Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches

Thumbnail Image
Date
2018-01-01
Authors
Ooi, George Theng Ching
Major Professor
Advisor
Sriram Sundararajan
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Tue May 01 00:00:00 UTC 2018