BT

0 Ω̂nB0)−
1
2BT

0 Ŵn, (A
T
0 Ω̂−1

n A0)−
1
2AT0 Ω̂−1

n Ŵn

)
= (BT

0 Ω̂nB0)−
1
2BT

0 V(Ŵn)Ω̂−1
n A0(AT0 Ω̂−1

n A0)−
1
2

→p 0

because Ω̂n →p V(Ŵn) and BT
0 A0 = 0. Part (a) of Theorem 1.1 holds.

The statistic φ(·, ·, ·, τ0, τ
′
0) is, by definition, a continuous function. The critical value function

cφ(·, ·, τ0, τ
′
0, α) is also a continuous function because the conditional distribution of Sn given Tn is

absolutely continuous with a density that is smooth function of Tn. Hence part (b) of this theorem

holds by continuous mapping theorem.

Part (c) follows immediately from part (b) because under the null,

Pr
(
ψ(Ŝn, T̂n, Ω̂n, τ0, τ

′
0) > cψ(T̂n, Ω̂n, τ0, τ

′
0, α)

)
→p Pr

(
ψ(Sn, Tn,Ωn, τ0, τ

′
0) > cψ(Tn,Ωn, τ0, τ

′
0, α)

)
= α,

where the equality holds by definition of the critical value function.



101

A.2.3 Proof of Lemma 1.4

Assumption 1.1 ensures that fY (0)|X(y|x) =
∫
Y (1)

∫
T (1)

∫
T (0) fS|X(s|x)ds is continuous at the

threshold, implying the continuity of y(0, x, p) because

y(0, x, p) = min
a

∫ a

−∞
fY0|X(u|x)du = q.

Again, Assumption 1.1 ensures that
∂fY (0)|X(y|x)

∂x =
∫
Y (1)

∫
T (1)

∫
T (0)

∂fS|X(s|x)

∂x ds is continuous at the

threshold. Note that

∂y(0, x, p)

∂x
= −

∂FY (0)|X(y|x)

∂x

fY (0)|X(y|x)

∣∣∣∣∣
y=y(0,x,p)

= −
∫ y
−∞

∂fY (0)|X(u|x)

∂x du

fY (0)|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

,

so y(0, x, p) has continuous first order derivative with respect to the running variable at the thresh-

old. Similar argument can be made to y(1, x, p). Hence part (a) of this lemma holds.

Let τ(x, p) = y(1, x, p)− y(0, x, p) be the quantile treatment effect and τ ′(x, p) be its first order

derivative with respect to the running variable. Theorem 1 from Chernozhukov and Hansen (2005)

ensures that1

Pr[Yi ≤ y(Ti, Xi, p)|Xi] = p ∀p ∈ (0, 1).

Notice that y(Ti, Xi, p) = y(0, Xi, p) + Ti
(
y(1, Xi, p) − y(0, Xi, q)

)
= y(0, Xi, p) + Tiτ(Xi, p). As a

result, Pr[Yi−Tiτ(Xi, p) ≤ y(0, Xi, p)|Xi] = p, or equivalently, qp
(
Yi−Tiτ(Xi, p)|Xi

)
= y(0, Xi, p).

Since qp
(
Yi − Tiτ(Xi, p)|Xi

)
has the same smoothness properties as y(0, Xi, p), it suffices to

show that

lim
x→0

qp(Y
∗
i |Xi = x) = qp

(
Yi − Tiτ(Xi, p)|Xi = 0

)
(A.1)

and

lim
x→0

∂qp(Y
∗
i |Xi = x)

∂x
=
∂qp
(
Yi − Tiτ(Xi, p)|Xi = x

)
∂x

∣∣∣∣∣
x=0

. (A.2)

Equality (A.1) is trivial by the definition of Y ∗i . Equality (A.2) holds following the proof below.

1They result is conditioning on instrumental variable Z, which is a fully determined by X and is thus dropped.
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∂qp
(
Yi − Tiτ(Xi, p)|Xi = x

)
∂x

=−
∂FY−Tτ(X,p)|X(y|x)

∂x

fY−Tτ(X,p)|X(y|x)

∣∣∣∣∣
y=y(0,x,p)

=−
∂
∫ y
−∞ fY−Tτ(X,p)|X(u|x)du

∂x

fY−Tτ(X,p)|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

=−
∂
∫ y
−∞ Pr[T=0|x]fy(0,X,ε0)|(X,T=0)(u|x)+Pr[T=1|x]fy(1,X,ε1)−τ(X,p)|(X,T=1)(u|x)du

∂x

fY−Tτ(X,p)|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

.

Analogously,

∂qp(Y
∗
i |Xi = x)

∂x
= −

∂
∫ y
−∞ Pr[T=0|x]fy(0,X,ε0)|(X,T=0)(u|x)+Pr[T=1|x]fy(1,X,ε1)−(τ(p)+Xτ ′(p))|(X,T=1)(u|x)du

∂x

fY−T (τ(p)+Xτ ′(p))|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

After comparing the difference between
∂qp(Y ∗i |Xi=x)

∂x and
∂qp
(
Yi−Tiτ(Xi,p)|Xi=x

)
∂x , it can be shown

that

lim
x→0

fY−T (τ(p)+Xτ ′(p))|X(y|x) = fY−Tτ(X,p)|X(y|x)
∣∣
x=0

,

and

lim
x→0

∂fy(1,X,ε)−(τ(p)+Xτ ′(p))|(X,T=1)(u|x)

∂x

= lim
x→0

∂fy(1,X,ε1)|(X,T=1)(u+ (τ(p) + xτ ′(p))|x)

∂x
τ ′(p)

=
∂fy(1,X,ε1)|(X=x,T=1)(u+ τ(0, p))

∂x
τ ′(0, p)

=
∂fy(1,X,ε)|(X,T=1)(u+ τ(x, p)|x)

∂x
τ ′(x, p)

∣∣∣∣
x=0

=
∂fy(1,X,ε)−τ(X,p)|(X,T=1)(u|x)

∂x

∣∣∣∣
x=0

.

As a result, equation (A.2) holds.
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A.3 Additional mathematic notes

A.3.1 The statistic for likelihood ratio test

Given Ωn, the log likelihood function of observing Wn is

lnL(Wn|τ, τ ′,Π,Π′) = − ln(2π)− 1

2
ln(|Ωn|)−

1

2
(Wn − µ)TΩ−1

n (Wn − µ),

with µ = (τΠ, τ ′Π + τΠ′,Π,Π′)T . To remove nuisance parameter (Π,Π′), let µ̃ = A(Π,Π′)T and

assume (τ, τ ′) is fixed. Then to maximize lnL(Wn|τ, τ ′, π, π′) is equivalent to the following restricted

optimization problem:

max
µ̃

lnL(Wn|µ̃) = −ln(2π)− 1

2
ln(|Ωn|)−

1

2
(Wn − µ̃)TΩ−1

n (Wn − µ̃)

s.t. BT µ̃ = 0.

With Lagrange multiplier method, one can obtain µ̃∗ =
(
I4−ΩnB(BTΩnB)−1BT

)
Wn. As a result,

the concentrated log likelihood function is

lnL(Wn|τ, τ ′) = − ln(2π)− 1

2
ln(|Ωn|)−

1

2
W T
n B(BTΩnB)−1BTWn.

Hence the likelihood ratio statistic is

LR0 = W T
n B0(BT

0 ΩnB0)−1BT
0 Wn − min

(τ,τ ′)
W T
n B(BTΩnB)−1BTWn.

A.3.2 The statistic for Lagrange multiplier test

The first order derivative of log likelihood with respect to parameters (τ, τ ′)T is

∂ lnL(Wn|τ, τ ′,Π,Π′)
∂(τ, τ ′)T

= (Wn − µ)TΩ−1
n



Π 0

Π′ Π

0 0

0 0
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Note that when evaluated at (τ0, τ
′
0, Π̂, Π̂

′), the mean is µ̃∗ =
(
I4−ΩnB0(BT

0 ΩnB0)−1BT
0

)
Wn, hence

∂ lnL(Wn|τ, τ ′,Π,Π′)
∂(τ, τ ′)T

∣∣∣∣
τ0,τ ′0,Π̂,Π̂

′
=
(
Wn −

(
I4 − ΩnB0(BT

0 ΩnB0)−1BT
0

)
Wn

)T
Ω−1
n



Π̂ 0

Π̂′ Π̂

0 0

0 0



= W T
n B0(BT

0 ΩnB0)−1BT
0



Π̂ 0

Π̂′ Π̂

0 0

0 0


= W T

n B0(BT
0 ΩnB0)−1Π̂

= STn (BT
0 ΩnB0)−

1
2 Π̂.

So the statistic for Lagrange multiplier test is

LM0 = STn (BT
0 ΩnB0)−

1
2 Π̂
(
Π̂
T

(BT
0 ΩnB0)−1Π̂

)−1
Π̂
T

(BT
0 ΩnB0)−

1
2Sn,

which can be further simplified to STn Sn given that Π̂ is non-singular.

The maximum likelihood estimators for nuisance parameters are obtained by solving the fol-

lowing first order condition:

∂ lnL(Wn|τ0, τ
′
0,Π,Π

′)

∂(Π,Π′)T
= (Wn − µ)TΩ−1

n A0

=

Wn −A0

 Π

Π′



T

Ω−1
n A0

= 0.

The solution is (Π̂, Π̂′)T = T Tn (AT0 Ω−1
n A0)−

1
2 and is independent with Sn. As a result, LM0 follows

chi-squared distribution with two degrees of freedom under the null hypothesis.
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A.3.3 The estimation of Ω̂n

By definition, Ω̂n is the variance estimator for Ŵn. Since Ŵn is the difference between estimators

from two sides, which are independent, we have

Ω̂n = V[Ŵn] = V[Ŵ+
n ] +V[Ŵ−n ].

The same steps can be applied to the calculation of both V[Ŵ+
n ] and V[Ŵ−n ]. The following

discussion focuses on V[Ŵ+
n ] only. Ŵ+

n is a vector of bias-corrected intercepts and slopes, i.e.,

Ŵ+
n =



µ̂Y+(hY,0)−B+,0µ̂
(2)
Y+

(hY,2)h2
Y,0

µ̂
(1)
Y+

(hY,1)−B+,1µ̂
(2)
Y+

(hY,2)hY,1

µ̂T+(hT,0)−B+,0µ̂
(2)
T+

(hT,2)h2
T,0

µ̂
(1)
T+

(hT,1)−B+,1µ̂
(2)
T+

(hT,2)hT,1


.

CCT’s Lemma SA4 provides formula for the diagonal elements ofV[Ŵ+
n ]. For off-diagonal elements,

one can make use of the covariance terms provided by CCT’s Theorem A2.
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 2

This appendix adopts CCT’s notation where possible and utilizes some conclusions from that

paper. Let ep be the selection vector with 1 in element p + 1 and 0 everywhere else and assume,

with some abuse of notation, that the dimension of ep adapts to make matrix and vector operations

conformable. Much of the theory in this appendix applies to both sides of the cutoff symmetrically,

so I use “•” as a placeholder for either + or − in equations. Further let rp(x) = (1, x, . . . , xp)′,

1+(x) = 1{x ≥ 0}, 1−(x) = 1{x < 0}, m = min(h, b) and ν ≤ p < q. Define the following terms

related to local polynomial regression:

Γ•,p(h) = 1
n

n∑
i=1

rp(Xi/h)rp(Xi/h)′K•,h(Xi)

Γ•,q(b) = 1
n

n∑
i=1

rq(Xi/b)rq(Xi/b)
′K•,b(Xi)

B•,ν,p,q(h) = ν!e′ν
(
Γ•,p(h)

)−1 1
n

n∑
i=1

(Xi/h)qrp(Xi/h)K•,h(Xi).

When nh→∞, nm→∞ and h→ 0, CCT’s Lemma SA.1 and SA.2 imply that these terms have

well-defined limits under Assumptions 2.1 and 2.2.

Let β̂Z•,p(h) be the coefficient estimators from the weighted regression of Zi on rp(Xi):

β̂Z•,p(h) = Hp(h)Γ•,p(h)−1 1
n

n∑
i=1

rp(Xi/h)ZiK•,h(Xi)

with Hp(h) = diag(1, h−1, . . . , h−p). These coefficients are related to the quantities of interest by

µ̂
(ν)
Z•,p(h) = ν!e′ν β̂Z•,p(h)

and

ζ̂ν,p(h) =
µ̂

(ν)
Y+,p(h)− µ̂(ν)

Y−,p(h)

µ̂
(ν)
T+,p(h)− µ̂(ν)

T−,p(h)

for ν = 0, . . . , p.



107

B.0.1 Proof of Theorem 2.1

Based on the bias calculated from Algorithm 2.1, the difference between the bias-corrected

estimator and the true treatment effect is

ζ̂ν,p(h)−∆∗ν,p,q(h, b)− ζν = (ζ̂ν,p(h)− ζ)− (E∗
τ̂∗Y,ν,p(h)

τ̂∗T,ν,p(h)
−
τ∗Y,ν
τ∗T,ν

).

The first two terms on the right side can be written as

ζ̂ν,p(h)− ζν =
1

τT,ν
(τ̂Y,ν,p(h)− τY,ν)−

τY,ν
τ2
T,ν

(τ̂T,ν,p(h)− τT,ν)

+
τY,ν

τ2
T,ν τ̂T,ν,p

(τ̂T,ν,p(h)− τT,ν)2 − 1

τT,ν τ̂T,ν,p
(τ̂Y,ν,p(h)− τY,ν)(τ̂T,ν,p(h)− τT,ν)

=
1

τT,ν
(τ̂Y,ν,p(h)− τY,ν)−

τY,ν
τ2
T,ν

(τ̂T,ν,p(h)− τT,ν) +Rn,

with Rn = Op(
1

nh1+2ν + h2(p+1−ν)) (CCT’s Lemma A.2). Similarly, the last two terms on the right

side can be written as

E
∗ τ̂
∗
Y,ν,p(h)

τ̂∗T,ν,p(h)
−
τ∗Y,ν
τ∗T,ν

=
1

τ∗T,ν
(E∗ τ̂∗Y,ν,p(h)− τ∗Y,ν)−

τ∗Y,ν
τ∗2T,ν

(E∗ τ̂∗T,ν,p(h)− τ∗T,ν) +R∗n,

with R∗n = Op(
1

nh1+2ν + h2(p+1−ν)). By construction of the wild bootstrap DGP,

Z∗i =


rq(Xi/b)

′Hq(b)
−1β∗Z+,q + ε∗i Xi ≥ 0

rq(Xi/b)
′Hq(b)

−1β∗Z−,q + ε∗i Xi < 0,

with β∗Z+,q and β∗Z−,q being the true parameters in the bootstrap data. Equivalently, µ
∗(ν)
Z• =

ν!e′νβ
∗
Z•,q is the true treatment effect in the bootstrap data. CCT’s Lemma SA.3 indicates that

E
∗ µ̂
∗(ν)
Z•,p(h)− µ∗(ν)

Z• = h1+p−νµ
∗(1+p)
Z• B•,ν,p,1+p(h)/(1 + p)! +Op(h

2+p−ν),

which allows for an analytical form of the bias in the bootstrap data:

E
∗ τ̂∗Z,ν,p(h)− τ∗Z,ν = h1+p−ν(µ∗(1+p)

Z+ B+,ν,p,p+1(h)− µ∗(1+p)
Z− B−,ν,p,p+1(h)

)
/(1 + p)! +Op(h

2+p−ν).

Notice that CCT’s bias term is only slightly different from this. They use the following formula for

bias correction:

τ̂ bcZ,ν,p,q(h, b) = τ̂Z,ν,p(h)− h1+p−ν(µ̂(1+p)
Z+,q B+,ν,p,p+1(h)− µ̂(1+p)

Z−,q B−,ν,p,p+1(h)
)
/(1 + p)!.
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Built on above preparations, it can be shown that

ζ̂ν,p(h)−∆∗ν,p,q(h, b)−ζν =
1

τT,ν
(τ̂ bcY,ν,p,q(h, b)−τY,ν)−

τY,ν
τ2
T,ν

(τ̂ bcT,ν,p,q(h, b)−τT,ν)+Rn−R∗n−R∗bcn +Op(h
2+p−ν),

(B.1)

where R∗bcn is defined by:

R∗bcn =
1

τ∗T,ν
h1+p−ν(µ∗(1+p)

Y+ B+,ν,p,p+1(h)− µ∗(1+p)
Y− B−,ν,p,p+1(h)

)
/(1 + p)!

−
τ∗Y,ν
τ∗2T.ν

h1+p−ν(µ∗(1+p)
T+ B+,ν,p,p+1(h)− µ∗(1+p)

T− B−,ν,p,p+1(h)
)
/(1 + p)!

− 1

τT,ν
h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

+
τY,ν
τ2
T,ν

h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

=
1

τ̂T,ν,q(b)
h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

−
τ̂Y,ν,q(b)

τ̂2
T,ν,q(b)

h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

− 1

τT,ν
h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

+
τY,ν
τ2
T,ν

h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

=(
1

τ̂T,ν,q(b)
− 1

τT,ν
)h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

− (
τ̂Y,ν,q(b)

τ̂2
T,ν,q(b)

−
τY,ν
τ2
T,ν

)h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

=h1+p−νOp(
1√

nb1+2ν
+ b1+q−ν)Op(1 +

1√
nb3+2p

).

The second equality holds because µ
∗(1+p)
Z• = µ̂

(1+p)
Z•,q (b) and τ∗Z,ν = τ̂Z,ν,q(b) almost surely because the

bootstrap DGP is obtained by fitting a local polynomials of order q. The last equality holds because

of similar argument in CCT’s Theorem A.2. Asymptotic normality of ζ̂ν,p(h) − ∆∗ν,p,q(h, b) − ζν

then follows from normality of τ̂ bcY,ν,p,q(h, b) − τY,ν , τ̂ bcT,ν,p,q(h, b) − τT,ν (CCT’s Theorem 1) and the

fact that remaining terms Rn, R∗n, R∗bcn and Op(h
2+p−ν) are negligible.
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CCT have shown that V bc(h, b) = Op(
1

nh1+2ν + h2(1+p−ν)

nb3+2p ) (Lemma SA.4) and R2
n = op(V

bc(h, b))

(Theorem A.2). In addition, because Op(h
2+p−ν) = op(R

∗bc
n ), it suffices to show that

R∗bcn
2

V bc(h, b)
=Op

(
min{nh1+ν ,

nb3+2p

h2(1+p−ν)
}
)
h2(1+p−ν)Op

( 1

nb1+2ν
+ b2(1+q−ν)

)
Op
(
1 +

1

nb3+2p

)
=Op

(
min{nh3+2p, nb3+2p}

)
Op
( 1

nb1+2ν
+ b2(1+q−ν)

)
Op
(
1 +

1

nb3+2p

)
=Op

(
b2+2(p−ν) min{(h

b
)3+2p, 1}+ nb2(1+q−ν) min{nh3+2p, nb3+2p}

)
Op
(
1 +

1

nb3+2p

)
=Op

(
b2+2(p−ν) min{(h

b
)3+2p, 1}+ nb2(q−p)b2(1+p−ν) min{nh3+2p, nb3+2p}

)
+Op

( 1

nb1+2ν
min{(h

b
)3+2p, 1}+ b2(1+q−ν) min{(h

b
)3+2p, 1}

)
=op(1),

provided that nmin{h3+2p, b3+2p}max{h2, b2(q−p)} → 0 and nmin{h, b1+2ν} → ∞. .

B.0.2 Proof of Theorem 2.2

Repeat the steps from Theorem 2.1’s proof for the iterated bootstrap to get

ζ̂∗ν,p(h)−∆∗∗ν,p,q(h, b)−ζ∗ν =
1

τ∗T,ν
(τ̂∗bcY,ν,p,q(h, b)−τ∗Y,ν)−

τ∗Y,ν
τ∗2T,ν

(τ̂∗bcT,ν,p,q(h, b)−τ∗T,ν)+R∗n−R∗∗n −R∗∗bcn +Op(h
2+p−ν),

As is proved in previous section, the higher order terms do not contribute to its asymptotic vari-

ance and can be ignored. It will be firstly shown that the variance of 1
τ∗T,ν

(τ̂∗bcY,ν,p,q(h, b) − τ∗Y,ν) −
τ∗Y,ν
τ∗2T,ν

(τ̂∗bcT,ν,p,q(h, b)−τ∗T,ν) converges to that of 1
τT,ν

(τ̂ bcY,ν,p,q(h, b)−τY,ν)− τY,ν
τ2T,ν

(τ̂ bcT,ν,p,q(h, b)−τT,ν), then

its asymptotic normality will be proved.
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Proof for variance convergence in probability. Rewrite bias-corrected estimator for Z:

τ̂ bcZ,ν,p,q(h, b)− τZ,ν =(τ̂Z,ν,p(h)−E τ̂Z,ν,p(h)) + (E τ̂Z,ν,p(h)− τZ,ν)− (E∗ τ̂∗Z,ν,p(h)− τ∗Z,ν)

=τ̂Z,ν,p(h)−E τ̂Z,ν,p(h)

+ h1+p−ν(µ̂
(q)
Z−,q(b)− µ

(q)
Z−)B−,ν,p,p+1(h)/(1 + p)!

− h1+p−ν(µ̂
(q)
Z+,q(b)− µ

(q)
Z+)B+,ν,p,p+1(h)/(1 + p)!

+Op(h
2+p−ν)

=ν!e′νΓ+,p(h)−1
(

1
n

n∑
i=1

rp(Xi/h)K+,h(Xi)εZi

)
− ν!e′νΓ−,p(h)−1

(
1
n

n∑
i=1

rp(Xi/h)K−,h(Xi)εZi

)
+
q!e′qh

1+p−ν

(1 + p)!bq
Γ−,q(b)

−1
(

1
n

n∑
i=1

rq(Xi/b)K−,b(Xi)εZi

)
B−,ν,p,p+1(h)

−
q!e′qh

1+p−ν

(1 + p)!bq
Γ+,q(b)

−1
(

1
n

n∑
i=1

rq(Xi/b)K+,b(Xi)εZi

)
B+,ν,p,p+1(h)

+Op(h
2+p−ν)

=
n∑
i=1

W (Xi)εZi +Op(h
2+p−ν)

with

W (Xi) = W+(Xi)−W−(Xi)

W•(Xi) = 1
nν!e′νΓ•,p(h)−1rp(Xi/h)K•,h(Xi)− 1

n

q!e′qh
1+p−ν

(1 + p)!bq
Γ•,q(b)

−1rq(Xi/b)K•,b(Xi).

With this simplified notation, we have

1

τT,ν
(τ̂ bcY,ν,p,q(h, b)− τY,ν)−

τY,ν
τ2
T,ν

(τ̂ bcT,ν,p,q(h, b)− τT,ν) =
n∑
i=1

W (Xi)(
1

τT,ν
εY i −

τY,ν
τ2
T,ν

εT i) +Op(h
2+p−ν),

which has variance

V
( n∑
i=1

W (Xi)(
1

τT,ν
εY i −

τY,ν
τ2
T,ν

εT i)
)

=

n∑
i=1

W (Xi)
2(

1

τ2
T,ν

σ2
Y i +

τ2
Y,ν

τ4
T,ν

σ2
T i −

2τY,ν
τ3
T,ν

σY i,T i).

Apply similar steps to the iterated bootstrap, we have

1

τ∗T,ν
(τ̂∗bcY,ν,p,q(h, b)− τ∗Y,ν)−

τ∗Y,ν
τ∗2T,ν

(τ̂∗bcT,ν,p,q(h, b)− τ∗T,ν) =
n∑
i=1

W (Xi)(
1

τ∗T,ν
ε∗Y i −

τ∗Y,ν
τ∗2T,ν

ε∗T i),
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which, by the construction of wild bootstrap, has variance

V
∗ ( n∑

i=1

W (Xi)(
1

τ∗T,ν
ε∗Y i −

τ∗Y,ν
τ∗2T,ν

ε∗T i)
)

=
n∑
i=1

W (Xi)
2(

1

τ∗2T,ν
ε̂2
Y i +

τ∗2Y,ν
τ∗4T,ν

ε̂2
T i −

2τ∗Y,ν
τ∗3T,ν

ε̂Y iε̂T i).

By the standard argument on the convergence of residuals to the population error, it is en-

sured that
∑n

i=1W (Xi)
2ε̂2
Y i →p

∑n
i=1W (Xi)

2σ2
Y i,

∑n
i=1W (Xi)

2ε̂2
T i →p

∑n
i=1W (Xi)

2σ2
T i and∑n

i=1W (Xi)
2ε̂Y iε̂T i →p

∑n
i=1W (Xi)

2σY i,Ti . Combined with the fact that τ∗Z,ν = τ̂Z,q(b) →p τZ ,

the proof for convergence of variance is complete.

Proof for asymptotic normality. Conditional on the regressors and residuals, {W (Xi)(
1
τ∗T
ε̂Y i−

τ∗Y
τ∗2T
ε̂Ti)e

∗
i } is a sequence of independent and mean zero random variables. In addition, it consists

of four parts based on the definition of W (Xi). It can be shown that each part is asymptoti-

cally normal by Lindeberg-Feller CLT. The proof below is an example showing that the first part

1
nν!e′νΓ•,p(h)−1rp(Xi/h)K•,h(Xi)(

1
τ∗T
ε̂Y i −

τ∗Y
τ∗2T
ε̂T i)e

∗
i is asymptotically normal.

The Liapunov’s condition requires that

1

s2+δ
n

n∑
i=1

E|Hi(Xi)|2+δ →p 0

with

Hi(Xi) = 1
nν!e′νΓ•,p(h)−1rp(Xi/h)K•,h(Xi)(

1

τ∗T
ε̂Y i −

τ∗Y
τ∗2T

ε̂T i)e
∗
i ; s2

n =

n∑
i=1

V(Hi).

Based on CCT’s Lemma SA.1, we know that

n∑
i=1

E|Hi(Xi)|2+δ = Op(
1

(nh)1+δ
),

s2
n = Op(

1

nh
),

which verifies the Liapunov’s condition given that nh → ∞. Similar arguments can be applied to

other three parts. .
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 3

Proof of Proposition 3.1. Under the minimum probabilistic requirements specified by equations

(3.3b) - (3.3d), the vector ((PW )T , (PE)T )T has a convex geometry because it is defined by a set

of linear restrictions. Its geometry is closed because the linear restrictions are in the form of “≥”,

“=” and “≤”. As a result, the geometry of the subvector PE is also closed and convex.

Proof of proposition 3.2. The expected outcome conditional on the treatment Z = z is

E[Y |Z = z] =
∑
y

yPY |Z(y|z) =
∑
y

y
PY,Z(y, z)

PZ(z)

=
∑
y

y

∑
f 1[f(z) = y]PF (f)PZ|F (z|f)

PZ(z)

=
∑
y

∑
f

yP[Y (z) = y, F = f ]
PZ|F (z|f)

PZ(z)
.

The expected outcome if treatment z is received is

E[Y (z)] =
∑
y

yP[Y (z) = y] =
∑
y

∑
f

yP[Y (z) = y, F = f ].

So E[Y |Z = z] is a weighted average of Y (z), with the weights being proportional to
PZ|F (z|f)

PZ(z) .

Proof of Proposition 3.3. Similar to Proposition 3.1, one can show that Hp[PFWE ] is convex. If

H i[PFWE ] is convex, then their intersection H[PFWE ] will also be convex. The mapping through

linear transformation matrix B preserves the convexity.


