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Figure 7.3: a- Schematic diagram of micropitting test rig (MPR); b-

Experimental setup of roller and rings inside MPR chamber; c-Representative 

image of roller (test sample) 

 

Table 7.2: Operating test conditions 

Test parameter  

Entrainment velocity (m/sec) 1 

Slide to roll ratio (%) -30 

Normal Load (N) 500 

Maximum Hertzian contact pressure (GPa) 1.9 

Lubricant sump temperature (°C) 80 

Oil film thickness (nm)a 51 

Lambda ratio 0.16 

a Estimated using Eq. (7.2) 

The lubricating oil used in this study was an API group II base oil with Zinc 

dialkyldithiophosphate (ZDDP) anti-wear and other additives. The lubricating oil was 

sheared before testing by running it through a piston pump for 48 hours to ensure no change 

in viscosity would occur due to shearing during rolling contact fatigue tests. The kinematic 

viscosity of the sheared oil was 50.51–51.44cSt at 40 °C and 7.56–7.81cSt at 100 °C. 

Minimum oil film thickness (Hmin) for the experiments was calculated using the Pan-

Hamrock equation mentioned below, 

�� �k�g�l 
L �s�ä�y�s�v���� �4�ä�:�=�8�
 �4�ä�9�:�<�� �?�4�ä�5�6�<����      (7.2) 
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where, U is dimensionless speed parameter, G is the dimensionless material parameter, and 

W is the dimensionless load parameter. The film thickness ratio (λ) was calculated using 

Hmin and measured initial composite roughness (Rq) to verify tests were run under 

boundary lubrication. 

An accelerometer attached to the instrument provides peak to peak (P/P) values of vibration 

experienced by the roller. Crack propagation and surface deformation during RCF tests 

lead to increased vibrations and increased P/P values. All experiments were run till the 

system detected a P/P accelerometer signal of 10g. In our tests, this value was reached due 

to formation of macropits on the sample surface. Each experiment included a 2-min time 

duration ‘ramp-up’ step where the test parameters were ramped to preset conditions (as 

mentioned in Table 7.2) for the upcoming fatigue step. A Sensofar 3D non-contact optical 

surface profilometer using focus variation microscopy mode was used to capture the height 

maps of the macropits at the end of each tests. 

7.4.2 White etching crack characterization protocol  

At the end of every test, the respective rollers were sectioned in the circumferential-

depth plane. Figure 7.4 shows a schematic describing the cross-sectional plan for observing 

WECs in different samples. Samples were then mounted in Bakelite, and polished to 

multiple locations along the wear track using a series of polishing steps: 220 grit (grinding), 

followed by 9 µm, 3 µm, and 1µm diamond polishing medium. At each section, the samples 

were etched with a 3% Nital solution and the subsurface of each sample was examined for 

microstructural alterations using and optical microscope. When necessary, additional 

analysis was performed on an FEI Quanta 400F scanning electron microscope (SEM).   
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Figure 7.4: Cross-sectional plan for WECs observation 

 

7.5 Results 

 

7.5.1 Rolling contact fatigue test observations 

Table 7.3 shows the results of the RCF tests. It can be observed that the low RA samples 

had slightly lower RCF life compared to medium and high RA samples. While there was 

no statistically significant difference in RCF life among medium and high RA samples, the 

medium RA samples had a slightly larger average time until failure.  

           Table 7.3: Rolling contact fatigue life (P/P accelerometer to reach 10g) 

Sample Test trials 
RCF life 

(million) 

High RA 
Test 01 20.4 

Test 02 18.9 

Medium RA 
Test 03 23 

Test 04 22.3 

Low RA 
Test 05 16.3 

Test 06 12.2 
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Figure 7.5: Representative height maps of macropits formed during RCF tests 

In all cases, the tests were automatically shut down due to the formation of a macropit. 

Figure 7.5 shows the representative height maps of macropits for different RA samples. 

The maximum depth of the pits was within 100-120 μm. There was no significant trend 

observed in terms of pit size and depths among the samples from different RA levels. 

Figure 7.6a shows a representative evolution of the P/P accelerometer signal for the 

different RA samples during RCF testing. In all cases, the RCF life can be divided into two 

periods N1 and N2. The N1 period shows no significant change in P/P accelerometer signal 

because crack initiation and propagation did not affect the vibration amplitude. N2 period 

shows a significant change in the vibration amplitude due to formation of spall on the 

surface. Thus, N2 represents the spall progression period which is very short compared to 

N1. This observation is consistent with observations made by previous researchers [69] 

and shows that macropitting or spalling is a catastrophic failure which occurs in a very 

short time. Figure 7.6b shows the optical micrograph of the roller at baseline condition. 

Figure 7.6c shows the accelerometer signal after 12 million RCF cycles and optical 

micrographs of spalls which resulted increase of P/P accelerometer signal to 10g. 
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Figure 7.6: Evolution of P/P accelerometer signal of different RA roller samples: (a) 

P/P signal for whole RCF life where N1 is the spall initiation period and N2 is the spall 

progression period; (b) optical micrograph of roller surface at baseline condition; (c) 

optical micrograph of roller surface at the end of their RCF life with accelerometer 

signal from 12 million cycles till end-of-test 
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7.6 Discussion 

7.6.1 Effect of RA on WEC formation and Crack morphology  

It was observed that the level of retained austenite had a drastic effect on the 

morphology of the crack networks, as well as the WEA that accompanied them. The WEC 

networks that formed in the samples with higher levels of RA contained a larger number 

of crack branches, and the WEA adjacent to the crack faces was less developed. Examples 

of crack networks displaying these observations are shown in Figure 7.7 and Figure 7.8.  

 

Figure 7.7: (a) A WEC network observed within Test 6, a sample with a low level of RA 

and (b) a WEC network within Test 2, a sample with a high level of RA. These images 

show the increase in the branching nature of the WEC networks documented in the 

higher RA samples. 

 

 As stated above, the method that was used to induce high levels of RA was 

supersaturating the outer layer of the samples with carbon. If enough carbon exists locally, 

and the steel is constrained from expanding in volume, then the microstructure of the steel 

must remain in the face center cubic (FCC) configuration of austenite as opposed to the 

body center cubic (BCC) lattice of ferrite, or the body center tetragonal (BCT) lattice of 

martensite. This is due to the fact that the FCC configuration has a much higher carbon 

solubility limit than that of a BCC or BCT structure [70]. As crack networks initiate and 

propagate through the subsurface of the samples containing large amount of RA, they 
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inevitably interact with regions of RA. The spacing induced by the crack network (i.e. the 

width of the crack) will allow the RA adjacent to the crack to expand from its FCC lattice 

to the BCT lattice of martensite. This expansion, in turn, will place a significant 

compressive stress on the crack tip impeding further crack propagation. The crack will then 

propagate in a new direction based on the path of least resistance for the given stress state, 

significant branching within the higher RA samples. Each time a crack face interacts with 

a region of RA, the RA transforms, leading to a new path of least resistance, and therefore 

a new direction of crack propagation. Figure 7.9 supports this hypothesis. This figure 

shows two significantly branched crack networks within a high RA sample. As stated 

above, regions of RA appear white when etched. Within Figure 7.9, it can be observed that 

steel adjacent to the crack network is devoid of RA, thereby indicating that the RA that has 

interacted with the crack network has undergone a transformation to martensite. 

 

 

Figure 7.8: Three images showing how increased levels of RA within samples led to 

changes in the appearance of the microstructural alterations which appear adjacent to 

the crack networks in each sample. (a) shows Test 5 (low RA), (b) shows Test 4 (mid 

RA), and (c) shows Test 2 (high RA). It was documented that the rollers which 

contained a lower level of RA formed WEA that was far more defined then that of the 

higher levels of RA. 
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Figure 7.9: (a) an image of a broad branching WEC network within (Test 2). Zone 1 

within this image shows the matrix microstructure, which is unaffected by the cracking 

failure. This zone shows large regions of lighter etching, corresponding to areas rich in 

RA. Regions 2-6, which are all adjacent to crack faces, show a clear depletion of this 

lighter etching. This indicates that these regions have transformed from RA to 

Martensite due to the presence of the crack. (b) Shows another WEC network within 

this sample, where it can be observed, similar to (a), that the steel adjacent to the crack 

faces contains far less RA then the steel unaffected by the crack. 

 

    

It was also observed that the regions of WEA adjacent to the crack networks were less 

developed in the higher RA samples. This can be seen in Figure 7.7 and in Figure 7.8. The 
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leading hypotheses as to why WEA forms adjacent to crack networks are based on the local 

accumulation of energy which leads to a gradual increase in the dislocation density [17, 

24, 71, 72]. As the dislocation density increases, the dislocations rearrange to form new, 

smaller cells, causing gradual grain refinement. The energy that drives this process likely 

comes from multiple origins, including: strain-based energy release due to over-rolling, 

frictional energy generated due to sliding at the contact surface, and frictional energy 

generated at the crack interface due to crack face rubbing. The authors have two theories 

as to why the samples with higher levels of RA contained less developed WEAs than the 

samples with low levels of RA. The first theory is that the cracks contained within the 

higher RA samples had less time from initiation to a macropitting failure, and thus less 

time to accrue localized energy before a failure. This idea stems from the fact that the 

medium and high RA samples were much harder, and therefore less tough, than the low 

RA samples. The second theory as to why these observable differences in WEA 

morphology occur has to do with differences in the rate of energy generated due to crack 

face rubbing. In the cases of WECs generated in steels with a low level of RA, such as the 

images shown in Figure 7.7a, 7.8a as well as most 52100 through hardened steels, the 

WEAs adjacent to the crack networks are distinct and well defined. An SEM image 

showing a well-defined WEA within a low RA sample is shown in Figure 7.10a. Within 

these well-defined WEAs there are normally very few crack branches. Therefore, when the 

region is loaded, the imposed stress is concentrated on a single crack causing the two crack 

faces to be easily compressed together, the shear component of the stress state causes crack 

face rubbing, and subsequent energy is released which increases the dislocation density 

adjacent to the cracks.  However, in the case of a crack network within a high RA sample, 
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there are numerous crack branches within a local area for the reasons stated above. 

Therefore, when a region containing multiple crack networks is stressed, the numerous 

crack branches in a local area all compress to varying levels. In other words, there are 

significantly more degrees of freedom in terms of how the compression can be 

accommodated. Therefore, a multitude of cracks can take the various shear and 

compressive components of over-rolling, leading to a decrease in energy localization 

adjacent to any single crack face. Because of this, gradual microstructural alterations form 

adjacent to the numerous cracks in a local area, as opposed to well-defined microstructural 

alterations forming adjacent to one crack face. An example of a non-well-defined WEA 

within a high RA sample is shown in Figure 7.10b. 

 

Figure 7.10: Two SEM images showing the differences in the appearance of the WEA 

within the Low RA samples (a) and the high RA samples (b). 

 

 

7.7 Conclusions 

Steel samples with a retained austenite (RA) range of 0-70% were prepared to evaluate the 

effect of RA on macropitting by varying carbon potential (1.2 to 2%) and tempering 

temperature and time. These samples were tested within the PCS Instruments micro-pitting 
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rig under conditions which were previously documented to lead to the formation of WECs 

[9, 24]. 

 The average RCF test life for high, medium and low RA samples based on two tests 

from each batch of samples were 19.7 million, 22.7 million and 14.3 million cycles 

respectively. 

 Varying the RA level also caused drastic differences in the morphology of the 

WECs which developed within the samples.  

 Samples with higher levels of RA contained far more branching crack networks, 

and the WEA adjacent to the crack networks was less defined. This shows positive 

impact of RA on WEC formation. 

The study helps establish the role of RA on WEC behavior in the context of 

other mechanical and microstructural phenomena as well as the correlation of 

rolling contact fatigue behavior to heat treatment routes. Overall, the findings 

provide valuable input for the design and manufacturing of drivetrain components 

for a wide range of applications under boundary lubrication ranging from 

agricultural equipment to the wind energy sector. 
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CHAPTER 8. CONCLUSION 

 

Retained austenite or RA is a crucial phase in steel which has a significant impact on the 

wear and fatigue life of steel. In the first phase of my Ph.D. study, I have elucidated the 

impact of different heat treatment routes on controlling RA and micro-tribological (i.e. 

friction and wear) behavior of AISI 8620 steel. The significant results and observations 

with respect to each research objective are summarized below.  

The effect of heat treatment routes on the retained austenite and tribomechanical 

properties of carburized AISI 8620 steel 

A 3–15% range of RA with varied hardness and residual stress in AISI 8620 steel was 

achieved by varying carbon potential (0.45% to 1.05%) during carburizing as well as by 

employing different end-quenching routes (from air-cooling to deep freezing). Varying the 

carbon potential impacted the resulting range of RA% more than varying quenching routes. 

The higher carbon potential resulted in higher hardness due to increased carbon near the 

surface. The carburizing technique generates compressive residual stress which is 

beneficial for wear resistance. The hardness and amount of RA contribute more to the 

differences in wear behavior of samples as compared to the residual stresses. The results 

show that the combined effect of RA and hardness on the abrasive wear resistance is highly 

dependent on the contact stress. Below a certain pressure level, the effect of RA is 

insignificant. At higher contact pressures, a higher hardness and higher RA% result in 

superior wear resistance. This is attributed to the higher hardness resulting from the heat 

treatment route to generate higher RA% as well as martensitic transformation of austenite 

during sliding. The role of RA increases at higher penetration depths where the effect of 
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carbon potential (and hence hardness) plays a lesser role. The heat treatments did not 

significantly affect the coefficient of friction of the samples when subjected to dry sliding 

against a steel probe. The findings indicate that heat treatment technique for 8620 steel 

modelled in such a way as to produce higher hardness as well as moderately higher RA 

(~15%), through carburizing and quenching will yield increased abrasive wear resistance. 

This study also provides some insight into varying the RA in AISI 8620 steel, which is 

commonly used in drivetrains, and the effect that the RA can have on abrasive wear 

resistance. 

Effect of laser treatment parameters on surface modification and tribological 

behavior of AISI 8620 steel 

This study provides some insight to proper selection of scanning velocity and shielding 

gases during laser heat treatment to control the mechanical properties in AISI 8620 steel, 

which is commonly used in drivetrains. The results showed that it is possible to control RA 

levels below 10% by proper selection of power density and scanning velocity levels. Phase 

transformation based hardening occurs in this regime resulting in martensite and RA on 

the laser treated layer close to the surface. Generated RA% due to laser treatment is higher 

at lower scanning velocity and with air and nitrogen as a shielding gas compared to argon. 

The air and nitrogen shielded environments along with lower scanning velocity result in a 

higher hardness due to combination of deeper interaction volume and higher heat input. 

Oxygen content in air results higher surface roughness on laser treated sample but air 

shielded laser treatment showed largest interaction volume. This suggests that, nitrogen 

and oxygen can be blended to achieve a larger reaction volume along with reasonable 

surface rough ness. However, air shielded samples showed higher friction levels due to 



176 
 

 
 

shearing of oxide layers and high surface roughness compared to other samples. The 

nitrogen shielded samples with lower scanning velocity result in the most promising wear 

resistance behavior which is attributed to nitride formation on surface. The findings 

indicate that by proper selection of laser heat treatment parameters such as a nitrogen 

shielded environment with comparatively lower scanning velocity can result in a good 

combination of surface properties such as moderate RA% with higher surface hardness, 

lower surface roughness and better wear resistance for AISI 8620 steel. 

Effect of retained austenite on micropitting behavior of carburized AISI 8620 steel 

under boundary lubrication 

Steel samples with an RA range of 0-70% were prepared to evaluate the effect of RA on 

micropitting by varying carbon potential (1.2 to 2%) and tempering temperature and time. 

Experiments revealed that increasing RA% contributed to significant increase in 

micropitting life. The failure mechanism for the lowest RA samples was dominated by 

early crack initiation and rapid crack propagation, whereas samples with medium and high 

RA showed initiation and propagation of micropitting with clear evidence of RA 

transforming to martensite. It was observed that in case of 70% RA samples the RA was 

transformed to around 20% in 5 million cycles after which the transformation stabilized. 

Evolution of the phase transformation indicated that at 15% RA, almost all the RA is 

transformed to martensite within 104 cycles. XFEM simulations showed that higher 

amounts of RA delays fatigue crack growth and therefore micropitting life is improved. 

Secondly, inherent ductility of austenite also plays a beneficial role to delay crack initiation 

and propagation. Although 70% retained austenite sample exhibited the lowest 

compressive residual stress, it showed the maximum micropitting life. This indicates that 
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the role of retained austenite had greater impact than that of residual stress in affecting the 

micropitting life. Thus, ensuring a sufficiently high level of RA% at the start to enable a 

stable level remains after martensitic transformation is desirable for improved micropitting 

life. Overall, the findings provide valuable input for the design and manufacturing of 

drivetrain components for a wide range of applications under low lambda conditions 

ranging from agricultural equipment to the wind energy sectors. 

Correlation between evolution of surface roughness parameters and micropitting of 

carburized steel under boundary lubrication condition 

Four different amplitude roughness parameters and a spatial parameter were studied to 

investigate correlation between micropitting initiation and propagation and surface 

roughness parameters during rolling contact fatigue test of carburized AISI 8620 steel. 

Run-in occurred within the first 104 cycles of RCF tests for all samples, during which the 

Ra and RRMS values dropped to around 50% of their initial value due to plastic deformation 

of asperity tips. This was accompanied by a drastic climb in the correlation length along 

the axial or transverse direction until stabilization was achieved. After run-in, 0% RA 

samples failed very quickly due to early crack initiation and rapid crack propagation. These 

cracks developed a channel-like formation in transverse direction, which caused a 

consistent increase in the correlation length until the surface became fully covered with 

cracks and resulted a nearly random surface in the axial direction. In case of 15 and 70% 

RA samples, micropitting initiation and propagation were observed. Ra and RRMS increased 

with onset of cracking as well as initiation and propagation of micropitting. An inverse 

relationship exists between RMS roughness and correlation length. Similarly, this trend 

continued after run-in for the 15 and 70% RA cases. The propagation of micropitting and 
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correlation length also showed an inverse relationship in those samples. Skewness and 

kurtosis were found to be reliable indicators to detect initiation and propagation of 

micropitting. Micropitting acts like indents on surface which results in negative skewness 

during its propagation. On the other hand, kurtosis numbers will rise with increase of 

micropitting. The observed correlation between surface roughness parameter evolution and 

micropitting can be used to monitor and effectively predict the long-term performance of 

components subject to rolling contact fatigue under boundary lubrication regime.  

Effect of retained austenite on spalling behavior of carburized AISI 8620 steel under 

boundary lubrication 

Steel samples with an RA range of 0-70% were prepared to evaluate the effect of RA on 

macropitting or spalling by varying carbon potential (1.2 to 2%) and tempering temperature 

and time. Experiments revealed that microstructure with almost no RA showed the lowest 

spalling life. 70% RA samples showed better macropitting life compared to 0% RA 

samples even though it had larger sub-surface cracks at baseline condition. If RCF life for 

0% and 15% RA samples are compared, both samples had insignificant sub-surface defects 

but 15% RA samples showed significantly improved macropitting life. In case of 70% RA 

samples, although they had very high RA but due to sub-surface cracks these samples did 

not show significantly higher RCF life than 15% RA samples. These observations confirm 

that increasing RA and decreasing sub-surface cracks at baseline condition can help to 

enhance macropitting life. The 0% RA samples had maximum residual stress but still 

showed lowest spalling life. Thus, the baseline residual stress cannot be the main factor to 

control macropitting behavior. The failure mechanism for all three samples were similar. 

Sub-surface cracks initially propagated in the circumferential direction and suddenly 
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deviated upwards to create a spall on the surface. Thus, in all cases spalling was due to sub-

surface crack initiation and propagation. Samples with medium and high RA showed clear 

evidence of RA transforming to martensite. Higher amounts of RA can create more barriers 

for fatigue crack growth and therefore macropitting life is improved. Secondly, inherent 

ductility of austenite also plays a beneficial role to delay crack initiation and propagation.  

The study helps establish the role of RA on macropitting in the context of other mechanical 

and microstructural phenomena as well as the correlation of behavior to heat treatment 

routes for preferred fatigue life. Overall, the findings will provide valuable input for the 

design and manufacturing of drivetrain components for a wide range of applications under 

low lambda conditions ranging from agricultural equipment to the wind energy sectors. 

Effect of retained austenite on white etching crack behavior of carburized steel under 

boundary lubrication 

Steel samples with an RA range of 0-70% were prepared to evaluate the effect of RA on 

white etching crack behavior by varying carbon potential (1.2 to 2%) and tempering 

temperature and time. These samples were tested within the PCS Instruments micro-pitting 

rig under conditions which were previously documented to lead to the formation of WECs. 

While varying the RA level within test rollers only lead to minor changes in time until 

failure, it did cause drastic differences in the morphology of the WECs which developed 

within the samples. Samples which were tested in higher levels of RA contained far more 

branching crack networks, and the WEA adjacent to the crack networks was less defined. 

This shows positive impact of RA on WEC formation. The study helps establish the role 

of RA on WEC behavior in the context of other mechanical and microstructural phenomena 

as well as the correlation of behavior to heat treatment routes for preferred rolling contact 
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fatigue life. Overall, the findings provide valuable input for the design and manufacturing 

of drivetrain components for a wide range of applications under low lambda conditions 

ranging from agricultural equipment to the wind energy sectors. 

 


