Distribution, production, analysis and effects of aflatoxin in animal tissues and effects of scirpene toxins on chicken embryos

Iheanyichukwu Wilfred Obioha

Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Agriculture Commons, and the Food Science Commons

Recommended Citation

https://lib.dr.iastate.edu/rtd/6661

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International
300 N. ZEEB ROAD, ANN ARBOR, MI 48106
18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND
OBIOHA, IHEANYICHUKWU WILFRED
DISTRIBUTION, PRODUCTION, ANALYSIS AND
EFFECTS OF AFLATOXIN IN ANIMAL TISSUES AND
EFFECTS OF SCIRPENE TOXINS ON CHICKEN
EMBRYOS.

IOWA STATE UNIVERSITY, PH.D., 1979
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark ✓.

1. Glossy photographs
2. Colored illustrations ✓
3. Photographs with dark background
4. Illustrations are poor copy
5. Print shows through as there is text on both sides of page
6. Indistinct, broken or small print on several pages throughout
7. Tightly bound copy with print lost in spine
8. Computer printout pages with indistinct print
9. Page(s) lacking when material received, and not available from school or author
10. Page(s) seem to be missing in numbering only as text follows
11. Poor carbon copy
12. Not original copy, several pages with blurred type
13. Appendix pages are poor copy
14. Original copy with light type
15. Curling and wrinkled pages
16. Other
Distribution, production, analysis and effects of aflatoxin in animal tissues and effects of scirpene toxins on chicken embryos

by

Iheanyichukwu Wilfred Obioha

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Food Technology

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University
Ames, Iowa

1979
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>Aflatoxin</td>
<td>3</td>
</tr>
<tr>
<td>Occurrence and Conditions Necessary for Growth of Aflatoxin Producing Fungi in Commodities</td>
<td>9</td>
</tr>
<tr>
<td>Production of Aflatoxin by Fungi</td>
<td>14</td>
</tr>
<tr>
<td>Competition by Fungi</td>
<td>18</td>
</tr>
<tr>
<td>Aspergillus spp.</td>
<td>20</td>
</tr>
<tr>
<td>Prevention of Aflatoxin Contamination</td>
<td>21</td>
</tr>
<tr>
<td>Mycotoxin in Tissues</td>
<td>26</td>
</tr>
<tr>
<td>Radioactive Studies with Mycotoxin</td>
<td>28</td>
</tr>
<tr>
<td>Effects of Consumption of Mycotoxin</td>
<td>31</td>
</tr>
<tr>
<td>Fusarium Toxins</td>
<td>38</td>
</tr>
<tr>
<td>Methods of Analysis</td>
<td>46</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>53</td>
</tr>
<tr>
<td>Extraction</td>
<td>54</td>
</tr>
<tr>
<td>Thin Layer Chromatography</td>
<td>54</td>
</tr>
<tr>
<td>Autoradiography</td>
<td>59</td>
</tr>
<tr>
<td>Biological Material Oxidizer</td>
<td>62</td>
</tr>
<tr>
<td>Feeding Studies</td>
<td>63</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Sausage</td>
<td>65</td>
</tr>
<tr>
<td>Analysis for Residual Nitrite</td>
<td>66</td>
</tr>
<tr>
<td>Determination of Residual Nitrite in Sausage</td>
<td>67</td>
</tr>
<tr>
<td>Study of the Effects of Nitrite on the Growth and Sporulation of A. parasiticus</td>
<td>68</td>
</tr>
<tr>
<td>Water Activity in Sausage</td>
<td>69</td>
</tr>
<tr>
<td>Scintillation Counting</td>
<td>70</td>
</tr>
<tr>
<td>Analysis of Sausage for Aflatoxin B1</td>
<td>71</td>
</tr>
<tr>
<td>Preparation of Thin Layer Chromatographic Plates</td>
<td>74</td>
</tr>
<tr>
<td>Aflatoxin Standards</td>
<td>76</td>
</tr>
<tr>
<td>Scirpene Toxins</td>
<td>76</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>78</td>
</tr>
<tr>
<td>Effect of Temperature on Aflatoxin Production in Sausage Containing Nitrite</td>
<td>78</td>
</tr>
<tr>
<td>Residual Nitrite and Aflatoxin Production</td>
<td>89</td>
</tr>
<tr>
<td>Effect of Nitrite on the Growth and Sporulation of A. parasiticus</td>
<td>101</td>
</tr>
<tr>
<td>Feeding Studies With 14C-aflatoxin B1</td>
<td>108</td>
</tr>
<tr>
<td>Effect of Scirpene Toxins on Chicken Embryos</td>
<td>121</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>123</td>
</tr>
</tbody>
</table>
CONCLUSIONS 126
REFERENCES 128
ACKNOWLEDGMENTS 147
INTRODUCTION

Mold growth on food and feeds is a common occurrence; the occasional contamination of human food with biologically active compounds of mold origin (mycotoxin) is a situation that has been with man for many years. Molds are used in the manufacture of a variety of foods in many parts of the world. These include fermented foods, cheeses and certain cured and aged meats.

Mycotoxins are secondary fungal metabolites which cause a variety of acute or chronic toxicological manifestations in man and his domestic animals. Humans can be exposed to mycotoxin by direct consumption of mycotoxin contaminated food or by consumption of residues from milk or meat produced from animals which have ingested mycotoxin contaminated feed.

When one considers the ways in which molds are associated with human foods, it seems odd that the public health aspects involving the growth of these microorganisms on food have not been extensively investigated. However, there has been little direct evidence of aflatoxin involvement in human diseases. Nevertheless when the numerous biological systems affected by mycotoxins are considered, it is highly unlikely that these compounds would not also affect man.

Towards the end of last century, scientists found that certain products of microorganisms were responsible for various diseases in both man and animals. Subsequent research has increased the knowledge in the field of microbial toxins enormously, particularly for bacterial toxins. However,
food poisoning induced by molds is much less extensive and research concerned with the causes and prevention of mold intoxication of foods and feeds still has far to go (Chipley, 1977).

The world first became aware of the aflatoxin problem in 1960 when 100,000 turkey poults died in England when fed moldy peanut meal. The problem is a very old one. Research has shown that the toxins are primarily metabolites of *Aspergillus flavus*, a saprophytic fungus. This mold occurs worldwide and grows on almost any organic matter, including foods and feeds. According to O'Brien (1976), the fungus is most active in tropical and subtropical regions; it is especially active across the southern United States; but it occurs throughout the corn belt. Under favorable conditions of high temperature and high humidity and adequate time, *Aspergillus flavus* produces a number of related toxins; some are the most hepatotoxic and hepatocarcinogenic agents known (Anonymous, 1966; Smith, 1969). Chemically these compounds can be readily separated by chromatography and observed by their fluorescence.

The present work has several objectives: to determine distribution of aflatoxin in animals fed aflatoxin by using chickens as test animals; to determine influence of nitrite on mold growth and toxin production in sausage (as an example of cured meat) and to evaluate effects of different scirpene toxins on chick embryos.
LITERATURE REVIEW

Aflatoxin

The term aflatoxin is derived from three source words, "a" from Aspergillus, "fla" from flavus, with toxin added. These toxins may be lethal if ingested in quantity, but when ingested in moderate amounts physiological functions are depressed (Kraybill and Shapiro, 1969). They suppress cell division, depress protein synthesis by binding of the toxin with DNA, a vital part of cell nuclei, inhibit DNA synthesis and depress fertility and reproductive function (Kraybill and Shapiro, 1969). In addition, these toxins may induce bleeding from the gut and urinary membranes, alter nervous function, induce generalized stress, depress the immune response and cause necrosis of the kidney and numerous histological changes in the liver (Wogan, 1969). Various mold toxins lower the white cell count, which partially explains the depression of disease resistance and lowered reproductive performance (Whittaker, 1975).

There are four commonly known types of aflatoxins. When exposed to long wave ultraviolet light, the most prevalent B1 and B2 give blue fluorescence whereas G1 and G2 fluoresce green. In addition to the four toxins specified, aflatoxins M1 and M2 are two other aflatoxins that are metabolically converted forms of aflatoxin B1. The "M" toxins were so named because they were first found in milk produced by lactating animals fed diets containing aflatoxin B1 (Masri et al., 1969). According
to Whittaker (1975), for every part of aflatoxin appearing in milk approximately 100 parts must have been ingested by the lactating animal. The "M" aflatoxins are also found in urine and body fluids (Nabney et al., 1967). Aflatoxin B1 is the most toxic and the most abundant. In order of toxicity, B1 is followed by G1, B2, and G2 (Ciegler and Lillehoj, 1968; Wilson et al., 1968). Different structural formulas of aflatoxins are shown in Figures 1 and 2.

Aflatoxins are toxic to many species of animals and the toxicity varies with the species. The duckling is the most susceptible to the affects of aflatoxin and the LD$_{50}$ value for the toxin when administered orally (single dose) to duckling ranges from 0.34 to 0.56 mg of aflatoxin B1 per kilogram of body weight. LD$_{50}$ values of aflatoxin B1 when administered to rats and hamsters are 7.2 and 10.2 mg of B1 per kilogram of body weight respectively (Wogan, 1966).

Aflatoxin B1 does not affect all animal species equally but in high dosages it is lethal to all and it is a slow acting poison (Ciegler and Lillehoj, 1968). The order of susceptibility at chronic or lower levels is hatchery raised trout; ducklings and turkey pouls are most affected. Large animals in order of susceptibility are young pigs, sows, calves, mature cattle, horses and sheep (Allcraft, 1965; Borker et al., 1966).
Figure 1. Different structural formulas of aflatoxins B and their metabolites.
<table>
<thead>
<tr>
<th>Aflatoxin</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH_3</td>
<td>= O</td>
</tr>
<tr>
<td>B_2</td>
<td>H_2</td>
<td>H_2</td>
<td>H</td>
<td>CH_3</td>
<td>= O</td>
</tr>
<tr>
<td>B_{2a}</td>
<td>OH, H</td>
<td>H_2</td>
<td>H</td>
<td>CH_3</td>
<td>= O</td>
</tr>
<tr>
<td>Aflatoxicol(Ro)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH_3</td>
<td>$-$ OH</td>
</tr>
<tr>
<td>M_1</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>CH_3</td>
<td>= O</td>
</tr>
<tr>
<td>M_2</td>
<td>H_2</td>
<td>H_2</td>
<td>OH</td>
<td>CH_3</td>
<td>= O</td>
</tr>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>$-$ CH_3</td>
</tr>
<tr>
<td>Q_1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH_3</td>
<td>$-$ OH</td>
</tr>
</tbody>
</table>
Figure 2. Different structural formulas of aflatoxins G.
<table>
<thead>
<tr>
<th>Aflatoxin</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>O</td>
</tr>
<tr>
<td>G_2</td>
<td>H$_2$</td>
<td>H$_2$</td>
<td>H</td>
<td>CH$_3$</td>
<td>O</td>
</tr>
<tr>
<td>G_{2a}</td>
<td>OH,H</td>
<td>H$_2$</td>
<td>H</td>
<td>CH$_3$</td>
<td>O</td>
</tr>
<tr>
<td>GM$_1$</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>CH$_3$</td>
<td>O</td>
</tr>
</tbody>
</table>
Occurrence and Conditions Necessary for Growth of Aflatoxin Producing Fungi in Commodities

The occurrence of mold growth in stored and processed commodities increased largely because of modern methods of harvesting, transportation and storage, and failure to observe safety precautions of quick drying and temperature control. Long storage of two to five years contributes to fungal growth and toxin production, but only if favorable conditions for mold growth occur. Aflatoxin was first believed to be produced by numerous genera and species of fungi but new and sophisticated tests have shown that only a few strains of *Aspergillus flavus* and *Aspergillus parasiticus* produce aflatoxin (Cysewki et al., 1968; Wilson et al., 1968). In most cases these molds are generally post harvest invaders of both cotton fiber and seed (Ashworth et al., 1968; Smith, 1969).

The aflatoxin producing fungi have been found in a large variety of commodities including peanuts (most frequently affected) cotton seed (second in frequency of contamination), corn, sorghum, rice, wheat, oats, millet, soybeans, coconut, egg solids, skim milk powder, fresh and cured meat products, prepared feeds, ensilage, protein supplements, pecans and numerous others (Borker et al., 1966; Ciegler and Lillehoj, 1968).

Conditions favoring fungal growth and toxin production are 1) high moisture of the commodity (over 10% for peanuts; 12.5% and higher for
soybeans and over 13% for cereal grains), 2) high temperature (optimal 75 to 95°F), 3) time (average 7 to 15 days), 4) insect damage and 5) the physical condition of the grain, weathering, mechanical handling and presence of cracked grains (Christensen and Kaufman, 1965; Anonymous, 1967). The presence of molds causes deterioration of quality but never a sure sign of aflatoxin. According to Christensen and Kaufman (1965), only about 5% of the molds are harmful. Most molds including some strains of Aspergillus flavus never produce aflatoxin.

It is widely known that the most important factor in mold growth and aflatoxin production is the moisture or relative humidity surrounding a natural commodity such as peanuts. Safe storage (no mold growth) of seeds and other natural substrates generally has been established at substrate moisture in equilibrium with 70% relative humidity, at which few fungi grow. Diener (1960) made many determinations of fungi inhabiting stock peanuts that had been stored from 8 months in 26 farm size bins of several types of construction. He found that the peanuts differed in initial moisture, damage to sound mature kernels, type of bins for storage and length of time in storage. High mold counts were correlated more often with high initial moisture of peanut kernels than with any other factor. Mold counts were consistently high in peanuts placed in storage with a kernel moisture content of 12.5%. After
3 to 4 weeks of storage, kernel moisture content of peanuts in all bins was about 7% and remained there for 8 to 56 months.

Research has indicated that certain conditions may result in either preharvest or postharvest infection and aflatoxin formation by *Aspergillus flavus* in peanuts. Most experimental data (Ashworth et al., 1965, Bampton, 1963; Barnes, 1971; McDonald, 1970) indicated that there was little invasion of intact and undamaged kernels, and immature and mature pods in the ground by *Aspergillus flavus*, and little or no aflatoxin present in kernels before lifting at normal harvest time. Peanuts are usually pulled up from the soil and left for 3 to 4 days before harvesting and this process is called lifting. According to Diener et al. (1965), McDonald and Harkness (1964) invasion of peanut pods and kernels by *Aspergillus flavus* and other fungi usually occurred during curing when the variety was dug near maturity. When drying of peanuts lowers the kernel moisture content rapidly and steadily downward within 4 or 5 days to safe storage moisture, little opportunity for fungal invasion occurs. Under tropical conditions, peanuts that were free of toxin at digging contained detectable toxin in 48 hours (Bampton, 1963). Also, kernels with testae damaged during shelling showed spontaneous growth of *Aspergillus flavus* in 4 days. Other field studies (McDonald and Harkness, 1964) demonstrated that contamination of kernels with aflatoxin occurred at least five to six days after lifting. According to Jackson (1967) in Georgia, high levels of
aflatoxin as well as high percentages of kernel invasion by *Aspergillus flavus* occurred experimentally in slowly dried pods as compared to rapidly dried pods.

Data demonstrating that invasion by *Aspergillus flavus* and aflatoxin formation in peanuts frequently occurs in the field before harvest has been steadily accumulating. As early as 1956, *Aspergillus flavus* was reported to be the dominant fungus in unblemished Spanish peanuts, having been isolated from 16% of the kernes and shells over a six-week period before and after harvest in Texas (Norton et al., 1956). Fungi grew from 22.2% of the nuts examined, with *Aspergillus flavus* occurring 79.3% of the time. In 1963 and 1964, peanut crops in northern Nigeria harvested at normal harvest time or earlier were free from aflatoxin whereas late harvesting usually resulted in some toxic peanuts (McDonald and Harkness, 1967).

Dickens et al. (1973), McDonald (1969), and Pettit et al. (1971) reported that drought stress has been closely associated with aflatoxin occurrence in peanuts before digging. Drought stress probably increases susceptibility to fungal invasion since it decreases the moisture content of the pod and kernels and greatly lowers the physiological activity of the peanut. Bampton (1963) reported that in Nigeria, aflatoxin was detected in late planted crop in sandy soils in semi-arid region, although the plants had been in the ground for only the normal length of time. Metabolic
activity of these peanuts probably had been reduced by a nine week drought. McDonald and Harkness (1964 and 1965) and McDonald et al. (1964) reported that it appeared that when kernel moisture content was above 30% or below 10%, *Aspergillus flavus* activity was restricted. It was also reported (Dickens and Patee 1966) that kernels became more susceptible to *Aspergillus flavus* invasion when the soil moisture in the pod zone approached levels at which moisture moved from the pod into the soil and the kernel moisture content dropped below 31%.

Overmaturity, drought stress, kernel moisture content and the level of physiological activity in the peanut are interrelated and moisture-related, although other factors may be involved. The high level of pod invasion by *Aspergillus flavus* in the soil has been associated with overmaturity and with low kernel moisture content due to lack of rain. Decreased vigor of the plant and reduced physiological activity in seed coincided with the drop in the kernel moisture content and overmaturity resulting in increased susceptibility of pods and kernels to *Aspergillus flavus* invasion and aflatoxin formation (McDonald and Harkness, 1964, 1967). McDonald (1969) also reported that pods collected at Kano, Nigeria contained toxic kernels of 5 to 14% kernel moisture content whereas living plants at harvest had no toxic kernels and 24 to 32% kernel moisture content. McDonald (1969) concluded that delayed
lifting could have undesirable results. Apparently, decreased physiological activity associated with maturity or resulting from low moisture in the soil environment favors invasion of kernels of such peanuts.

Production of Aflatoxin by Fungi

Aflatoxin production on substrates has been reviewed by several workers (Diener and Davis, 1969; Hesseltine et al., 1966). Aflatoxin has been produced by *Aspergillus flavus* when grown on every major cereal grain and oil seed crop. *Aspergillus flavus* produced aflatoxin experimentally on over 25 fruits and vegetable juices and other foods (Wildman et al., 1967). Aflatoxin production on any given substrate will vary quantitatively with the strain of the fungus, temperature, moisture in the substrate and/or surrounding relative humidity, aeration, length of incubation period and the method of aflatoxin analysis.

During the past decade, a large amount of literature has accumulated on aflatoxins. Studies have been carried out in order to elucidate the various factors that regulate the synthesis of aflatoxin (Diener and Davis, 1969) and as indicated previously, environment is known to play a very important role in the production of aflatoxin by the mold (Schroeder and Ashworth, 1966). Some workers (Mateles and Adye, 1965; Lee et al., 1966) have shown that zinc is very essential for the production of aflatoxin by *Aspergillus parasiticus*. Gupta and Venkitasubramanian (1975) carried out a detailed investigation in
order to establish the exact role of zinc on the metabolism of
Aspergillus parasiticus. The fact that the growth of Aspergillus parasiticus
is suppressed in a medium fortified with soybeans led to the suggestion that
high concentration of phytic acid and low concentration of zinc in the
soybeans might be responsible for inhibition of the growth of the fungus
and aflatoxin formation.

Stutz and Krumperman (1976) observed that when conditions are
favorable, walnut and filbert nutmeats will support heavy growth of
Aspergillus parasiticus and production of aflatoxins. They also observed
that extensive testing of culled nutmeats for aflatoxins over several seasons
did not reveal their presence in the nut crops grown in Oregon and Washington.
Several environmental factors might be responsible for this anomaly, but
data on the natural occurrence of aflatoxins in agricultural commodities
indicate that temperature is likely to be the most important.

Schindler et al. (1967) demonstrated that production of aflatoxins
from Aspergillus flavus was limited by temperatures of less than 7.5°C and
greater than 40°C. Diener and Davis (1966b, 1967) reported a minimal
temperature for production in peanuts of 13 ± 1°C after 21 days at a
relative humidity of 97 to 99% although damaged kernels developed aflatoxin
at 13 ± 1°C. They also claimed a maximum temperature for aflatoxin
production of 41.5 ± 1.5°C. This is in contrast to the studies of
Schindler et al. (1967) demonstrating increasing production at 13°C at 3, 6 and 12 weeks after inoculation. Sorenson et al. (1967) studied production of aflatoxin in the temperature range of 8 to 37°C and reported that no aflatoxin were produced at 8°C. Walbeek et al. (1969) studied five strains of Aspergillus flavus at 7.5 and 10°C and reported aflatoxin production at both temperatures. Four isolates were investigated by Schroeder and Hein (1967) for aflatoxin production at temperatures from 10 to 40°C and for a ten day period. They reported that only small amounts of aflatoxins were produced at the two temperature extremes. Northolt et al. (1976) reported that aflatoxin B1 was produced by Aspergillus parasiticus (NRRL 2999) at temperatures as low as 13°C and as high as 32°C. Diener and Davis (1966b) showed Aspergillus parasiticus strain (NRRL 2999) to produce the highest level of toxin between 25 and 30°C with a significant decrease occurring at 35°C and only slight to trace amounts at 40°C. With the exception of work done by Schroeder and Hein (1968) studies on the relationship of aflatoxin production and temperature have been conducted at constant temperature. Whereas these studies have provided considerable and significant information, aflatoxin generation in a natural environment is likely to occur under conditions of varying temperature. Schroeder and Hein simulated conditions that might be found in a natural environment by cycling temperature once over a
24 hour period. The programmed temperature provided an average temperature of 25°C per 24 hours. Since the experiment was designed to provide an average temperature of 25°C, the exposure time at lower temperature extreme was of short duration. In the high temperature range, growth and aflatoxin production declined rapidly, whereas cycling temperature at the lower range had little effect upon either mycelial growth or toxin production. Stutz and Krumperman (1976), in their study of the effect of temperature cycling on the production of aflatoxin by Aspergillus parasiticus, suggested that under conditions of diurnal and nocturnal time-temperature sequencing, the time the culture is exposed to a given temperature is an important factor for aflatoxin production. They continued that the relationship between the two can better be expressed in terms of total heat input during the period of the cycle. They suggested that thermal input is more definitive and provides a finite number which can be related to observable changes in the culture such as sporulation and toxin biosynthesis. Their studies were designed to characterize the effect of heat input upon the functions of Aspergillus parasiticus (NRRL 2999) and to determine the minimal thermal input required for aflatoxin production. No growth was detected at a thermal input less than 208 degree hours per day. Between 208 and 270 degree hours per day, mycelial growth was observed as well as biogenesis of copious
amounts of a yellow pigment; yellow in color in the early stages of growth and turning deep orange as the culture aged. Above 270 degree hours per day, cultures consistently sporulated and produced aflatoxin.

Northolt et al. (1976) reported that optimum water activity for aflatoxin B1 production was 0.99 and Diener and Davis (1967) found optimum water activity values of 0.95 and 0.99 depending on the substrate. In the study of aflatoxins in cotton seed, McMeans et al. (1977) concluded that moisture was the main factor in the invasion of cotton seed by *Aspergillus flavus* and the production of aflatoxin. Aflatoxin production appears to be self-limiting; that is, as mycelial growth reaches the end point, autolysis occurs followed by a decline in the amount of toxin produced. The fungus appears to use the aflatoxin in its metabolic processes or to alter the toxin to the extent that it cannot be detected by standard assay procedures (Schroeder, 1966).

Competition by Fungi

Growth of other microorganisms may change available nutrients or produce volatile and/or nonvolatile end products which may stimulate, inhibit, detoxify or have no influence on growth of fungi or on mycotoxin production (Barr, 1976; Denizel et al., 1976; Moore-Landecker and Stozky, 1972, 1973). Weckbach and Marth (1977) studied the effect of several microorganisms of importance on growth and aflatoxin production by
Aspergillus parasiticus. They incubated Yeast Extract Sucrose broth (YES) with Rizopus nigricans; Saccharomyces cerevisiae; Acetobacter aceti; or Brevibacterium linens incubated for three days at 28°C then inoculated with Aspergillus parasiticus spores and incubated at 28°C for seven days. They found that when Aspergillus parasiticus was grown in association with R. nigricans, both molds grew but the amount of aflatoxin produced was much less in the competitive situation than when Aspergillus parasiticus grew alone. Weckbach and Marth (1977) suggested that the reduction in the amount of aflatoxin present when both molds grew together as compared to when A. parasiticus grew alone may have been caused by R. nigricans degrading or detoxifying the aflatoxin as it was formed. Certain strains of Rhizopus have been found that can metabolize preformed aflatoxin B1 and G1 (Cole and Kirksey, 1971; Jarvis, 1971). Another possibility is that the growth of A. parasiticus was not sufficient to result in appreciable amount of aflatoxin being produced. Weckbach and Marth (1977) further showed in their studies that Rizopus nigricans is an effective competitor to A. parasiticus by adding spores of A. parasiticus to an established culture of Rhizopus nigricans; slight growth of A. parasiticus was evident but no aflatoxin was detected. Adding A. parasiticus to a poor culture of Rhizopus nigricans stimulated growth of Rhizopus nigricans.

When activity of A. parasiticus was compared with S. cerevisiae growth and aflatoxin production by A. parasiticus was inhibited. When A. aceti was
the competitor, *A. parasiticus* grew and produced more aflatoxin than when the latter grew alone. Culturing *A. parasiticus* in the presence of *B. linens* resulted in less growth and aflatoxin production than when the former was grown alone.

Aspergillus flavus-oryzeae group

The *Aspergillus flavus* group of species is a normal constituent of the microflora in the air and soil and is also found in or on living or dead plants and animals throughout the world (Raper and Fennell, 1965). It has been found associated with peanut soil and peanuts wherever they are grown (Diener, 1973). *Aspergillus flavus* is an important storage fungus associated with the deterioration of wheat, corn, rice, barley, bran, flour, soybeans and other seeds (Christensen, 1957; Christensen and Kaufman, 1969). It has also been reported as a pathogen of man, animals and plants (Clinton, 1960).

The *Aspergillus flavus-oryzeae* group includes *A. flavus* and *A. parasiticus*, which produce aflatoxin, as well as *A. oryzeae* and *A. tamarii*, which do not (Hesseltine et al., 1970). Investigators in England, Holland, India, Israel, South Africa and United States indicated that 60% of about 1,400 isolates of *Aspergillus flavus* group were aflatoxin producers (Diener, 1973). Isolates of *Aspergillus flavus* and *Aspergillus parasiticus* vary widely in the amount of aflatoxin produced on peanuts (Diener and Davis, 1966a).
Prevention of Aflatoxin Contamination

Contamination of food grains by storage fungi such as *Aspergillus flavus* and *Aspergillus parasiticus* is known to occur very widely. During their growth, these fungi produce a group of toxic metabolites collectively known as aflatoxins which are potent hepatotoxins and carcinogens. Consumption of such contaminated foodstuffs have been shown to be hazardous to a variety of animals including monkeys (Gopalan et al., 1972; Tilak, 1975) and more recently to man (Krishnamachari et al., 1975a,b).

Considerable effort was directed towards preventing aflatoxin contamination of food grains. Among the new approaches to the problem have been an attempt to identify and develop varieties which are resistant to aflatoxin production. Nagarajan and Ramesh (1972, 1973) have shown that varietal differences do occur among genotypes of maize and groundnuts with respect to their capacity to support production of aflatoxins by *Aspergillus flavus* and *Aspergillus parasiticus*.

Peanuts and corn are good substrates for the growth of the *Aspergillus flavus* group and are prone to aflatoxin contamination especially under high moisture conditions (Wilson et al., 1977). Landers, Davis and Diener (1967) and Sanders, Davis and Diener (1968) used modified atmospheres in pilot studies to reduce aflatoxin contamination of peanuts. Wilson and Jay (1975, 1976) extended these studies to include corn and different levels of carbon monoxide
with peanuts. Wilson et al. (1975) found that *Aspergillus flavus* and *Fusarium moniliforme* survived in high moisture corn and *Aspergillus flavus* survived in uninoculated peanuts.

In the studies of Wilson et al. (1977) the exposure of two 70 kilogram containers of corn to a modified atmosphere for 36 and 109 days demonstrated that larger quantities of corn behave similar to smaller quantities in aflatoxin content and fungal survival. The atmosphere inside the containers was modified by purging the containers and their contents with 14.3% CO$_2$, 0.5% O$_2$ and 85.2% N$_2$, and then the containers were sealed and stored for the above number of days at about 25° C. They also stated that visual observations demonstrated almost complete control of insect activity. They further used the exposed corn to demonstrate feasibility of feeding the corn to pigs. The studies summarized that many insects, growth of *Aspergillus flavus* and aflatoxin contamination can be controlled with an atmospheric oxygen content less than 1%, but with an oxygen level above 1%, aflatoxins probably will be formed.

Among the currently approved feedstuff preservatives, calcium and sodium propionate, propionic acid and copper sulfate are the most popular. Despite the widespread use of antifungal compounds in grain and feed, mycotoxin related problems continue to exist leading to the conclusion that the compounds used as preservatives either are being added to feed in
Insufficient concentration or they do not possess adequate antifungal activity to preserve the feeds for the desired length of time (Stewart et al., 1977).

Chen and Day (1974) compared 19 antifungal agents for activity on five different mold species by agar plate assay and found gentian violet to have the highest overall activity. Sauer and Burroughs (1974) determined that propionic and acetic acid were superior to either calcium or sodium propionate, sorbic acid and potassium sorbate in preserving high moisture corn in a mold free state. Vandergraft et al. (1975) determined that propionic acid prevented aflatoxin and ochratoxin formation in high moisture corn. The studies of Stewart et al. (1977) demonstrated that propionic acid was superior to other chemicals in regard to mold retarding capabilities and inhibition of aflatoxin production. An in vitro concentration of 4 microgram per ml resulted in total inhibition of mold growth and aflatoxin formation. Crystal violet at the level of 4 microgram per ml resulted in slight inhibition of mold growth accompanied by an 11.9% inhibition of aflatoxin formation. Chen and Day (1974) reported gentian violet to have one of the highest antifungal activities of 19 fungal inhibitors tested on five mold species including four different genera. However, the minimal growth inhibitory concentration determined by Chen and Day (1974) exceeds that reported in the studies of Stewart et al. (1977). Graded levels of crystal violet resulted in dose related retardation in growth of Aspergillus parasiticus. This strain of Aspergillus parasiticus becomes resistant to the effect
of crystal violet with continued exposure to the compound. During the course of their study, Stewart et al. (1977) noted that after 10 days of incubation, control cultures (no crystal violet added) would sporulate, resulting in greenish coloration of the mycelial mat. However, those cultures with crystal violet added had only a slight greenish coloration and presumably less spores. Hence, sporulation was monitored and compared with growth of mold in response to graded levels of crystal violet. A level of 2.0 μg/ml of crystal violet was required to retard growth, however, a level of 1.0 μg/ml significantly retarded sporulation. Sporulation, therefore, appears to be more sensitive to crystal violet than does growth. These results were consistent with those of Doupnik and Bell (1971) who noted a marked reduction in sporulation of Aspergillus parasiticus NRRL 2999 when visually compared to control cultures.

Sporulation of molds is a means of reproduction. The above works indicate that crystal violet will impair sporulation and therefore reduce subsequent mold growth resulting from spore germination. If this activity occurs in finished feeds this could justify continuous or long term use of crystal violet. An in vitro concentration of 8 μg/ml of crystal violet was required to retard the growth of Aspergillus parasiticus after 10 days of incubation. Total aflatoxin produced per culture flask (mycelium plus medium) was reduced by a level of 1 μg and greater percent. In comparison to growth and sporulation,
total aflatoxin production is the most sensitive parameter to crystal violet.

The prevention of aflatoxin contamination is essentially a problem of the prevention of the growth of the ubiquitous aspergilli during storage of the substrates. This entails harvesting without damage to the shell and kernel and rapid drying to levels of moisture that will prevent fungal colonization. Insect or rodent damage and uptake of moisture should be avoided during storage. Fumigation protects crops against insects and rodent damage but only drying protects crops against fungal growth. Some fungicidal agents such as mercuric chloride and thiourea cannot be used on food grains for toxicological reasons (Srinivasan and Majumder, 1961). However, some antimicrobial agents such as methyl bromide, ethylene oxide and chloropicrin could be useful on substrates under hermetic storage. But the irritant nature of these agents and the need for special apparatus such as fumigation and storage chambers may limit the usefulness of these techniques in rural small scale farm practice especially in poor countries. Golumbic and Kulic (1969) stated, "The practical use of fungicides to control fungal infestation in grains must overcome the same hurdle that exists for insect treatments, namely the problem of harmful chemical residues. Thus far there appears to be no fungicidal treatment that has been successful for large scale application despite the considerable effort that has been exerted in this area." Even adequately dried substrates may subsequently increase in moisture content through improper
storage especially in rainy weather and damp store houses and may then be
susceptible to fungal spoilage. In poor countries where the groundnut is an
important crop it is cultivated by rural farmers ignorant of the implications of
fungal spoilage and aflatoxin accumulation. Hence effective and cheap crop
protection against fungal contamination are urgently needed for economic and
toxicological reasons.

Mycotoxin in Tissues

Mycotoxins are known to affect a variety of tissues and to lower some
vitamin and amino acid concentrations in chicken. Aflatoxins are known to
affect liver and kidney functions (Tung et al., 1973). Schmidt et al. (1976)
speculated that there is the possibility of a peculiar retinal requirement in
the chicken as there is in the cat. It was thought that perhaps lowering the
concentration of some vitamins and amino acids in chickens might affect the
photochemistry of the retina to make electroretinogram recordings diagnostic
of early mycotoxicoses. If mycotoxicoses could be detected in broiler
chickens before retarded growth and other overt clinical signs became
evident, some of the losses associated with mycotoxicoses could be prevented.
Tung et al. (1971) found that relatively small amounts of aflatoxin over a
relatively short period of time are known to cause insidious changes in
muscle tissue prior to an effect on growth rate. Neural disturbances such
as loss of righting reflex have been reported to occur at dosages of T-2 toxin
which retarded growth (Wyatt et al., 1973). Again, if other neural tissues are susceptible to mycotoxins, it was reasoned that checking retinal functions by electroretinogram despite the lack of any apparent visual problems in affected chickens could be a sensitive method of monitoring the effects of mycotoxins. Coulter et al. (1977) in their study of electroretinograms from broilers fed aflatoxin and T-2 toxin concluded that photochemistry of the retina was not sufficiently altered to permit early detection of mycotoxicoses by electroretinograms.

A mycotoxin is said to have a potential for accumulating "toxic residues" in body tissues when its metabolism in vivo is known to be slow or when a significant pathway of metabolism results in the formation of one or more metabolites with no appreciable loss in toxicity and when such a product is slowly eliminated from the body. This potential problem is greatest when the animal in question is destined for use as human food. According to Patterson (1973) aflatoxin B1 may be detoxified in the liver by its transformation into three hydroxylated metabolites (aflatoxicol, aflatoxin Q1, and aflatoxin P1) that are theoretically capable of conjugation to polar compounds suitable for rapid elimination from the body. However, none of the toxins are detoxified so well that animals are entirely unaffected by toxin ingestion. In certain animal species, these detoxifying pathways appear to be better developed than others. Aflatoxin is metabolized more
rapidly by some animal species than others (Patterson, 1973) and consequently, in "slow metabolizing" animals (Patterson, 1973; Krieger et al., 1975) aflatoxin B1 can itself constitute a residue problem particularly in tissues of farm animals. Biotransformation of aflatoxin B1 into M1 by microsomal enzymes is to some extent detoxification since conjugates of this metabolite have been identified in bile (Bassir and Osiyemi, 1967) and urine (Harland and Cardeilhac, 1975). However, because unconjugated M1 is almost as toxic as B1, it must be regarded as a potential toxic residue. As is well known, a considerable health problem exists in the excretion of aflatoxin M1 in the milk of dairy cows consuming rations contaminated with aflatoxin.

Radioactive Studies with Mycotoxin

Studies have been done to determine the fate of aflatoxin in some animal species. Radioactive aflatoxin B1 frequently has been used in such work for quantitative measurements (Dalezios and Wogan, 1971; Mabee and Chipley, 1973a; 1973b; Wogan et al., 1967). Lijinsky et al. (1970) used 3H-labelled toxins to study the interaction between aflatoxin B1 and G1 in rat tissues. 14C aflatoxin was used by Wogan et al. (1967), Dalezios and Wogan (1971), and Mabee and Chipley (1973a, 1973b) to study the effect of aflatoxin in the rat, monkey and chicken respectively. Chou and Marth (1976) studied the distribution of aflatoxin in the tissues of mink.
They injected a single dose of 100 μg aflatoxin B1 (¹⁴C-labelled and unlabelled) intraperitoneally in seven female minks, which were sacrificed 1, 2, 4 and 24 hours after dosing. Liver, intestines, stomach, lungs, kidney, brain, pancreas, spleen, urinary bladder, uterus and bile were removed and examined for retained radioactivity. One hour after dosing, intestines and their contents retained the largest amount of ¹⁴C-radioactivity (18.9% of the amount that was administered) which was followed by the liver (13.2%) and bile (10.8%). All this time all other tissues retained less than 1% of the administered radioactivity. Generally, the amount of radioactivity retained in all tissues declined with time. Only 1.2% and 0.6% of the administered radioactivity was found in the intestine and bile respectively 24 hours after dosing; however, the liver still contained 6.6% of the initial radioactivity. The early appearance of large amounts of radioactivity in bile, liver and intestines suggested that biliary secretion plays an important role in aflatoxin excretion by mink. Chou and Marth also believed that after intraperitoneal injection, a large portion of aflatoxin B1 and its derivatives were absorbed and transported to the liver through the portal system and then secreted into the intestines from the gall bladder. The considerable decrease in radioactivity in intestines in mink at 2, 4 and 24 hours after dosing probably resulted because radioactivity was excreted with feces.
Distribution of ^{14}C derived from ^{14}C aflatoxin B1 in tissues of layer and broiler chickens was studied by Mabee and Chipley (1973a, 1973b). They dosed the chickens daily for 14 days by crop intubation with 0.1 ppm of the body weight. The aflatoxin was in propylene glycol. Differences were found between the two types of chickens. The percent distribution of radioactivity detected in the blood, liver, and heart, gizzard breast muscle and leg muscle was 11.04, 9.83, 4.30, 12.52, 31.66 and 30.66 respectively, of the total amount retained by the broilers. On the other hand, 19.5, 16.1, 3.9, 7.22, 26.4 and 26.9 percent of total retained radioactivity was found in blood, liver, heart, gizzard, breast muscle and leg muscle respectively of layers. The broiler chickens excreted 90.64% of the ^{14}C administered. The daily administration of 0.1 mg of aflatoxin B1 ^{14}C per kilogram of body weight to layer chickens for 14 consecutive days did not significantly affect the weight, feed consumption and egg production. Sims et al. (1970) observed weight loss in laying hens resulting from daily intubation of 8.0 ppm of crude aflatoxin to each hen.

There are other reports that describe the effects of various levels of aflatoxins on chicken (Platnow, 1965; Cottier et al., 1969; Muller et al., 1970); however, these workers administered aflatoxin by incorporating it into feed at various levels. Their results, therefore, are based on the amount of the test feed the bird consumed and this could introduce variability.
Effects of Consumption of Mycotoxin

There is evidence that dietary mycotoxins affect the intestinal tracts of animals. In trout, dietary T-2 toxin cause sloughing of intestinal mucosa (Marasas et al., 1969). This effect of T-2 on the intestinal mucosa is apparently related to the tissue irritating and inflammatory properties of the tricothecene mycotoxins. Aflatoxin, perhaps the most widespread mycotoxin in nature, also appears to exert an effect on the intestinal tract. Wilson et al., 1975) observed that some of the adverse effects of aflatoxin in quail could be alleviated by supplying vitamins and antibiotics in drinking water. Witlock et al. (1977) initiated a study to better understanding the action of the dietary aflatoxin and to determine the effect of this mycotoxin on the gross morphology of the avian intestinal tract. Specimens of the mid-intestine from birds fed 5 μg aflatoxin per gram displayed no morphological differences from the control birds. However, at 10 μg per gram level, slight changes included varied morphology of villi from an acute triangular appearance to a parallel-sided apically rounded configuration.

It is somewhat surprising that aflatoxin did not have any severe effect on the birds because aflatoxicoses have been reported to inhibit lipid transport (Tung et al., 1972), decrease plasma carotenoid concentration (Tung and Hamilton, 1973), increase capillary fragility (Tung et al., 1971) and impair kidney functions (Tung et al., 1973).
Identification of aflatoxin as a potent hepatotoxic and carcinogenic agent has emphasized the dangers of mold contamination of human and animal foodstuff. While the data on toxicity to animals from field and experimental studies are extensive, cogent circumstantial evidence of the toxicity of these mold metabolites to humans has only recently been published. Krishnamachari et al. (1975a) described an epidemic of aflatoxicoses in an Indian village, caused by the consumption of moldy maize in which 106 patients died and 291 showed signs of hepatic dysfunction. There are marked differences in susceptibility between different animal species. Single doses of aflatoxin produced cancers in rats a year after ingestion (Camaghan, 1967), but continued feeding for six years was required to produce tumors in monkeys (Adamson et al., 1973). The aflatoxins were soon recognized as health hazards in those countries where liver cancer was reported as being particularly frequent. In those countries the dietary staples which might be contaminated are major sources of food. In 1968 it was considered essential by a number of scientists to demonstrate whether the aflatoxins were in fact ingested by man, whether an association existed with the liver cancer incidence and finally if there was a dose response relationship. In these studies relating liver cancer to aflatoxin ingestion, it has been assumed that it was legitimate to compare current exposure to aflatoxin to current cancer rates. The areas where these studies are taking place are in Africa and Asia and it was felt that the diet, storage and cooking habits have
not changed over the recent past. Most of the food is grown in small individual farms using traditional methods of subsistence farming. The study by Alpert et al. (1971) in Uganda examined the major dietary staples and the result showed an association between the levels of contamination of beans, maize and sorghum, the staples most frequently involved and a tribal distribution of liver cancer was demonstrated.

Prior to the discovery of aflatoxin, *Aspergillus flavus* was reported to cause the hemorrhagic anemia syndrome of chickens (Forgacs and Carll, 1962). The hemorrhagic anemia syndrome which results from eating moldy feed was characterized by spontaneous hemorrhages into the musculature and internal organs and by aplastic anemia. Whether aflatoxin is involved in the economically important hemorrhagic anemia syndrome has not been investigated directly, but Tung et al. (1970, 1971) found that dietary aflatoxin causes increased capillary fragility in young chickens and increased susceptibility to bruising but not spontaneous hemorrhaging. Brown and Abrams (1965) observed a slight anemia in ducklings and New Hampshire chicks fed 0.5 ppm of aflatoxin for six weeks but noted that too few animals were used to permit conclusions as to significance. On the other hand, Juskiewicz et al. (1967) did not find any significant changes in erythrocytes and leukocyte counts or in haemoglobin determinations in ducklings fed 0.9 ppm aflatoxin for two weeks. Gagne et al. (1968) observed only minimal
deviation of haemoglobin and blood cells in pigs fed aflatoxin for four months. Harding et al. (1963) observed an increase in both leucocytes and erythrocytes in pigs fed aflatoxin for nine weeks. No significant changes were found in hemoglobin or packed cells volume from pigs given daily oral doses of aflatoxin for three weeks (Sisk et al., 1968). The status of the hematopoietic systems during aflatoxicoses in chickens was investigated by Tung et al. (1975) and they found that aflatoxin administration caused an anemia at a dose of 1.25 μg per gram and that a dose of 2.5 μg and above of dietary aflatoxin decreased packed cell volume. Also, a dose of 0.625 micrograms per gram decreased the number of circulating erythrocytes. The hepatotoxic effect of aflatoxin B1 and the isolation of aflatoxin B1 at necropsy from tissues of 22 out of 23 cases of Reye's syndrome in Northern Thailand have stimulated interest in the possible role of aflatoxin B1 in the etiology of the syndrome (Hogan et al., 1978). Aflatoxin has been associated at necropsy with Reye's syndrome in 2 cases in New Zealand, 2 cases in Czechoslovakia, 1 case in the United States and reported two cases in which aflatoxin B1 was found in the blood of patients with Reye's syndrome during the acute phase of the disease (Hogan et al., 1978). They said that both cases were preceded by viral illness and the patient showed vomiting, hyperventilation, hepatomegaly, decerebrate posturing, seizure and coma.
A commonly reported symptom of mycotoxicoses is poor feed conversion efficiency. One possible explanation according to Osborne et al. (1976) is that the process of digestion and absorption is impaired. Osborne et al. (1976) evaluated the effects of aflatoxin, ochratoxin and T-2 toxin on digestion in broiler chickens and determined fecal lipid content, bile concentration and the activities of pancreatic lipase, amylase trypsin, RNAse and DNAse utilizing the concept of the dose response curve. Aflatoxin decreased the level of all digestive enzymes and bile and increased lipid fecal excretion even at concentrations too small to inhibit growth. Ochratoxin had no effect on any of the parameters measured except for a slight increase in bile volume. T-2 toxin affected all parameters but growth inhibition was a more sensitive indicator of T-2 toxicoses. These studies suggested that the three mycotoxicoses can be differentiated by their effects on digestion and that the economically important factor of feed utilization can be intimately affected by mycotoxins.

On the assumption that in commercial laying hen operations, aflatoxin would be consumed intermittently rather than continuously Garlich et al. (1976) carried out an eleven week experiment to determine the effects of intermittent consumption of aflatoxin by laying hens. For the first five weeks, feed consumption, egg production and egg weight were the same for the control hens and hens intermittently fed 10 ppm aflatoxin. After five
weeks there was a decline in egg weight and production. Despite the decline in egg production, serum alkaline phosphotase and liver lipid content were not elevated. The conclusion was made that aflatoxin is a cumulative toxin for laying hens. After prolonged intermittent consumption, the first sign of toxicity is a decline in egg production. Löstzsch and Leistner (1977) studied the transmission of aflatoxin into eggs and egg products. They found that aflatoxin fed to laying hens of quail as well as hens of the laying chicken were transmitted into eggs in measurable amounts in albumen and yolk but more in the latter. In their study, they found that quail was the most sensitive poultry for the transmission effect with a critical aflatoxin B1 concentration of 100 ppb in the feed leading to the detectable residue. As compared to the quail, an increase of about 30 to 50 fold quantity of aflatoxin B1 was necessary in the feed to induce measurable residues in the eggs of white and brown laying hens respectively. These results contrast with the findings of Jacobson and Wiseman (1974) who observed aflatoxin B1 residues in eggs of Arbour Acre strains fed with the low aflatoxin B1 concentration of 100 ppb in the diet. High concentrations of aflatoxin in the feed caused excessively toxic amounts in the eggs of test poultry. Löstzsch and Leistner (1977) also concluded that if hens were fed continuously with diets containing more than about 100,000 ppb of aflatoxin B1, egg production ceased after a few days thus excluding
hazardous aflatoxin residue in eggs. This agrees with the work of Garlich et al. (1976). For that reason, the egg production is an important natural limiting factor for the transmission of aflatoxins into eggs.

The transmission of aflatoxin into foods of animal origin was reviewed by Purchase (1972). Krough et al. (1973) fed diets containing 300 or 500 μg of aflatoxin B1 + B2 per kilogram feed to pigs for 120-231 days. During the growth period when weight increased from 20-90 kilograms, they reported that pigs on the aflatoxin contaminated diet had impaired weight gain and feed conversion. The pigs were slaughtered four hours after the last feeding and tissue samples were analyzed. Various amounts of aflatoxin B1, B2 and M were found in liver and kidney and trace amounts were found in the heart muscle and adipose tissue of the pigs on the contaminated diet. Murthy et al. (1975) reported that the response of swine to aflatoxin depends on whether the aflatoxin contaminated protein source is fed separately or incorporated into the total diet ration. In their study, pigs fed the aflatoxin source separately developed toxic symptoms and aflatoxin B1, B2 and M1 were found in their tissues. The pigs fed the mixed diet did not develop toxic symptoms, and no aflatoxin residues were found in the tissues of one pig examined.

Jacobson et al. (1978) conducted a study to determine if aflatoxin residues could be measured in tissues of swine receiving aflatoxin in the diet
at levels approximating the range of field contamination. Appreciable
amount of B1 were found in samples from pigs fed the B1 contaminated diet
and all except two muscle samples contained measurable amounts of M1.
These data agree with those reported by Krough et al. (1973) and Murthy
et al. (1975) for the transmission of B1 into liver and kidney tissues.

Fusarium Toxins

The ability of *Fusarium*, one of the main field fungi, to elaborate toxic
secondary metabolites on cereal grains throughout the world is well documented,
accompanied by specific pharmacological effects which occur in farm animals
on consumption of *Fusarium* infected grains. Toxins that are found in field
grains naturally contaminated by *Fusarium* and that have been associated
with a specific farm animal syndrome are zearalenone, a potent estrogen,
vomitoxin, an emetic refusal principle (Vesonder et al., 1973, 1976); and
T-2 toxin, a vesicant and hemorrhagic (Hsu et al., 1972). Structures of
scirpene compounds are shown in Figure 3.

Growth of *Fusarium* on grains requires a high moisture content (20
to 22%). Temperature may also be critical and may determine which toxic
trichothecene will be produced. For example, *Fusarium poae* elaborates
T-2 toxin at low temperature (8°C) rather than a high or room temperature
(25°C). In contrast, trichothecenes of the type which vary in structural
Figure 3. Structures of scirpene compounds. Deoxynivalenol (vomitoxin) in structure 1 has the following substitutions: $R_1 = H$, $R_2 = R_3 = OH$, $R_4 = 0$.
Structure I

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Substituents (R) in Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calonectrin</td>
<td>H OAC OAC H H</td>
</tr>
<tr>
<td>Diacetylcalonectrin</td>
<td>H H OAC H H</td>
</tr>
<tr>
<td>Trichodermol</td>
<td>OH H H H H</td>
</tr>
<tr>
<td>Pentahydroxyscirpene</td>
<td>OH OH OH OH OH</td>
</tr>
<tr>
<td>Trichodermin</td>
<td>OAC H H H H</td>
</tr>
<tr>
<td>Diacetylverrucarol</td>
<td>OAC OAC H H H</td>
</tr>
<tr>
<td>Verrucarol</td>
<td>OH OAC H H H</td>
</tr>
<tr>
<td>Scirpentriol</td>
<td>OH OH OH H H</td>
</tr>
<tr>
<td>Diacetoxyscirpenol</td>
<td>OAC OAC OH H H</td>
</tr>
<tr>
<td>T-2 Tetraol</td>
<td>OH OH OH OH H</td>
</tr>
<tr>
<td>T-2 Toxin</td>
<td>OAC OAC OH OIV H</td>
</tr>
<tr>
<td>HT-2 Toxin</td>
<td>OH OAC OH OIV H</td>
</tr>
<tr>
<td>Neosolaniol</td>
<td>OH OAC OAC OH H</td>
</tr>
</tbody>
</table>

\[\text{OAC} = \text{Acetate} \quad \text{OIV} = \text{Isovaleryl}\]
Figure 3. Continued.
It is noted that constituents at the C8 position from T-2 such as Fusarium -X require a moderate temperature (25 to 27°C) for production by Fusarium nivale (Smalley and Strong, 1974). Vomitoxin which is a toxic metabolite of Fusarium graminearum NRRL 5883, is also produced at moderately high temperature (28°C). The trichothecene toxins consist of about 34 derivatives, most are produced by species of Fusarium, Tricoderma and Trichothecene. Hsu et al. (1972) reported T-2 toxin, diacetyoxyscirpenol, present in moldy corn associated with a lethal toxicosis in dairy cattle. Mirocha et al. (1976) reported the presence of diacetyoxyscirpenol, T-2, vomitoxin and other Fusarium toxins in feeds implicated in mycotoxicosis of swine and cattle.

Reports in the literature on the incidence of Fusarium toxins, especially the trichothecenes, in animal feeds have been lacking because of the lack of suitable methods of analysis. As these methods are developed, it may become apparent that toxins from Fusarium may be more prevalent in feed and foodstuffs than the aflatoxins. Analyses are difficult because the analyst is often not certain which trichothecene to analyze for since (there are about 50 known derivatives) and each has different separation characteristics making extraction and resolution difficult.

Stored corn may be the source of a number of mycotoxins when moisture content and other conditions permit fungal growth and toxin
production. Pier et al. (1975) fed calves four mycotoxins that had been associated with corn at the following dose levels (mg/kg/day): Aflatoxin (B1 equivalence) 0.1, 0.2 and 0.5; ochratoxin (as A) 0.1, 0.5, 1.0 and 2.0; rubratoxin (as B) 8.0, 12.0 and 16.0; and T-2 toxin 0.08, 0.16, 0.32 and 0.64. Combined doses of rubratoxin and aflatoxin were given in the following combinations (Afla/Rubra): 0.1/8.0, 0.2/12.0, 0.2/16.0. The calves were examined clinically each day and experimental observations continued for 30 days. The calves became clinically ill and died during the experimental period as follows: those fed 0.5 mg aflatoxin died in 14 days, for 16.0 mg rubratoxin they died in 7 days, for 0.6 mg T-2 toxin they died in 20 days, for 0.2 mg aflatoxin plus 10.0 mg rubratoxin, they died in 7 days. Aflatoxin caused moderate reduction in liver function (0.1 and 0.2 mg), moderately depressed weight gains at 0.2 mg, and severely at 0.5 mg. Pathologic changes with aflatoxin include yellow liver, portal fibrosis, bile duct hyperplasia and hepatic necrosis. Ochratoxin (0.1 to 2.0 mg) caused frequent urination and reduced urine specific gravity; liver functions were not impaired. Weight gains were moderately depressed at 1.0 mg and severely at 2.0 mg. There was mild degeneration of urinary tubules. Rubratoxin caused dramatic depression of liver function (8.0 mg) and caused moderate depression in rate of gain at 12 mg. The liver was mottled, yellow and degenerative changes
include hepatocyte necrosis (12.0 mg) and disorganization of hepatic cords (16.0 mg). T-2 did not affect liver functions but body weight gain was depressed moderately at 0.32 mg and severely at 0.64 mg. Pathological changes were limited to ulceration of the rumen and abomasum and edema of the small intestine. The combination of aflatoxin and rubratoxin caused marked reduction in liver function and severe reduction in rate of body weight gain, suggesting that there is synergism between these toxins in cattle as well as in other species (Richard et al., 1974). As predicted by Stahr in 1970 (Buck, 1970), if a toxicant was present in animal feed, it might be possible for metabolites of other mycotoxins to also be present.

Moldy corn toxicosis in the north central United States has been reported to be associated predominantly with infection of *Fusarium roseum* var. *graminearum* and *Fusarium tricinctum* (Hsu et al., 1972; Mirocha et al., 1967). *Fusarium tricinctum* has been reported as one of the most prominent fungi associated with moldy corn toxicosis in the northern temperate region (Gilgan et al., 1966; Smalley et al., 1970). Among several mycotoxins produced by this species, the major toxic metabolite was identified as 4,15-diâcetoxy-8-(3-methylbutyrloxy)-scir-9en-3-ol and was designated as T-2 toxin (Bamburg et al., 1968). The identified toxic metabolites produced by isolates of *Fusarium tricinctum* include a butenolid (Yates et al., 1968), zearalenone an estrogenic compound (Mirocha et al., 1968).
and members of 12,13-epoxytrichothecenes (Bamburg and Strong, 1971). In the last group, T-2 toxin, diaceloxyscirpenol and HT-2 toxin are produced in major quantities, depending on the toxic strain of the fungus and culturing conditions. In addition, alimentary toxic aleukia, moldy bean hull intoxication, stachybotryotoxicosis and fusariotoxicosis have been considered primarily trichothecene intoxications (Smalley and Strong, 1974).

Mycotoxicosis in farm animals is complex since a species of fungus produces not only different kinds, but also different amounts of toxins. Mold toxins are metabolized into even more complex molecules when ingested by animals. Ellison and Kotsonis (1974) demonstrated an in vitro conversion of T-2 toxin into HT-2 toxin by incubation of T-2 toxin with 9,000 X g supernatant fluid of both human and bovine liver homogenates.

Many of the naturally occurring tricothecenes have been reported as being very toxic to rats and mice, having median lethal doses (LD₅₀s) below 10 mg/kg of body weight when administered orally or intravenously. However, comparative studies using a uniform application method and a single animal species for the acute toxicity of the 12,13-epoxytricothecenes are lacking (Chi et al., 1977). Chi et al. (1977), in their study of acute toxicity of 12,13-epoxytricothecenes in one day old broiler chicks reported that no deaths occurred in the control groups for each toxin tested. Most deaths in the toxin treated birds occurred during the period of 8 to 60 hours
after dosing. Birds administered with T-2 toxin, diacetoxyscirpenol, died more rapidly after dosing than those intubated with HT-2 toxin or T-2 tetraol. They reported that birds treated with each tricothecene derivative developed similar clinical signs asthenia, inappetence and diarrhea within 4 to 10 hours after dosing. Birds treated with high doses of each toxin were in a coma before death. The weight gain and feed conversion of the surviving birds treated with each toxin decreased proportionally with the amount of each toxin administered.

Methods of Analysis

Studies of aflatoxin metabolism have shown that small portions of any aflatoxin ingested by an animal may be found either as a metabolite or as original aflatoxin, deposited as a residue in some edible tissue (Armbrecht, 1971). Methods of analysis, therefore, involve both aflatoxins per se and their metabolites.

In the past, many methods have been used for the extraction and determination of aflatoxins from products of plant origin. There is a strong possibility that aflatoxin can be found in food products of animal origin just as they are found in cereals, especially when processing and storage practices result in a suitable environment for mold growth. The elaboration of a method for extraction and determination of aflatoxins in meat products, therefore,
seemed purposeful. In the study of Strzelecki (1973), samples of meat were cut, blended and then defatted by a solvent mixture of petroleum ether, hexane and benzene. Other solvents, according to the investigator did not improve the defatting of the meat samples. The extraction of aflatoxins was performed by the use of a methanol water solvent during the blending of the sample and then chloroform extraction from the methanol water layer in a separating funnel to which sodium chloride was added before shaking. Purification of the aflatoxin was achieved by the use of column chromatography. Aluminum oxide covered with anhydrous sodium sulfate was used as the column packing. With this method, he reported an average recovery of 64.4% for the total amount of aflatoxins in raw ham.

There are numerous methods available for the determination of aflatoxins in a number of food products; however, most of these were developed for use on peanut products, seed meals or cereals. The methods employ a variety of solvents and extraction procedures. Aflatoxins can be produced on a number of substrates and the substrate often determines the type of extraction procedure to be used. Since the substrate affects the purity of the extract, not all methods are suitable for all substrates.

Lee (1965) found that direct chloroform extraction of defatted peanut meals in the presence of small amounts of water gave results comparable to methanol extraction. Eppley (1966) verified this finding and improved on
Lee's method by incorporation of a silica gel column purification step. Brown and Abrams (1965) used a method which consisted of a methanol extraction, purification of the extract by transfer from aqueous methanol to chloroform, silica gel column chromatography, partition chromatography according to Pons on a cellulose aqueous methanol column and quantitation by thin layer chromatography, fluorodensitometry for determination of aflatoxin in animal tissues.

Several workers have shown that 14C acetate could be incorporated into aflatoxins (Ayres et al., 1971; Bassir and Osiyemi, 1967; Basappa et al., 1970; Hsieh and Mateles, 1971; Mabee and Chipley, 1973a,b). Several methods have been used for the preparation of 14C-labelled aflatoxin. These involve addition of precursor to rice culture, or to mold culture after mycelial growth or to mold mycelia in nitrogen-free resting cultures. The above methods all have certain disadvantages. One, which produces good yields and good specific activity, involves the difficulty of extracting from a natural commodity, such as rice. Other methods result in B1 either with a low specific activity or with a low percentage of precursor incorporation. The main disadvantage of most of the methods is that they are designed to produce less than 1 mg of labelled B1 aflatoxin.

Jackson and Ciegler (1976) developed a unique technique to prepare 14C-labelled aflatoxin B1 from chlamydospores of *Aspergillus parasiticus*.
NRRL 2999. The chlamydospores result from, according to workers, a lack of manganese in the synthetic medium. This they pointed out has two advantages. First, aflatoxin is extracted from a liquid medium instead of a natural commodity. Secondly, chlamydospores act as resting cell cultures by converting added nutrients into secondary metabolites rather than into more cell mass. Hence, the percentage incorporation of labelled acetate is better by utilizing the chlamydospores of Aspergillus parasiticus NRRL 2999 rather than its hyphal form.

Gupta et al. (1974) studied the production of aflatoxin and acetate 14C incorporation with Aspergillus parasiticus NRRL 3240 with two media 1) yeast extract sucrose medium (YES medium) (Davis et al., 1966) and 2) synthetic medium (SL medium) (Reddy et al., 1971). The flasks were incubated at $26 \pm 1^\circ C$ as stationary cultures. After growing for the requisite number of days, mycelium and medium were separated and the mycelium was washed with double distilled water. The mycelium was resuspended in sterile resuspension medium and incubated for required period.

For incorporation studies, acetate 14C was added directly to the culture or to the resuspension medium. At the end of the experiment the mycelium and the medium were separated. The mycelium was blotted and its wet weight determined. The aflatoxins from the medium and mycelium were extracted with chloroform and were separated by thin layer chromatography (Gupta et al., 1974).
Jacobson et al. (1970) worked on determination of aflatoxins B1 and M1 in milk. They claimed that the method that was used gave good recoveries within the limits of visual comparison on samples containing 0.5 ppb aflatoxin. In this method, milk was blended with methanol. Deproteinized milk (80% methanolic filtrates) was adjusted to 50% by addition of 4% salt solution and defatted by extraction with hexane. Aflatoxins were extracted from the alcoholic phase with chloroform which was removed in vacuo. The residue was dissolved in benzene hexane (1:1) and chromatographed on a partition column of celite coated with an aqueous solution of calcium chloride to separate aflatoxins B1 and M1. The eluted B1 was passed through another partition column of celite coated with methanol water (1:1) for additional clean up. Aflatoxin eluates were evaporated to dryness and residues were dissolved in chloroform and spotted on thin layer chromatographic plates for fluorescence comparisons.

Specifically, aflatoxin B1 has been found in both the yolk and white of eggs produced by hens receiving aflatoxin B1 experimentally in their rations (Jacobson and Wiseman, 1974; Sawhney et al., 1973). Trucksess et al. (1977) pointed out that the analytical methods used in these latter studies were impractical for routine and survey purposes. They devised a method for the routine determination of aflatoxin M1 in dairy products. The original method specified extraction with acetone-water, precipitation
with a soluble lead salt, defatting with hexane, partition into chloroform, reverse phase chromatography on a cellulose column and quantitation after separation on a silica thin layer chromatographic plate. They modified this method by adding acetic acid to the extraction solvent, using a low boiling petroleum ether (30-60°C) for defatting, adding a silica adsorption column for clean up and substituting two dimensional thin layer chromatography for the reverse phase cellulose column. They stated this modified method proved practical for use in survey analysis and sufficiently sensitive to detect aflatoxin B1 at levels less than 1 nanogram per gram in eggs from hens on experimentally contaminated feed and in "spiked" eggs. They also pointed out that with this method, recovery was greater than 75% when the aflatoxin was extracted immediately after spiking and usually less than 30% when extracted after more than 24 hours.

Amount of lipid affects methods used for different products on cured and aged meats often are very high in lipid content (Bullerman et al., 1969c), and this is the determining factor in the selection of suitable extraction and assay methods. The official AOAC method for peanut products is suitable for both high lipid peanut butters and defatted peanut meals. With this method, however, all samples must be subjected to partition column chromatography.
Other methods likewise involve many steps or the use of solvents unsuitable for extraction of aflatoxin from tissues.
MATERIALS AND METHODS

Aspergillus parasiticus NRRL 2999 was the aflatoxigenic organism used for the production of aflatoxin B1 in this study. The stock subculture was maintained by regular subculturing on modified Sabouraud glucose agar (Abou-Gabal, 1970). The subculture was stored at room temperature for about two weeks for sporulation. The synthetic liquid medium (Jackson and Cieglér, 1976) was used for 14C-labelling of aflatoxin from Aspergillus parasiticus.

A spore suspension of the A. parasiticus strain was prepared by growing the fungus at 26°C for a week on a slant of the modified Sabouraud glucose agar and then harvesting the surface growth in 10 ml sterile saline solution. One liter of the synthetic liquid medium in a Fembach flask was inoculated with the saline spore suspension. The inoculated liquid medium was incubated at 28°C in a water bath on a rotary shaker (Gyrotory shaker, New Brunswick Scientific Company, New Jersey) at slow speed. After 48 hours of incubation, 100 microcuries of sodium acetate-2-14C (New England Nuclear Corp., Boston, Massachusetts) was added to the Fembach flask and another 100 microcuries of the same sodium acetate-2-C14 was added after 60 hours of incubation. Incubation was continued for additional 24 hours. The culture formed chlamydospores within 40 hours of incubation (Plate 1). An electron micrograph of a cross section is shown in Plate 2.

The culture was labelled in two stages as indicated because aflatoxin
production was shown to lag behind growth, (Jackson and Ciegler, 1976), and was not
initiated until about 40 hours but was essentially completed by 72 hours. Also
coinciding with the beginning of aflatoxin production, a yellow color appeared
in the culture broth and it increased in intensity with time. According to
Jackson and Ciegler (1976) precursor addition is best made on first appearance
of yellow pigment (about 48 hours after inoculation).

Extraction

After incubation, the chlamydospores were filtered out and the medium was
extracted twice with equal volumes of chloroform. The chloroform extract was
dried with anhydrous sodium sulfate and then taken to dryness in the flash
evaporator. Residual solids were dissolved in 5 mls of chloroform for thin layer
chromatography.

Thin Layer Chromatography

Thin layer chromatography was used for separation of the aflatoxins. Thin
layer chromatography was done twice. The chloroform solution of the extract
was spotted on a thin layer chromatographic plate of 2 mm thick layer of silica
gel G-60 and developed in an unlined unequilibrated tank of acetone-chloroform
(12 + 88). A long wave (360 nm) ultraviolet light (UVL 56, Ultraviolet Product,
Inc., San Gabriel, California) was used to visualize the aflatoxins. Standards
Plate 1. Chlamydospores of Aspergillus parasiticus (NRRL 2999) from synthetic liquid medium.
Plate 2. Electron micrograph of the chlamydospore growth phase of A. parasiticus on synthetic liquid medium. CW - cell wall; NM - nuclear material; L - lipid; NL - nucleus; Nm - nuclear membrane; M - mitochondria; V - vacuole; UDM - unidentified deposited material. (19,000X)
were spotted on the same plate as the samples. The aflatoxin B1 and B2 band were scraped into a flask containing 100 mls of chloroform-methanol (70 + 30). The G1 and G2 toxins were also scraped into a similar solvent. Both flasks were agitated by hand and then were allowed to stand overnight. The silica gel was filtered off using glass fiber filter paper 934AH (Fisher Scientific Company) and the chloroform-methanol was then taken to dryness by blowing a gentle stream of nitrogen over it. Small amounts of chloroform (5 mls) were again added to the flask to redissolve the residue. The chloroform containing the residue rinsed from the flask was again spotted on a thin layer plate. Standards were also spotted on the same plate as the samples. Aflatoxin B1 and B2 were visualized with a long wave ultraviolet light. Both bands were separated by scraping each band into a different flask. The B1 was scraped into a flask containing 100 mls of chloroform-methanol (70 + 30) and the silica gel was filtered off as previously described. The solution was dried by passing a gentle stream of nitrogen over it. The flask was thoroughly rinsed with 10 mls of chloroform and the solution was measured in a UV spectrophotometer (Spectronic 600, Bausch and Lomb, Rochester, NY) to determine the amount of aflatoxin B1 present.

The radioactivity of aflatoxin B1 was determined by a liquid scintillation spectrophotometer system. A known quantity of the above chloroform containing
B1 toxin was transferred into a scintillation vial and a gentle current of air was passed over it to evaporate the chloroform. Then 15 mls of 14C-cocktail was introduced into the vial and the vial was capped. The same amount of chloroform containing aflatoxin B1 was added to a combustion boat containing a small amount of mannitol. The contents of the boat were combusted in a biological material oxidizer (R. J. Harvey Instrument Corporation, Hillsdale, New Jersey). Oxygen gas was admitted at the rate of 300 mls per minute to facilitate complete combustion. The combustion products were passed through a series of catalysts at 700°C and the carbon-14 was trapped in the 14C- cocktail. The cocktail was transferred into another vial and capped. Both vials were placed in a scintillation counter (Packard Model 2425 Tri-Carb) for measurement of the activity. The activity of the uncombusted material was used to calculate the percent incorporation of the radioactivity or acetate into aflatoxin B1. In this case the percent incorporation was less than 2%. Also, activity of the noncombusted material was compared to the activity of the combusted material to obtain the percent recovery of activity during combustion since the tissue analysis was to be done by combustion. The average yield of labelled B1 was 8.7 mg per 500 ml medium with specific activity of 68.2 mCi per mole.

Autoradiography

Sodium acetate-2-14C-labelled aflatoxin was spotted on thin layer chromatographic plate and the plate was placed face down on an X-ray film
Plate 3. Thin layer chromatographic plate of labelled aflatoxin B1 extract from *A. parasiticus* (NRRL 2999).
Plate 4. Thin layer chromatographic plate of labelled aflatoxin B1 extract from A. parasiticus (NRRL 2999) with X-ray film superimposed to show radioactive spot (dark spot).
in the dark and stored in darkness for 72 hours. The film was processed and dark spots on the processed film designated corresponding area of radioactivity on the thin layer chromatographic plate (TLC).

In this work, autoradiography was used to confirm the radioactivity of aflatoxin B1 that was fed to chickens. Aflatoxin B1 from the labelled culture was extracted and separated as described previously and visualized under UV light (Plate 3). The plate was placed on X-ray film as described above. After the film was processed, the intensity of radioactive spots varied with amount spotted on the plate when measured in a densitometer. The spot with 100 μl of the extract was most visible. The film was superimposed on the TLC plate under UV light to show the radioactivity spot (Plate 4).

Biological Material Oxidizer

The biological material oxidizer combusts any biological and most organic materials (wet or dry) in a stream of oxygen gas at 900°C, passes the combustion products through a series of catalysts at 700°C, then traps the ^14C-dioxide. The furnace compartment of the biological material oxidizer is divided into two portions which are maintained at separate temperatures. The combustion side (the side in which the sample is introduced) is maintained at 900°C, and the catalyst bed side (the side to which the traps are attached) is maintained at 700°C. The combustion side initiates the oxidation of organic materials and converts the sample to the gaseous state. The gaseous combustion products are swept through the catalyst by the oxygen gas stream. The catalyst bed converts any compound
fragments, which have not been completely oxidized, to carbon dioxide and water. The catalyst bed is maintained at 700°C within narrow limits, since this temperature allows the bed to operate at optimum efficiency. Operation above 700°C destroys the catalyst physically and operation below 700°C reduces its efficiency to the point where incomplete oxidation may result. The gaseous forms of other compounds are removed at this time by the catalyst bed; only oxygen, nitrogen and nitrogen oxides are expelled from the combustion tube exit into a trap. These gases have little effect on the counting efficiency of the trapping-counting solutions.

Feeding Studies

For the feeding studies, the labelled and unlabelled (Calbiochem) aflatoxin B1 were mixed and a concentration of 1 mg/ml of aflatoxin B1 was made by dilution with chloroform and by measuring with the UV spectrophotometer. Since chloroform is toxic to chickens if used as a solvent for toxin, gelatin capsules were utilized instead. With a chloroform solution of aflatoxin B1 of 1 mg/ml, 100 μl pipettes were used to introduce the solution into empty #5 gelatin capsules (Eli Lilly and Company, Indianapolis, Indiana). The capsules were left open in the dark inside the hood to allow the chloroform to evaporate and to leave the aflatoxin
as a residue inside the capsule. This was done 10 times to get 1 ml of the solution into the capsule because 1 ml was calculated to contain 1 mg of aflatoxin. The capsules were then covered. Two capsules were then analyzed individually for aflatoxin content and each was found to contain approximately 1 mg/ml of aflatoxin B1. Also, two capsules were combusted individually to get an idea of radioactivity content of each capsule to be fed to chickens.

The chickens used in this experiment were obtained from the Iowa State University poultry farm. They were three week old chicks. The chickens were fasted for 12 hours before feeding the aflatoxin capsules. The chickens were divided into four groups of eight; one group was fed capsules containing 14C-aflatoxin; another group received capsules with solvent but with no aflatoxin added. This group served as a control for the solvent in which the aflatoxin was dissolved. The third group received empty gelatin capsules to serve as a control for the gelatin capsules. The last group remained as the chicken control with no capsules given.

The capsules were fed to chickens by using a pair of tweezers to place the capsule behind the tongue after the beak was opened. The beak was then held shut for a moment, forcing the chicken to swallow. The chickens
were then given only drinking water for the next two hours before any feed was provided. Two chickens from each group were necropsied after decapitation with a pair of scissors at 12, 24, 48 and 72 hours. The following organs were collected for analysis: liver, kidneys, heart, lungs, gizzard, gastrointestinal tract, also breast muscle, and blood. The feces were collected from the cage each time chickens were necropsied. These samples were individually weighed and homogenized in a Sorvall mixer. A known amount of each sample was taken out from the homogenate for determination of 14C activity and the rest was analyzed for aflatoxins. For the radioactivity, the samples were combusted in order of collection.

Sausage

The same *A. parasiticus* strain NRRL 2999 was used as inoculum for the sausage study. The fungus was grown as described previously. The spore suspension was prepared two hours before inoculation in a sterile saline solution. Three loopsful of spores and or mycelial fragments were inoculated from the agar slant cultures into a sterile saline solution for the sausage inoculum.

The sausage was made from pork with a ratio of lean to fat of 80 to 20. The meat was obtained from the Iowa State University meat laboratory. The sausage was made in two five pound batches. Each batch had 2.5% NaCl and one batch was made to have 156 ppm NaNO$_2$ and the other 200 ppm NaNO$_2$. The sausage was stuffed into a collagen casing and made into links.
about the size of weiners (hot dogs). After the sausage was made, it was stored at 5°C in a walk-in cooler for approximately 24 hours before inoculation. Each sausage was inoculated with 0.2 ml of the *Aspergillus parasiticus* spore suspension by injecting the spores with a 1.0 ml sterile syringe into the sausage at different locations. After inoculation, the sausages were divided into three groups. Each group consisted of sausages containing 0 ppm (control), 156 ppm and 200 ppm nitrite. The three groups were incubated at three different temperatures: 5°, 26°, and 37°C. Sausages from which samples were taken to analyze for residual nitrite and water activity were incubated at 26°C. The sausages were analyzed for aflatoxins at 0, 3, 7, 14, 21, and 28 days. Residual nitrite and water activity were determined at each sampling time.

Analysis for Residual Nitrite

Residual nitrite in samples was determined spectrophotometrically as described by methods of the Association of Official Analytical Chemists in section 24.014 and 24.015 (AOAC, 1970). The reproducibility of nitrite determinations was considered to be about 5%.

Modified Greiss Reagent was prepared in this manner: Five-tenths of a gram of sulfanilic acid, (Fisher certified ACS) was dissolved in 150 mls of 15% (v/v) glacial acetic acid (Fisher reagent). One-tenth gram of \(\alpha\)-naphthylamine (Baker chemical) was boiled in 20 ml deionized, distilled
water in a hood until dissolved and was mixed with sulfanilic acid solution while still hot. This mixture was tightly capped and stored in a brown glass bottle in a refrigerator.

The standard curve was prepared as follows: 0.1514 g of sodium nitrite (Baker analyzed reagent, 99.1% sodium nitrite) was dissolved in 100 ml of distilled deionized water in a volumetric flask. One ml of this solution was further diluted into a liter of distilled deionized water. Each ml of the solution was equal to 1 µg of sodium nitrite per ml of water or 1 ppm nitrite. Aliquots of 1, 3, 5, and 10 ml of the 1 ppm nitrite solution were pipetted into separate 50 ml volumetric flasks and then diluted with deionized distilled water to 50 ml. The nitrite concentration in each flask was 0.0, 0.06, 0.1 and 0.2 ppm respectively. Two ml of Greiss reagent was added to each flask and mixed well then allowed to stand at room temperature for approximately one hour for color development. About 5 ml of the solution was transferred to a cuvette and absorbance measured at a wavelength of 520 nm in the spectrophotometer.

Determination of Residual Nitrite in Sausage

A five-gram sample was removed from each sausage group and blended with 50 ml of 80°C deionized distilled water in a Waring blender for two minutes. The homogenized sample was transferred into a 500 ml volumetric flask and the blender jar was rinsed with 250 ml distilled water (80°C). The 500 ml flask
containing the blended sample with the rinse water was placed on the steam bath for two hours with occasional shaking. After steaming, 5 mls of saturated mecuric chloride solution (Analytical Reagent, Mallinkrodt) was added to the hot mixture and mixed vigorously by shaking. The mixture was allowed to cool at room temperature and the flask was filled to the mark with deionized distilled water. The mixture was filtered through Whatman #1 fiber glass filter paper. Different aliquots of the filtrate were transferred into 50 ml volumetric flasks and diluted to the mark with deionized distilled water and then 2 mls of Greiss reagent was added. Flasks were allowed to stand for one hour for color development. About five mls of the solution was transferred into a cuvette and absorbance of the solution was measured with the spectrophotometer at 520 nm. The residual nitrite concentration was determined from the standard curve.

Study of the Effects of Nitrite on the Growth and Sporulation of A. parasiticus

A weighed amount of sodium nitrite (Baker's reagent) was dissolved in a known volume of sterile distilled water. Modified Sabouraud glucose agar was autoclaved and cooled down to 45°C. The nitrite solution was mixed with the agar to give a concentration of 50, 156, 200, and 500 µg of nitrite per ml of medium. Four plates were poured for each concentration. Control plates containing no nitrite were included.
Two week surface growth of *A. parasiticus* was harvested in 10 ml of sterile saline as described previously. Two-tenths of a milliliter of the spore suspension was placed on the surface of the agar and was aseptically spread in a circular fashion with the aid of inoculating loop. All plates were incubated at 24°C and the rate of both growth and sporulation was checked every two days for a period of four weeks.

Water Activity in Sausage

The samples were equilibrated and the water activity was measured with a hygrometer (Model 15-3050, American Instrument Co., Silver Spring, MD). Measurements were made as follows: Twenty grams of sample from each nitrite level were placed in mason jars and capped with sensor-fitted screw caps. The hygrosensors (type Th-3) were made up of a strip of paper coated with a hygroscopic material (lithium chloride) and enclosed in an aluminum case and sealed at the factory. The closed system (mason jars) was allowed to equilibrate at room temperature for about four hours and equilibrium relative humidity (E.R.H.) readings were taken every hour. Known correction values were applied to each sensor's reading. The four hour readings were averaged and converted to water activity values.
Scintillation Counting

The combustion boats were boiled in concentrated nitric acid and then placed in a muffle furnace at 600°C overnight to completely burn off any organic material that was not removed by the nitric acid.

The biological material oxidizer operated overnight with a stream of oxygen going through it to condition the tube for combustion of samples. The following morning, the samples to be combusted were weighed into the combustion boats. Mannitol was weighed into three boats. The first mannitol portion was combusted to prime the tube and the total combustion cycle was four minutes. Fifteen mls of carbon 14 cocktail was transferred into the collection tube and then attached in position. The second mannitol boat was then combusted and the vapor bubbled into the cocktail. This served as a blank to correct for the background. A known amount of sodium acetate with known amount of activity was added to the third boat of mannitol and combusted and collected in another 15 mls of cocktail. Equal amount of sodium acetate as above with known amount of activity was added directly into 15 mls of the cocktail without combustion. From counts obtained from the non-combusted and the combusted acetate, relative efficiency of the system or percent recovery could be calculated after background adjustment with the blank. The samples were combusted in a similar way and collected in 15 mls of 14C cocktail. The collection tube was rinsed thoroughly with methanol.
between samples. After combustion of two samples a mannitol blank was combusted and collected in 15 mls of the "cocktail" to check the rinsing of the tube between samples. After the last sample was combusted, another blank and another 14C-acetate was tested to check reproducibility of the system and analysis throughout the combusting operation. The vials were then kept in a walk-in cooler for 24 hours to cool down. Before counting, the vials were allowed to warm up to room temperature and then set into the scintillation counter and allowed to stay for one hour to adjust to the conditions inside the counter, after which the counting was started. The counter was set to count for two cycles of 10 minutes and two counts on each vial.

Analysis of Sausage for Aflatoxin B1

Chemicals used in this work were analytical reagent grade. Solvents were re-distilled in glass except where otherwise indicated.

This study was designed to determine if known aflatoxin producing mold could produce aflatoxin in meat under different storage conditions. The extraction of aflatoxin from tissues is hampered by pigments, fats, that are soluble in chloroform. With pork, the primary interfering substance is fat.

Since a large number of samples were to be analyzed in this study, it was important that the method be simple and fast without sacrificing accuracy and precision. Direct chloroform extraction was used by Lee (1965) to extract
aflatoxin from defatted peanut products in the presence of a small amount of water and this provided quantitative recovery of aflatoxin. Eppley (1966) modified Lee's method by addition of a silica gel column purification step similar to that used by Pons et al. (1966). Both methods were further improved by Bullerman et al. (1969c) by extracting twice with chloroform and by shaking the mixture of homogenized tissue and chloroform for thirty minutes.

In this study, the sausage was weighed and then blended with 200 mls of acetonitrile:water (90:10) in a Waring blender. One hundred milliliters of the acetonitrile water extract was filtered through a filter paper into a measuring cylinder.

The extract was then transferred into a separatory funnel where it was defatted twice with 100 mls of petroleum ether. The petroleum ether layer was discarded. One hundred milliliters of water was then added to the separatory funnel with the defatted extract; 100 mls of chloroform was added and the funnel and its contents were vigorously mixed by shaking by hand. Chloroform was then allowed to separate from the water. The chloroform layer was drained into a beaker and 0.5 g of charcoal was added to remove some pigments that interfere with analysis or occur at about the same retention time as aflatoxin B1. The added charcoal was stirred and left in contact with the chloroform extract for about two minutes, and then, the cleaned extract was filtered into an Erlenmeyer flask through a glass fiber filter.
paper. The chloroform was concentrated on a steam bath under nitrogen. One ml of chloroform:methanol (70:30) mixture was used to redissolve the sample and 0.1 ml was spotted on a thin layer chromatography plate. An aflatoxin standard of 20 nanograms was spotted on the same plate. The plate was developed in one direction with chloroform-acetone-2-propanol (85:10:5) in an unlined unequilibrated tank. When development was complete, the plate was removed from the tank and allowed to air dry in a hood.

The plate was examined in the dark under long wave ultraviolet light. From the aflatoxin B1 standard spotted on the plate in the reference channel any aflatoxin band with the same retention time as the standard was scraped from the plate into vials. Three ml of chloroform:methanol (70:30) were added to the vials which were vigorously shaken by hand. Vials were allowed to stand overnight for the silica gel to settle. The solution was filtered through filter paper (934AH; Fisher Scientific Company) into another clean vial.

The same procedure described above was also used to analyze chicken tissues, except for a few changes. In the extraction solvent methanol is substituted for acetonitrile. The tissue was extracted with 100 ml of the extraction solvent by blending in a Sorvall mixer and the entire 100 ml were filtered into the separatory funnel. Extraction was done as described previously. The chloroform extract was concentrated on a steam bath,
re-dissolved, and concentrated again. Chloroform was again added and 0.1 ml or 50% of the sample was spotted on a thin layer chromatographic plate.

For both tissues, concentration of aflatoxin was determined by measuring the absorbance of the filtered solution in the spectrophotometer at 362 nm. The amount of aflatoxin present was calculated with the following formula:

\[A = e \times l \times c, \text{ where} \]
\[A = \text{absorbance reading of the sample} \]
\[e = \text{extinction coefficient of aflatoxin B1} \]
\[l = \text{length of UV cell} \]
\[c = \text{concentration} \]

A flow chart for aflatoxin analysis is presented in Figure 4.

Preparation of Thin Layer Chromatographic Plates

Glass plates of 20 X 20 cm were cleaned in an acid bath, rinsed in milipore filtered water, and then oven dried. Forty grams of silica gel G-60 for thin layer chromatography was weighed into a bottle with 90 mls of 95% ethanol added and vigorously mixed by shaking. A thickness of 2 nm of the silica gel-ethanol slurry was coated on the 20 X 20 glass plates lined on a plexiglass mounting board, with the aid of stainless steel adjustable applicator for coating (Brinkman Instruments, Inc., New York, NY). The plates were dried for 2-4 hours in the hood to allow the ethanol to completely evaporate. The plates were then activated by drying in the oven overnight at
Analysis of tissues for aflatoxin.

Weigh the sample
Blend with 90\% MeOH 10\% water
Filter into a sep. funnel
Defat with petroleum ether
Partition in chloroform
Decolorize with charcoal
Concentrate on a steam bath
Dissolve in CHCl₃/MeOH (70:30)
Chromatograph on TLC plates
Check under U.V. light
Scrape bands into CHCl₃/MeOH (70:30)
Measure absorbance in spectrophotometer at 362 nm

Figure 4. Flow chart for aflatoxin analysis.
105°C. Plates were stored in a desiccator to avoid absorption of moisture and thus deactivation.

Aflatoxin Standards

The aflatoxin standards used in this study were purchased from Calbiochem (San Diego, California). Ten milliliters of chloroform was added to the vial to dissolve the contents and dilutions were made to obtain a working standard of 1 nanogram of aflatoxin B1 per microliter of the solution. The concentration was confirmed by measuring the absorbance of the solution at 362 nm in a U. V. spectrophotometer. The sample was also spotted on a thin layer chromatographic plate and developed in unlined unequilibrated tank with chloroform-acetone-2-propanol (85:10:5) to confirm its purity by the presence of only one band when the TLC plate was examined in the dark under long wave UV light for fluorescence.

Scirpene Toxins

Another study was designed to determine the effect of scirpene toxins on fertile eggs as a biological test for the toxins. The toxins used were diacetoxyscirpenol (DAS), T-2 toxins, and Vomitoxin. DAS and T-2 toxins were obtained from Calbiochem (San Diego, California) and Vomitoxin from Dr. R. F. Vesonder (NRRL, Peoria, Illinois). The eggs were checked for live embryos by candling. A hole was drilled through the shell on top of the air sac.
The eggs with live embryos were divided into four groups of thirty eggs. One group received 0.1 microgram of ethanol into the air sac introduced with a micro syringe; groups 2, 3, and 4 received 0.1 microgram of DAS, T-2 toxin and vomitoxin respectively. After inoculation the drilled hole was sealed with Duco cement (DuPont). The eggs were then stored in an incubator and were checked for live embryos by candling after three weeks. A second batch of eggs of four groups with thirty eggs per group were again inoculated with the same toxin but with one-tenth the concentration of the above and were incubated for hatchability for 21 days.
RESULTS AND DISCUSSION

Effect of Temperature on Aflatoxin Production in Sausage Containing Nitrite

Among the factors considered in this study in relation to aflatoxin production in pork sausage, temperature had the most pronounced effect on both toxin production and growth of the organism. With both 200 and 156 ppm added nitrite the highest level of aflatoxin B1 was obtained at 26°C (1.7 µg per gram) with storage for 28 days. The lowest amount detected at 26°C was 0.01 µg per gram after three days of storage. At 37°C the greatest level was 0.80 µg per gram, this was found with 200 ppm added nitrite after 7 days. The mold grew profusely all over the sausage with greenish yellow aerial growth. Sausages became sticky and the casing dissolved at the point of contact with another sausage. Sausage at 37°C became oily due to fat exuding because of the temperature of the environment. Control samples were covered with fluffy white growth unlike the treated samples, but were also sticky and slimy.

Sausages at 26°C were similar to samples incubated at 37°C except that they were less oily and the casing was not dissolved at the point of contact with other sausages of the same group.

No aflatoxin was detected in samples stored at 5°C for the same time periods as sausage stored at other temperature. There was no mold growth and sausages appeared acceptable. Storage of sausage at
5°C, therefore, provided a means of retarding mold growth and aflatoxin formation.

Several workers have produced more aflatoxin B1 both in liquid media and natural substrates than was observed in the present study. In those cases, the work was done with sterile substrates whereas the meat used in this study was not sterile. While an attempt was made to keep other microbial competition as low as possible by thoroughly cleaning the sausage making equipment, with the long incubation time required for the growth of *A. parasiticus*, it is very likely that competitive bacteria and yeasts were present in the natural flora of the meat. Also, with mixed cultures, the possibility of microbial detoxification of any small amounts of aflatoxin that might have been produced cannot be ruled out. From visual observation, it appeared that pork sausage stored at 26 and 37°C would become unacceptable due to the growth of bacteria and yeasts before the sausage would become toxic as a result of *A. parasiticus* growth.

Different temperatures have been reported as optimum for growth of *A. parasiticus*. These temperatures range from 18 to 30°C, although different temperatures were used with different substrates. Diener and Davis (1966b) reported maximum yield after 15 days at 20°C or 11 days at 30°C. In work reported here, yield at 26°C was observed to increase with time up to a maximum at 28 days or at 7 days at 37°C (Figures 5 and 6). The longer the storage time, the higher the accumulation of aflatoxin at 26°C. However, there did not seem to be any significantly greater growth of the mold with increase in storage time after 14 days. At 37°C, profuse growth of the mold
Figure 5. Recovery of aflatoxin in sausage with 200 ppm added sodium nitrite and stored at 26° and 37° C.
Figure 6. Recovery of aflatoxin in sausage with 156 ppm added sodium nitrite stored at 26° and 37° C.
occurred in the sausage samples earlier than it did at 26°C. A difference was noted in the rate of aflatoxin production at the two temperatures. At 37°C, for sausage samples with 200 ppm NaNO₂, the highest aflatoxin production occurred after 7 days of storage (Figure 5) and declined as sharply as it had increased. Similar samples incubated at 26°C showed a peak at 7 days of storage and aflatoxin accumulation was not as high compared to storage at 37°C after 7 days. However, at 26°C, aflatoxin accumulation had declined by the 14th day of storage, and then reversed the trend to continually increase after 14 days up to 28 days of storage. Aflatoxin production at 37°C appeared to be reaching a plateau by 28 days. Samples with 156 ppm incubated at both 26 and 37°C (Figure 6) showed some differences from sausage containing 200 ppm sodium nitrite (Figure 5). The peak of aflatoxin production for 156 ppm NaNO₂ samples incubated at 37°C occurred on the 14th day (Figure 6) as opposed to 7 days for 200 ppm NaNO₂ (Figure 5); while samples incubated at 26°C showed a distinct trend toward continuous accumulation of aflatoxin up to 28 days of storage.

Changes in aflatoxin B₁ concentration are emphasized by the graphs in Figures 5 and 6. It is generally accepted that even in pure culture, aflatoxin concentration falls after reaching a peak and this study indicated that the time when the peak was reached was a function of temperature.
Other investigators observed that certain molds, including *A. niger* and *A. flavus* caused a decrease in the total amount of aflatoxin B1 which was originally present when the molds were grown in an aflatoxin containing liquid substrate or in toxin containing peanuts (Ashworth et al., 1965).

About a year later, Ciegler et al. (1966) observed the same phenomenon when aflatoxinogenic strains of *A. parasiticus* and *A. flavus* were studied. However, no one has yet fully determined the conditions which are optimal for biodegradation of aflatoxin or the mechanism which controls it (Doyle and Marth, 1978b).

In this study, the decline in aflatoxin B1 concentration could be due to one or two things: a) since the sausage samples were not sterile, there exists the possibility of bacterial detoxification of aflatoxin B1, or b) mycelial degradation of aflatoxin B1 could have occurred. Graphically, it may be seen that the rate of aflatoxin B1 accumulation is proportional to the rate of decline at both temperatures. At higher temperature, *A. parasiticus* produced more mycelia and less aflatoxin than it did at the lower temperature this agreed with the work done by Shih and Marth (1972). It is then possible that the presence of large numbers of mycelia and large numbers of yeasts and bacteria may be the cause of the sharp decline in the concentration of aflatoxin B1 after it had reached a peak. Several theories to explain this observation have been propounded. Ciegler et al. (1966) showed that
nondegraders of aflatoxin B1 could be induced to degrade aflatoxin by lysis of the mycelium and they suggested a nonspecific chemical mechanism of degradation. It is possible that at higher temperatures most of the available nutrients were utilized for more mycelial and spore formation and not enough remained for conversion into secondary metabolites after degradation of aflatoxin. Hence a high initial accumulation occurred with less accumulation with time. At 37°C, aflatoxin B1 was degraded to a point and then it started to accumulate again but not to as great a level as its previous high concentration. Conversely, at 26°C, after an early decline in the amount of aflatoxin B1 present (Figure 5), the amount that accumulated with time increased sharply. The dissimilarity in the "secondary" accumulation of aflatoxin suggests that temperature plays a part in determining not only the amount of metabolite but possibly the kind of metabolite produced by A. parasiticus. At lower temperatures the amount of initial spore germination was minimal, hence aflatoxin formation at 26°C was lower in the early storage period than at 37°C because aflatoxin is formed during germination and growth of aflatoxigenic mold spores.

Many possibilities exist for the differences observed at different temperatures, but these are merely attempts at explaining the trends observed. The sharp increase of aflatoxin at 26°C (Figure 5) after initial degradation could be a result of more available nutrients present which were not
used for more mycelia formation before the initial decline. It is also possible that at 26°C the aflatoxin accumulated to a point before a "breakdown" enzyme was activated, and after the breakdown the products then inhibit the enzyme, hence continuous accumulation at 26°C. Doyle and Marth (1978b) reported that as temperature is lowered, so is the rate at which aflatoxin is degraded and is substantially increased in fruits when temperatures are increased. At 37°C possibly both the temperature and the breakdown products inhibit the synthesizing enzyme. As a result, not much aflatoxin formed after initial decline. There is also the possibility that both the synthesizing and degrading enzymes were in different compartments of the cells and degradation did not take place until the cells lysed. Degradation may then have proceeded to a point where the amount of healthy spores germinating that were producing was almost equal to the lysing mycelia; this could result in a leveling off of accumulation. It may have resulted because the mold at certain temperatures did not always produce the same amount of substance(s) needed to degrade aflatoxin and formation of these materials may also be associated with differences in environmental conditions. Differences in the amount of degrading substance(s) released from the mold may also have been a cause of variation, which again could be
temperature dependent. Although the same strain of molds was grown under identical conditions, one grown in one flask may have produced either more or less aflatoxins than another grown in an adjacent flask. Hence the biological variability which was observed in the amount of aflatoxin production is not surprising. It could also be possible that at both temperatures, the mold synthesizes two different enzymes and a temperature of 26°C is more favorable for the synthesizing enzyme than for the degrading enzyme. Another possible consideration is that the rate of degradation depends on the age of mycelia and the amount of mycelia produced. Volatile metabolites which may originate from the fungi may inhibit germination of their own spores and inhibition of spore germination may cause a decrease in aflatoxin production. At 37°C, bacteria found in food may alter the environment as a result of their growth. This alteration of the environment may include a reduction of the oxygen level and an increase in respiratory carbon dioxide or a release of volatile metabolites. Diverse volatile compounds are produced by bacteria and these range from acids to alcohols to other organic solvents. Any of these types of compounds could possibly inhibit spore germination thus affecting aflatoxin production. Greater inhibition would be expected at 37°C than at 26°C. Finally, it should be noted that the ability of the fungi to produce mycotoxins is influenced by physical and nutritional factors. Maximum
concentration of aflatoxin may relate to the exhaustion of fermentable carbohydrate and onset of mycelial autolysis. The complexity of the situation regarding growth of mold, temperature and other environmental effects and aflatoxin production is emphasized by the foregoing discussion.

Since accumulation of aflatoxin at certain temperatures is biphasic in nature, it is important that sampling be done at close regular intervals so as to detect the pattern of aflatoxin peaks in a given substrate. If, for example, in monitoring aflatoxin production in foods such as sausage, the first sample was taken 14 days after storage, to conclude that less than 0.5 ppm (Figure 5) aflatoxin was produced in 14 days at a particular temperature (such as 37°C) would not be wrong from the available data, but it would not account for greater amounts produced earlier. This could lead to error in judgement as to the safety of the product. However, from the work reported here, the lower level (156 ppm) of nitrite with product held at room temperature (26°C) would not produce a similar erroneous conclusion, since storage time was directly related to aflatoxin recovery.

Residual Nitrite and Aflatoxin Production

In addition to temperature, production of aflatoxin can be influenced by several factors including water activity, pH, available nutrients, competitive growth and inhibitory substances. Growth of other
microorganisms may change the available nutrients or produce volatile and/or nonvolatile end products which may stimulate, inhibit, detoxify or have no influence on growth of fungi or mycotoxin production. Only limited studies have been done on how competitive growth influences aflatoxin production although mold growth and aflatoxin production usually occur in a competitive environment. The objective of this study was to determine the effect of nitrite, which inhibits the growth of C. botulinum, on aflatoxin production by A. parasiticus.

The influence of curing ingredients on aflatoxin production has been studied by several workers most of whom used laboratory media. Of the individual ingredients, aflatoxin production was totally inhibited by potassium nitrate (0.1%) but sodium nitrite (0.05%) stimulated aflatoxin formation (Strzelecki, 1973). In this work, sucrose and sodium chloride stimulated the production of aflatoxin B1. However, Meir and Marth (1977) reported that addition of 2 or 3% NaCl resulted in less aflatoxin production than produced in sausage containing no salt. Also with no nitrite, less aflatoxin was produced than observed when 100 ppm nitrite was added to sausage.

The production of aflatoxin in two levels of sodium nitrite at the same temperature (Figure 7) shows what is considered here to be a biphasic pattern. This pattern of aflatoxin production with time has
Figure 7. Concentration of aflatoxin B1 in sausage with two levels of added sodium nitrite and stored at 37°C.
been discussed under the influence of temperature. Differences in time required for maximum production with the two different nitrite levels may be noted; the 200 ppm level sausage showed a peak at 7 days while the 156 ppm concentration samples reached a peak at 14 days. Visual examination of sausages with 156 and 200 ppm sodium nitrite showed approximately, equal amounts of mold growth.

Aflatoxin production was somewhat higher in sausages that were calculated to have 200 ppm sodium nitrite (0.80 ppm aflatoxin) as compared to sausages that were made to have 156 ppm (0.70 ppm aflatoxin) at 37°C. These differences are even more evident with storage at 26°C (Figure 8) where the amount of aflatoxin for samples with 200 ppm sodium nitrite were about 22% higher in 7 days than found for the 156 ppm samples and the difference was even greater (about 40%) at 21 days of storage. At 14 days, aflatoxin production was similar for sausages with both nitrite levels and stored at 26°C. By 14 days, the residual nitrite had decreased to about 14 and 16 ppm for the added 200 and 156 ppm levels respectively (Figures 9 and 10). The mold may not have utilized the nitrite directly but may have used the breakdown products for growth and production of secondary metabolites. High accumulation of aflatoxin coincided with low levels of residual nitrite; in other words, trends were opposite for residual nitrite and aflatoxin production regardless of storage temperature.
Figure 8. Concentration of aflatoxin B1 in sausage with two levels of added sodium nitrite and stored at 26°C.
Figure 9. Residual sodium nitrite from sausage with 200 ppm added NaNO₂ and aflatoxin production by A. parasiticus at two temperatures.
Figure 10. Residual sodium nitrite from sausage with 156 ppm added NaNO₂ and aflatoxin production by A. parasiticus at two temperatures.
PPM Aflatoxin
Residual NaNO₂
(200) 2.0

(150) 1.5

(100) 1.0

(50) 0.5

(10) 0.1

Residual nitrite

37°C

26°C

Days in Storage
As stated earlier, from this study, it seemed that the amount of aflatoxin present has a bearing on the amount and/or rate of aflatoxin degradation. While it is possible that the presence of nitrite enhances the growth of the mold and possibly the production of aflatoxin, from what is known about the ability of the mycelia to degrade aflatoxin, nitrite either inhibits or slows down the rate of degradation of aflatoxin present. Aspergilli are nitrifiers capable of converting ammonium ions to nitrate (Shih et al., 1974). It is possible that one of the intermediates of the nitrification process has an inhibitory effect on the degrading enzymes while it may or may not enhance the production of aflatoxin. Nitrite salts have been reported to inhibit microbial growth (Perigo and Roberts, 1968). The nitrous acid form is assumed to interfere with the dehydrogenase enzyme system of the bacteria and yeasts. However, addition of nitrite to the sausage might also serve as an additional source of nitrogen which could permit more mold growth and as a result more aflatoxin production (Meir and Marth, 1977). Permeability of the mycelium may have been altered so that direct stimulation of enzyme systems by sodium nitrite might have occurred. It has been reported that low concentrations of sodium chloride (1-5%) stimulated aflatoxin production in A. parasiticus at 35° C (Shih and Marth, 1972) and the combination of both sodium chloride and sodium nitrite might have a stimulatory effect in the production of aflatoxin B1.
On the other hand, Bullerman et al. (1969a) found that 2.2% sodium chloride caused less synthesis of aflatoxin in glucose-ammonium-nitrate broth than that obtained when no salt was added. Meir and Marth (1977) indicated that aflatoxin production was less in sausage made with sodium chloride present compared with sausage containing sodium nitrite. These investigators stated that it was difficult to separate these two variables with regard to their stimulatory or inhibitory effects when compared with control sausage containing both salts.

Effect of Nitrite on the Growth and Sporulation of \textit{A. parasiticus}

\textit{A. parasiticus} was plated on Sabouraud glucose agar with four different levels of sodium nitrite and incubated for 28 days. After 4 days of incubation, it was noticed that growth and sporulation were taking place in the control and at low levels of nitrite (Plate 5) but no sporulation occurred at higher levels. By 8 days of storage, the trend seemed to reverse, there was more growth and spore formation at the higher levels of nitrite than was seen at the low levels (Plate 6). After 8 days, there was no change in the amount of growth and sporulation but evidence of more sporulation in the higher levels of nitrite could be seen as the plates with more spores get darker with time (Plate 7).
Plate 5. Growth of A. parasiticus on Sabouraud glucose agar with nitrite added. 4 days incubation at 24°C. Nitrite levels: 0, 50, 156, 200 and 500 ppm.
Plate 6. Growth of *A. parasiticus* on Sabouraud glucose agar with nitrite added. 8 days of incubation at 24°C. Nitrite levels: 0, 50, 156, 200 and 500 ppm.
GROWTH OF A. PATRULLIGA ON SCA WITH NITRITE ADDITION
8 DAYS OF INCUBATION AT 25°C.
Plate 7. Growth of *A. parasiticus* on Sabouraud glucose agar with nitrite added. 28 days of incubation at 24°C. Nitrite levels: 0, 50, 156, 200 and 500 ppm.
From this one could conclude that high levels of nitrite temporarily restrict the profuse growth and sporulation of *A. parasiticus*. But as the level of residual nitrite becomes low, growth of *A. parasiticus* may be enhanced and as a result more aflatoxin production results. This lends support to the finding that more aflatoxin was produced by *A. parasiticus* in sausage samples with 200 ppm sodium nitrite at 26°C than sausage samples with 156 ppm sodium nitrite at the same temperature.

Samples stored at 5, 26 and 37°C had average water activity values of 0.96, 0.95 and 0.93 respectively. Available moisture for growth did not seem to be influential in this study since the water activities of samples at the three temperatures were within the levels reported for optimum growth and aflatoxin production by *Aspergillus* species (Diener and Davis, 1967; Northholt et al., 1976).

Feeding Studies With 14C-aflatoxin B1

The purpose of this study was a) to determine the modes of absorption, distribution and elimination of dietary aflatoxin b) to quantitate aflatoxins in various edible portions of chicken. A single oral administration of 1 mg of 14C-aflatoxin B1, with 1600 or 3200 cpm in a capsule, to three week old chickens did not seem to have any physical effects. No toxicological lesions were observed in any of the tissues of the tested chicken when postmortem examination was conducted.
In order to account for the total amount of ^{14}C-aflatoxin retained in the chickens, it was necessary to determine the amount excreted. Since fecal samples were collected each time chickens were sacrificed during the course of the experiment, patterns of excretion of aflatoxin as measured by radioactivity could be determined. The pattern of excretion in feces and retention in other organs and tissues is presented in (Table 1). The data presented is for net radioactivity detected per gram of feces, tissues or organs of treated chickens. The results show that pattern of excretion could increase or decrease with time, emphasizing that differences exist among chickens in the rate of excretion of aflatoxin. From these data, it is not possible to make a definite statement as to the rate of excretion because of the differences that exist among chickens. These differences also indicate the need for several replications for statistical analysis to be done. With a group of chickens, some will have fast metabolic rate while others may be slow and this will be the determining factor in the pattern of excretion.

Histograms representing the distribution of aflatoxin B1 per gram of tissue at 12 and 24 hours are presented in Figures 11 and 12. Table 2 gives data on percent distribution of aflatoxin B1 in tissues of chickens at intervals up to 72 hours following administration of a single oral dose of
Figure 11. Concentration of aflatoxin B1 detected in tissues, organs, blood and feces 12 hours after oral dosing with 1 mg aflatoxin B1 (four chickens; each bar represents results from one chicken).
Figure 12. Concentration of aflatoxin B1 detected in tissues, organs, blood and feces 24 hours after oral dosing with 1 mg aflatoxin B1 (four chickens; each bar represents results from one chicken).
Table 1. Radioactivity counts on tissues, organs, blood and feces of chicken at different time intervals.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>COUNTS PER MINUTE</th>
<th>12 HRS</th>
<th>24 HRS</th>
<th>48 HRS</th>
<th>72 HRS</th>
<th>12 HRS</th>
<th>24 HRS</th>
<th>48 HRS</th>
<th>72 HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>438</td>
<td>373</td>
<td>421</td>
<td>443</td>
<td>179</td>
<td>189</td>
<td>156</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2073</td>
<td>2567</td>
<td>1333</td>
<td>1423</td>
<td>2025</td>
<td>1851</td>
<td>1736</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td>55</td>
<td>395</td>
<td>79</td>
<td>57</td>
<td>44</td>
<td>69</td>
<td>43</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260</td>
<td>245</td>
<td>282</td>
<td>352</td>
<td>126</td>
<td>188</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Lungs</td>
<td></td>
<td>60</td>
<td>189</td>
<td>40</td>
<td>40</td>
<td>37</td>
<td>23</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122</td>
<td>149</td>
<td>77</td>
<td>68</td>
<td>62</td>
<td>50</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td></td>
<td>67</td>
<td>25</td>
<td>37</td>
<td>33</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td><1</td>
<td>40</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Gizzard</td>
<td></td>
<td>244</td>
<td>113</td>
<td>131</td>
<td>306</td>
<td>5</td>
<td>40</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>187</td>
<td>434</td>
<td>613</td>
<td>122</td>
<td>50</td>
<td>30</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Gizzard Content</td>
<td></td>
<td>2272</td>
<td>3881</td>
<td>869</td>
<td>587</td>
<td>67</td>
<td>159</td>
<td>60</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2852</td>
<td>6016</td>
<td>6688</td>
<td>4078</td>
<td>2491</td>
<td>2360</td>
<td>1718</td>
<td></td>
</tr>
<tr>
<td>Breast Muscle</td>
<td></td>
<td>10</td>
<td>11</td>
<td><1</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td><1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59</td>
<td>128</td>
<td>25</td>
<td>22</td>
<td>27</td>
<td>197</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>G. I. Tract</td>
<td></td>
<td>77</td>
<td>239</td>
<td>228</td>
<td>204</td>
<td>101</td>
<td>143</td>
<td>69</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>419</td>
<td>195</td>
<td>163</td>
<td>445</td>
<td>255</td>
<td>268</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td>46</td>
<td>35</td>
<td>35</td>
<td>77</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>116</td>
<td>81</td>
<td>140</td>
<td>79</td>
<td>70</td>
<td>105</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
| Feces | | 1647 | 1980 | 592 | 162 | 1854 | 2971 | 5391 | * (no feces available)
Table 2. % distribution of aflatoxin B1 in tissues.

<table>
<thead>
<tr>
<th>TISSUES</th>
<th>REP I</th>
<th>REP II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 HRS</td>
<td>24 HRS</td>
</tr>
<tr>
<td>Liver</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kidney</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lung</td>
<td>.06</td>
<td>.04</td>
</tr>
<tr>
<td>Heart</td>
<td>—</td>
<td>.04</td>
</tr>
<tr>
<td>Gizzard</td>
<td>.60</td>
<td>1.20</td>
</tr>
<tr>
<td>Gizzard Content</td>
<td>.83</td>
<td>.44</td>
</tr>
<tr>
<td>Breast Muscle</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>G. I. Tract</td>
<td>.38</td>
<td>1.40</td>
</tr>
<tr>
<td>Blood</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Feces</td>
<td>.86</td>
<td>3.32</td>
</tr>
</tbody>
</table>

* (no feces available)
14C-aflatoxin B1. Data are given as percentage of the total aflatoxin administered that appeared in the entire tissue. The levels in liver appeared to increase for the first 48 hours. Digestive tract levels decreased during that time. When 10 mg of aflatoxin B1 were fed, the variation was ± 5% RSD. The variation among livers was ± 25%.

These results could not be compared with the work done by Mabee and Chipley (1973 a and b) in that they reported only radioactivity counts and also fed chickens continuously for 14 days. The present study showed that most of the aflatoxin administered to the birds was excreted through the feces.

Aflatoxin B1 is translocated to some tissues within 12 hours of administration. A significant finding here is the detection of aflatoxin B1 in the tissues of breast muscle. It is not surprising to find aflatoxin in the gizzard or its content or in the intestinal tract or liver because these are part of the normal route of digestion of feed and with the liver as an active metabolic site. Being absorbed from the intestine to the liver, to the heart, and from the heart to the lungs and kidneys before being absorbed into the muscles within 12 hours is evidence of the speed at which aflatoxin can be translocated in chickens. The intestinal tract and its contents contained
the largest amount of aflatoxin of any tissue after the feed had gone through
the gizzard. Again, this observation tends to support the fact that most of
the aflatoxins are excreted through the feces. Aflatoxin is primarily
metabolized in the liver but the metabolic pathways are not fully understood.
The relatively higher amount of both radioactivity and aflatoxin B1 observed
in the liver demonstrated that this organ retained aflatoxin and/or its
metabolite to a much greater extent than did other organs.

Six week old chickens were each fed 10 mg of aflatoxins to determine
the pathological effect on the liver. The chickens were sacrificed at
intervals up to 72 hrs following oral administration of a single dose of 10 mg
of aflatoxins. Both normal livers and livers with pathological lesions were
detected at each interval. These results again indicate individual differences
among chickens in resistance to aflatoxins. About 12 to 18 hours after feeding,
the chickens were showing signs of abnormal reflexes. They stopped feeding
probably due to loss of appetite and this was confirmed by the presence of very
little feed in both the crop and the gizzard and a virtually empty intestinal
tract. Pathological examination of the liver showed vacuolization of the
hepatocytes, hemorrhages, necrosis and proliferation of the bile duct
(Plates 8 and 9) compared with normal liver (Plate 10).
Plate 8. Effect of aflatoxins on chicken hepatic tissue 12 hours after oral administration 50X
Plate 9. Effects of aflatoxin on chicken liver tissue 72 hours after oral administration 100X
Plate 10. Normal structure of chicken liver 25X.
Effect of Scirpene Toxins on Chicken Embryos

Scirpene toxins injected into eggs were found to be toxic. A tenth of a microgram of the following toxins: T-2, diacetoxyscirpenol (DAS) and deoxynivalenol (vomitoxin) were injected into eggs as previously described and incubated for 21 days. Also, a group of eggs was injected with an equal volume of ethanol as a control for the solvent. After seven days the eggs were candled to check for dead embryos. There were no dead embryos among the control and the vomitoxin groups; however, 9 of 30 (30%) and 100% of the embryos were dead in T-2 and DAS group respectively. At the end of 21 days, 19 of 30 (63%), 3 of 30 (10%) and 2 of 30 (7%) of the embryos were dead in the T-2, vomitoxin and ethanol groups respectively.

These results agree with work reported by Chi et al. (1978) on the order of toxicity of 12, 13-epoxytrichothecenes. In this study, DAS and T-2 proved to be toxic to chicken embryos. DAS was more toxic and more potent than T-2. Vomitoxin did not seem to be very toxic when compared with the control group.

Another check was performed using lower dose levels. Eggs that were injected with 0.1 microgram of the above toxins were incubated until they hatched. The chicks were raised to three weeks of age and were then necropsied. Their liver and kidneys were normal. There was no observable physical defects. From this work it is possible to conclude that
transmission of low levels of scirpene toxins is not lethal to the embryo and
does not have any pathological or physical effects on the chick that hatched
from the egg.
SUMMARY

Aflatoxin B1 was produced when A. parasiticus (NRRL 2999) was grown in a liquid medium for 72 hours at 28°C. Chlamydospores were formed instead of a normal mycelial mat. Sodium acetate (214C) was incorporated efficiently on addition to cultures growing in the liquid medium in two stages. Aflatoxins were separated on thin layer chromatography, quantitated with a spectrophotometer and radioactivity of aflatoxin was determined by scintillation counting and confirmed by autoradiography.

A methanol-water extraction method was used for the extraction and analysis for aflatoxin in all tissues as well as blood and feces. By means of this method, internal standards were recovered. Charcoal was used to partially purify the methanol-water extract when necessary.

In a study on effects of nitrite on mold growth and aflatoxin production in cured meats, pork sausage was inoculated with a saline spore suspension of A. parasiticus and stored for varying lengths of time up to 28 days at 5, 26 and 37°C. Examinations were made for aflatoxin production and growth of the mold. The sausage had nitrite added to provide calculated levels of 156 and 200 ppm of sodium nitrite and also 2.5% sodium chloride was added as part of the curing salts mixture. No mold growth was observed at 5°C; likewise, no aflatoxin was found at this temperature. Mold growth
was about equal at 26° and 37° C and aflatoxin B1 was produced at both temperatures. More mold growth; i.e., more mycelia and spores were observed with 4 days of storage at lower levels of added sodium nitrite and the trend reversed to more mycelia and spore formation with increase in added sodium nitrite up to 500 ppm after 4 days of storage in Sabouraud glucose agar.

The effects of administering a single oral dose of 1 mg aflatoxin B1-14C to three week old chicks was determined as a test for determining distribution of aflatoxin in animal tissues. Analyses were made of the distribution of 14C in liver, kidney, lung, heart, gizzard, gizzard content, breast muscle, gastrointestinal tract, blood and feces. No toxic effects were observed in the chickens during the 72 hours of the experiment. Most of the 14C-aflatoxin B1 was excreted in the feces within 48 hours after dosing and most of the amount retained in the body was found in the liver. Chemical assay for the parent compound in the above tissues, organs and feces demonstrated the same trend as that of the radioactive recoveries. Effects of administering a single oral dose of 10 mg aflatoxins to six week old chickens were also determined. Studies of the effects on the liver was conducted. Within 12 to 18 hours after dosing, chickens had difficulty with their reflexes, they stopped feeding and pathological examination of the liver showed hemorrhaging, vacuolization of the hepatocytes, necrosis and proliferation of the bile duct.
Investigation of other mycotoxins was performed by inoculating scirpene toxins into chicken embryos. Diacetoxyscirpenol (DAS) proved to be more toxic (lethal to embryos) followed by T-2 and vomitoxin. However, chicks that hatched from the inoculated eggs had no observable defects or any pathological defects.
CONCLUSIONS

1. Extraction of aflatoxin B1 from tissues may be accomplished with methanol-water as an extracting solvent and removal of interfering pigments was improved in this work by the use of activated charcoal in chloroform.

2. No mold growth or production of aflatoxin was detected on sausage samples stored for up to 28 days at 5°C; this low temperature, therefore, is not conducive to aflatoxin formation.

3. With inoculated sausage held at 26°C or 37°C, aflatoxin may form within three days. Therefore, the practice of removing mold growth from sausage kept at room temperature or at higher temperatures for several days will not insure freedom from aflatoxin. In considering storage of sausage, the most favorable temperature for aflatoxin production and the most hazardous was 26°C, as compared with 5 or 37°C holding temperature.

4. Animal tissue such as sausage meat will support high yields of aflatoxin if conditions favoring the growth of *A. parasiticus* are present.

5. Production of aflatoxin shows a biphasic pattern and as such sampling and analysis should be done at close intervals in tests to determine when aflatoxin is first produced, or for determining trends in concentration over time.
6. When chicken consumes aflatoxin in feed, most of the aflatoxin is excreted through the feces within 48 hours and of the amount retained, most is found in the liver.

7. When the chick embryo test is used, of the three scirpene toxins, DAS, T-2, and vomitoxin, the most potent is DAS, followed by T-2 and vomitoxin in that order.
REFERENCES

A. parasiticus NRRL-2999 during growth in the presence of curing
salts. _Mycopathologia_ 61:77-84.

metabolite produced by _Fusarium graminearum_ in stored com. _Appl.

Mirocha, C. J., C. M. Christensen, and G. H. Nelson. 1968. Toxic
metabolites produced by fungi implicated in mycotoxicosis. _Biotechnol.
Bioeng._ 10:469-482.

Mirocha, C. J., S. V. Pathre, B. Schauerhamer, and C. M. Christensen.

and sporulation by volatile metabolites from bacteria. _Can. J.

volatile metabolites from bacteria and germinating seeds on fungi in the

The response of chicks, ducklings, goslings, pheasants and poults to
graded levels of aflatoxins. _Poultry Sci._ 49:1346-1350.

Aflatoxin residues in tissues of growing swine: Effects of separate and
mixed feeding of protein and protein free portions of the diet.

McDonald, D. 1969. _A. flavus_ on groundnut (Arachis hypogaea L.) and its

ACKNOWLEDGMENTS

I wish to extend a special thank you to Dr. A. A. Kraft, my major professor, who has indulged me with encouragement, patience and guidance during the years of my academic pursuits. His concern for me as a person and his interest in my future goals have given me the courage to persevere during some discouraging hours. I also wish to acknowledge his unselfish assistance in the preparation of this dissertation.

My sincere appreciation is expressed to Dr. H. M. Stahr as a committee member and for his unremitting support of this project and his zest for accomplishment through research.

I also owe many thanks to Dr. Abou-Gabal for his tremendous help and guidance through the mycology portion of this study and for his contribution of many hours of valuable discussions. His helpful suggestions, encouragement and willingness to serve as committee member I greatly appreciate.

I am very grateful to the remaining members of my graduate committee: Dr. H. W. Walker, Dr. H. E. Snyder, Dr. J. G. Holt and Dr. D. G. Topel for their confidence and critical evaluation of this manuscript.

I am also indebted to Dr. Max Schuh and Bob Champion for their laboratory assistance and to Dr. J. J. Andrews, Dr. L. Stockberger and Dr. W. E. Lloyd for the pathological expertise which they provided in the course of this study.
The author expresses his sincere thanks to Iowa State University Veterinary Diagnostic Laboratory for making the facilities used in this study available.

To "sanity preservers:" The chemistry gang of Iowa State University Veterinary Diagnostic Laboratory and graduate students of the Food Technology Department many thanks.

My deepest appreciation is finally extended to my parents Reuben and Rosaline Obioha Egbuonu for their sincere and enduring support of my academic career both morally and financially.