Graphene-based flexible sensors towards electronic wearables

Thumbnail Image
Date
2018-01-01
Authors
Oren, Seval
Major Professor
Advisor
Liang Dong
Halil Ceylan
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

Flexible electronics and wearable devices have attracted considerable attention because they produce mechanical liberty, in terms of flexibility and stretchability that can enable the possibility of a wide range of new applications. The term “wearable electronics” can be used to define devices that can be worn or mated with the sensed surface to continuously monitor signals without limitations on mechanical deformability of the devices and electronic performance of the functional materials. The use of polymeric substrates or other nonconventional substrates as base materials brings novel functionalities to sensors and other electronic devices in terms of being flexible and light weight. Conductive nanomaterials, such as carbon nanotubes and graphene have been utilized as functional materials for flexible electronics and wearable devices. Graphene has specifically been considered for producing next-generation sensors due to its impressive electrical and mechanical properties and a result, incorporation of flexible substrates and graphene-based nanomaterials has been widely utilized to form versatile flexible sensors and other wearable devices through use of different fabrication processes.

Creation of a large-scale, simple, high-resolution and cost-effective technique that overcomes fabrication limitations and supports production of flexible graphene-based sensors with high flexibility and stretch ability is highly demanding. Soft lithography can be merged with a mechanical exfoliation process using adhesive tape followed by transfer printing to form a graphene sensor on a desired final substrate. In situ microfluidic casting of graphene into channels is another promising platform driving the rapid development of flexible graphene sensors and wearable devices with a wide dynamic detection range. Selective coating of graphene-based nanomaterials (e.g. graphene oxide (GO)) on flexible electrode tapes can, because of its flexibility and adhesive features, be used to track relative humidity (RH) variations at the surface of target surfaces. This thesis describes the design and development of flexible and wearable strain, pressure and humidity sensors based on a novel tape-based cost-effective patterning and transferring technique, an in situ microfluidic casting method, and a novel selective coating technique for graphene-based nanomaterials.

First of all, we present a tape-based graphene patterning and transferring approach to production of graphene sensors on elastomeric substrates and adhesive tapes. The method utilizes the work of adhesion at the interface between two contacting materials as determined by their surface energies to pattern graphene on PDMS substrate and transfer it onto a target tape. We have achieved patterning and transferring method with the features of high pattern spatial resolution, thickness control, and process simplicity with respect to functional materials and pattern geometries. We have demonstrated the usage of flexible graphene sensors on tape to realize interaction with structures, humans, and plants for real-time monitoring of important signals.

Secondly, we present a helical spring-like piezo resistive graphene sensor formed within a microfluidic channel using a unique and easy in situ microfluidic casting method. Because of its helical shape, the sensor exhibits a wide dynamic detection range as well as mechanical flexibility and stretch ability.

Finally, we present a flexible GO-based RH sensor on an adhesive polyimide thin film realized by selectively coating and patterning GO at the surface of Au Interdigitated electrodes (IDEs) and subsequently peeling the device from a temporary PDMS film. Real-time monitoring of the water movement inside the plant has been demonstrated by installing GO-based RH sensor at the surfaces of different plant leaves.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Mar 01 00:00:00 UTC 2018